
Process Management Process State Models Create and Erase Processes System Calls

7th Slide Set
Operating Systems

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)
Faculty of Computer Science and Engineering

christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 1/49

Process Management Process State Models Create and Erase Processes System Calls

Learning Objectives of this Slide Set
At the end of this slide set You know/understand. . .

what a process is from operating system perspective
what information the process context contains in detail

User context, Hardware context, System context
the different process states by discussing process state models
how process management works in detail with process tables,
process control blocks and status lists
how processes are created and erased
the structure of UNIX processes in memory
what System calls are and how they work

Exercise sheet 7 repeats the
contents of this slide set
which are relevant for these
learning objectives

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 2/49

Process Management Process State Models Create and Erase Processes System Calls

Process and Process Context
We already know. . .

A process (lat. procedere = proceed, move forward) is an instance of a program that is
running
Processes are dynamic objects and represent sequential activities in a computer system
On computers, all the time, multiple processes are executed
In multitasking mode, the CPU is switched back and forth between the processes

A process includes in addition to the program code its context
3 types of context information manages the operating system:

User context
Content of the allocated address space (virtual memory) =⇒ slide set 5

Hardware context (=⇒ slide 4)
CPU registers

System context (=⇒ slide 5)
Information, which stores the operating system about a process

The operating system stores the information of the hardware context
and system context in the process control block (=⇒ slide 6)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 3/49

Process Management Process State Models Create and Erase Processes System Calls

Hardware Context

The hardware context is the content of the CPU registers during
process execution
Registers whose content needs to be backed up in the event of a
process switch:

Program Counter (Instruction Pointer) – stores the memory address of
the next instruction to be executed
Stack pointer – stores the address at the current end of the stack
Base pointer – points to an address in the stack
Instruction register – stores the instruction, which is currently executed
Accumulator – stores operands for the ALU and their results
Page-table base Register – stores the address of the page table of the
running process
Page-table length register – stores the length of the page table of the
running process

Some of these registers have been discussed in slide set 3 and slide set 5

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 4/49

Process Management Process State Models Create and Erase Processes System Calls

System Context

The system context is the information, the operating system stores
about a process
Examples:

Record in the process table
Process ID (PID)
Process state
Information about parent or child processes
Priority
Identifiers - access credentials to resources
Quotas - allowed usage quantity of individual resources
Runtime
Opened files
Assigned devices

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 5/49

Process Management Process State Models Create and Erase Processes System Calls

Process Table and Process Control Blocks

Each process has its own process context, which is independent of the
contexts of other processes

For managing the processes, the
operating system implements the
process table

It is a list of all existing
processes.
It contains for each process a
record which is called process
control block

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 6/49

Process Management Process State Models Create and Erase Processes System Calls

Process Switching

If the CPU is switched from
one process to another one,
the context (=⇒ CPU
register content) of the
running process is stored in
the process control block

If a process gets the CPU
assigned, its context gets
restored by using the
content of the process
control block

Each process is at any moment in a particular state
=⇒ Process state models

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 7/49

Process Management Process State Models Create and Erase Processes System Calls

Process States

We already know. . .
Every process is at any moment in a state

The number of different states depends on the process state model of
the operating system used

Question
How many process states must a process model contain at least?

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 8/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 2 States

In principle, 2 process states are enough
running: The CPU is allocated to a process
idle: The processes waits for the allocation of CPU

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 9/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 2 States (Implementation)
The processes in idle state must be stored in a queue, in which they
wait for execution

The list is sorted according to the process priority or waiting time

The priority (proportional computing power) in Linux has a value from -20 to +19 (in integer steps). -20 Is the highest priority and
19 is the lowest priority. The default priority is 0 Normal users can assign priorities from 0 to 19. The system administrator (root)
can assign negative values too.

This model also shows the working method of the dispatcher
The job of the dispatcher is to carry out the state transitions

The execution order of the processes is specified by the scheduler,
which uses a scheduling algorithm (see slide set 8)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 10/49

Process Management Process State Models Create and Erase Processes System Calls

Conceptual Error of the Process State Model with 2 States

The process state model with 2 states assumes that all processes are
ready to run at any time

This is unrealistic!
Almost always do processes exist, which are blocked

Possible reasons:
They wait for the input or output of an I/O device
They wait for the result of another process
They wait for a user reaction (interaction)

Solution: The idle processes be categorized into 2 groups
Processes, which are ready
Processes, which are blocked

=⇒ Process state model with 3 states

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 11/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 3 States

Each process is in one of the
following states:
running:

The CPU is assigned to the
process and executes its
instructions

ready:
The process could immediately execute its instructions on the CPU and it
is currently waiting for the allocation of the CPU

blocked:
The process can currently not be executed and is waiting for the
occurrence of an event or the satisfaction of a condition
This may be e.g. a message of another process or of an input/output
device or the occurrence of a synchronization event

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 12/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 3 States – Implementation

In practice, operating systems (e.g. Linux) implement multiple queues
for processes blocked state

During state transition, the process control block of the affected process
is removed from the old status list and inserted into the new status list
No separate list exists for processes in running state

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 13/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 5 States

