
Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 9

Exercise 1 (Inter-Process Communication)

1. Describe what a critical section is.

2. Describe what a race condition is.

3. Describe why race conditions are hard to locate and fix.

4. Describe how to avoid race conditions.

Exercise 2 (Synchronization)

1. What is the advantage of signal and wait compared with busy waiting?

2. Which two problems can arise from blocking?

3. What is the difference between signaling and blocking?

4. Which four conditions must be fulfilled at the same time as precondition that
a deadlock can arise?

f Recursive function calls
f Mutual exclusion
f Frequent function calls
f Nested for loops
f No preemption

f Hold and wait
f > 128 processes in blocked state
f Iterative programming
f Circular wait
f Queues

5. Does a deadlock occur?
Perform the deadlock detection with matrices.

Existing resource vector =
(

8 6 7 5
)

Current allocation matrix =

 2 1 0 0
3 1 0 4
0 2 1 1

 Request matrix =

 3 2 4 5
1 1 2 0
4 3 5 4



Content: Topics of slide set 9 Page 1 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Communication of Processes)

1. What must be considered, when inter-process communication via shared me-
mory segments is used?

2. What is the function of the shared memory table in the Linux kernel?

3. What is the impact of a restart (reboot) of the operating system on the existing
shared memory segments?
(Only a single answer is correct!)

f The shared memory segments are created new during boot and the contents
are restored.
f The shared memory segments are created new during boot, but they remain
empty. This means, only the contents are lost.
f The shared memory segments and their contents are lost.
f Only the shared memory segments are lost. The operating system stores
the contents in temporary files inside the folder \tmp.

4. According to which principle operate message queues?
(Only a single answer is correct!)

f Round Robin f LIFO f FIFO f SJF f LJF

5. How many processes can communicate with each other via a pipe?

6. What is the effect, when a process tries to write data into a pipe without free
capacity?

7. What is the effect, when a process tries to read data from an empty pipe?

8. Which two different types of pipes exist?

9. Which two different types of sockets exist?

10. Communication via pipes works. . .
(Only a single answer is correct!)

f memory-based f message-based

11. Communication via message queues works. . .
(Only a single answer is correct!)

f memory-based f message-based

12. Communication via shared memory segments works. . .
(Only a single answer is correct!)

f memory-based f message-based

Content: Topics of slide set 9 Page 2 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

13. Communication via sockets works. . .
(Only a single answer is correct!)

f memory-based f message-based

14. Which two sorts of inter-process communication operate bidirectional?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

15. Name a sort of inter-process communication, which can only be used for pro-
cesses, which are closely related to each other.

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

16. Which sort of inter-process communication allows communication over com-
puter boundaries?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

17. With which sorts of inter-process communication remains the data intact wi-
thout a bound process?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

18. For which sort of inter-process communication guarantees the operating system
not the synchronization?

f Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

Exercise 4 (Cooperation of Processes)

1. What is a semaphore and what is its intended purpose?

2. Which two operations are used with semaphores?
Provide the names of the operations and for each operation a short description
of the functioning.

3. What is the difference between Semaphores versus blocking?

4. What is a binary semaphore?

Content: Topics of slide set 9 Page 3 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5. What is a mutex and what is its intended purpose?

6. Which type of semaphores has the same functionality as the mutex?

7. Which states can a mutex have?

8. Which Linux/UNIX command returns information about existing shared me-
mory segments, message queues and semaphores?

9. Which Linux/UNIX command allows to erase existing shared memory seg-
ments, message queues and semaphores?

Exercise 5 (Producer/Consumer Scenario)

A producer should send data to a consumer. A buffer with limited capacity should
be used to minimize the waiting times of the consumer. Data is placed into the buffer
by the producer and the consumer removes data from the buffer. Mutual exclusion
is necessary in order to avoid inconsistencies. If the buffer has no more free capacity,
the producer must block itself. If the buffer is empty, the consumer must block itself.

For synchronizing the two processes, create the required semaphores, assign them
initial values and insert semaphore operations.

Content: Topics of slide set 9 Page 4 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

typedef int semaphore ;

void producer (void) {
int data;
while (TRUE) { // infinite loop

createDatapacket (data ); // create data packet

insertDatapacket (data ); // write data packet into buffer

}
}

void consumer (void) {
int data;
while (TRUE) { // infinite loop

removeDatapacket (data ); // remove data packet from buffer

consumeDatapacket (data ); // consume data packet
}

}

Exercise 6 (Semaphores)

In a warehouse, packages are delivered constantly by a supplier and picked up by
two deliverers. The supplier and the deliverers need to pass through a gate. The gate
can always be passed only by a single person. The supplier brings three packages
with every shipment to the incoming goods section. One of the deliverers can pick
two packages with every pickup from the outgoing goods section. The other deliverer
can pick only a single package per pickup from the outgoing goods section.

Content: Topics of slide set 9 Page 5 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Supplier
{

while (TRUE)
{

<Pass through gate>;

<Enter incoming
goods section>;

<Unload 3 packets>;

<Leave incoming
goods section>;

<Pass through gate>;

}
}

Deliverer_X
{

while (TRUE)
{

<Pass through gate>;

<Enter outgoing
goods section>;

<Pick 2 packets>;

<Leave outgoing
goods section>;

<Pass through gate>;

}
}

Deliverer_Y
{

while (TRUE)
{

<Pass through gate>;

<Enter outgoing
goods section>;

<Pick 1 packet>;

<Leave outgoing
goods section>;

<Pass through gate>;

}
}

Exactly one process Supplier, one process Deliverer_X and one process
Deliverer_Y exist.

For synchronizing the three processes, create the required semaphores, assign them
values and insert semaphore operations.

These conditions must be met:

• Only a single process can pass through the gate.
It is impossible that multiple processes pass though the gate simultaneously.

• Only one of both existing deliverers can access the outgoing goods section.
It is impossible that both deliverers access the outgoing goods section simul-
taneously.

• It should be possible that the supplier and one of the deliverers can simulta-
neously unload and pick goods.

• The capacity of the warehouse is 10 packages.

• No deadlocks are allowed.

Content: Topics of slide set 9 Page 6 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

• At the beginning, the warehouse contains no packets and the gate, as well as
the incoming goods section and the outgoing goods section are free.

Source: TU-München, Übungen zur Einführung in die Informatik III, WS01/02

Exercise 7 (Inter-Process Communication)

Develop a part of a real-time system, which consists of four processes:

1. Conv. This process reads the measured values of A/D converters (analog/di-
gital). It checks the measured values for plausibility and converts them if this
is necessary. Because we have no physical A/D converter, the process Conv
must generate random numbers. These numbers must be in a certain range of
values to simulate an A/D converter.

2. Log. This process reads the measured values from the A/D converter (Conv)
and writes them into a local file.

3. Stat. This process reads the measured values from the A/D converter (Conv)
and calculates statistical data, including the average value and the sum.

4. Report. This process reads the results of Stat and prints out the statistical
data in the shell.

These synchronization conditions must be met:

• Conv must first write measured values before Log and Stat can read the
measured values.

• Stat must first write statistical data before Report can read the statistical
data.

Develop and implement the real-time system in C with the appropriate system
calls and implement the exchange of data between the four processes once with
pipes, message queues and shared memory segments with semaphores. This
implies that you program three implementation variants of the real-time system. The
source code should be clear to understand because of intensive use of comments.

Approach

The processes Conv, History, Stats and Reports are parallel processes, which are
implemented via infinite loops. Implement a framework for the start of the infinite
processes with the system call fork. Monitor your parallel processes with appropriate
commands like top, ps and pstree and determine the parent-child relations.

Content: Topics of slide set 9 Page 7 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

The program can be terminated with the key combination Ctrl-C. To realize this,
you need to implement a signal handler for the signal SIGINT. Please make sure that
when the program is terminated, all occupied resources (message queues, shared
memory segments, semaphores) are released.

Develop and implement the following three variants where the exchange of data
between the four processes works once with pipes, message queues and shared
memory segments with semaphores.

Monitor the message queues, shared memory segments and semaphores with the
command ipcs. With ipcrm it is possible to erase message queues, shared memory
segments and semaphores if your program incorrectly missed to free these occupied
resources.

Exercise 8 (Shell Scripts, Data Compression)

1. Program a shell script, which creates a file testdata.txt.

• The file should be filled with zeros.

• The zeros provides the virtual device file /dev/zero.
(Examples: dd if=/dev/zero of=/path/to/file bs=512 count=1

• The file size should be at least 128 and 512 kB maximum.

• How large the file becomes, should be specified randomly via RANDOM.

2. Program a shell script, which reads a file name as command line argument.

• The shell script should check the file to find out if it is a file, a link or a
directory.

• If it is a file, the user should have with select these options to choose
from:

1) ZIP
2) ARJ
3) RAR
4) GZ
5) BZ2
6) All
7) Exit

• If the user selects a compression algorithm, the file should be compressed
with this compression algorithm and the file name should be adjusted
accordingly. The file size of the original file and the file size of the com-
pressed file should be printed out both for comparison reasons. e.g.:

Content: Topics of slide set 9 Page 8 of 9



Prof. Dr. Christian Baun
Operating Systems (WS2122)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

testdata.txt <filesize>
testdata.txt.rar <filesize>

• If the user selects the option (All), the script should compress the file
with all compression algorithms and print out the file size of the original
file and the file sizes of the compressed files for comparison reasons.

testdata.txt <filesize>
testdata.txt.zip <filesize>
testdata.txt.arj <filesize>
testdata.txt.rar <filesize>
testdata.txt.gz <filesize>
testdata.txt.bz2 <filesize>

3. Test the shell script with the generated file testdata.txt. What is the result?

Exercise 9 (Shell Scripts, File Browser)

Program a shell script, which implements a file browser via select.

• The list of files and directories in the current directory should be printed out
and the individual entries should be selectable.

• If a file is selected, the file name with the extension, the number of characters,
words and lines as well as an information about the file content is printed out.
e.g.:

<Filename>.<Extension>
Characters: <Number>
Lines: <Number>
Words: <Number>
Content: <Information>

Information about the number of characters, words and lines of a file returns
the command wc. Information about the contents of a file provides the com-
mand file.

• If a directory is selected, the script should navigate into that directory and
print out the files and directories in that directory.

• It should also be possible to move up the directory tree into the directory’s
parent directory (cd ..).

Content: Topics of slide set 9 Page 9 of 9