It makes sense to expand the process state model with 3 states by 2
further process states

new: The process (process control block) has been created by the
operating system but the process is not yet added to the queue of
processes in ready state
exit: The execution of the process has finished or was terminated, but for
various reasons the process control block still exists

Reason for the existence of the
process states new and exit:

On some systems, the number
of executable processes is
limited in order to save
memory and to specify the
degree of multitasking

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 14/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 6 States

If not enough physical main memory capacity exists for all processes,
parts of processes must be swapped out =⇒ swapping
The operating system outsources processes, which are in blocked state
As a result, more main
memory capacity is
available for the processes
in the states running and
ready

Therefore it makes sense
to extend the process
state model with 5
states with a further
process state suspended

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 15/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model with 7 States

If a process has been suspended, it is better to use the freed up space in
main memory to activate an outsourced process instead of assigning it
to a new process

This is only useful if the activated process is no longer blocked

The process state model
with 6 states lacks the
ability to classify the
suspended processes into:

blocked suspended
processes
ready suspended
processes

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 16/49

Process Management Process State Models Create and Erase Processes System Calls

Process State Model of Linux/UNIX (somewhat simplified)
The state running is split into the states. . .

user running for user mode processes
kernel running for kernel mode processes

A zombie process has completed execution (via the system call exit) but its entry in the process table exists until the parent
process has fetched (via the system call wait) the exit status (return code)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 17/49

Process Management Process State Models Create and Erase Processes System Calls

Process Creation in Linux/UNIX via fork (1/2)

The system call fork() is the only way to create a new process
If a process calls fork(), an identical copy is started as a new process

The calling process is called parent process
The new process is called child process

The child process has after creation the same source code
Also the program counters have have the same value, which means they
refer to the same source code line

Opened files and memory areas of the parent process are copied for the
child process and are independent from the parent process

Child process and parent process both have their own process context

vfork is a variant of fork, which does not copy the address space of the parent process, and therefore causes less overhead than
fork. Using vfork is useful if the child process is to be replaced by another process immediately after its creation. In this course
vfork is not further discussed.

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 18/49

Process Management Process State Models Create and Erase Processes System Calls

Process Creation in Linux/UNIX via fork (2/2)

If a process calls fork(), an exact copy is created
The processes differ only in the return values of fork()

1 # include <stdio .h>
2 # include <unistd .h>
3 # include <stdlib .h>
4
5 void main () {
6 int return_value = fork ();
7
8 if (return_value < 0) {
9 // If fork () returns -1, an error happened .

10 // Memory or processes table have no more free capacity .
11 ...
12 }
13 if (return_value > 0) {
14 // If fork () returns a positive number , we are in the parent process .
15 // The return value is the PID of the newly created child process .
16 ...
17 }
18 if (return_value == 0) {
19 // If fork () returns 0, we are in the child process .
20 ...
21 }
22 }

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 19/49

Process Management Process State Models Create and Erase Processes System Calls

Process Tree

By creating more and more new child processes with fork(), a tree of
processes (=⇒ process hierarchy) is created
The command pstree returns an overview about the processes, running
in Linux/UNIX, as a tree according to their parent/child relationships

$ pstree
init -+- Xprt

|- acpid
...

|-gnome -terminal -+ -4*[bash]
| |-bash ---su ---bash
| |-bash -+-gv ---gs
| | |- pstree
| | |-xterm ---bash ---xterm ---bash
| | |-xterm ---bash ---xterm ---bash ---xterm ---bash
| | `-xterm ---bash
| |-gnome -pty - helpe
| `-{gnome - terminal }
| -4*[gv ---gs]

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 20/49

Process Management Process State Models Create and Erase Processes System Calls

Information about processes in Linux/UNIX
$ ps -eFw
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
root 1 0 0 51286 7432 2 Apr11 ? 00:00:03 /sbin/init
root 1073 1 0 90930 6508 0 Apr11 ? 00:00:00 /usr/sbin/ lightdm
root 1551 1073 0 60913 6772 2 Apr11 ? 00:00:00 lightdm --session - child 14 23
bnc 2143 1551 0 1069 1560 0 Apr11 ? 00:00:00 /bin/sh /etc/xdg/ xfce4 / xinitrc
bnc 2235 2143 0 85195 18888 3 Apr11 ? 00:00:11 xfce4 - session
bnc 2284 2235 0 110875 45256 3 Apr11 ? 00:06:20 xfce4 - panel --display :0.0
bnc 2389 2235 0 129173 47904 0 Apr11 ? 00:00:26 xfce4 - terminal --geometry =80 x24
bnc 2471 2389 0 5374 5360 2 Apr11 pts /0 00:00:00 bash
bnc 2487 1 5 316370 395892 0 Apr14 ? 00:08:58 /opt/ google / chrome / chrome
bnc 2525 2389 0 5895 6620 3 Apr11 pts /5 00:00:00 bash
bnc 3105 2284 0 597319 257520 0 Apr11 ? 00:05:22 kate -b
bnc 3122 3105 0 5364 5156 2 Apr11 pts /6 00:00:00 /bin/bash
bnc 11196 2471 0 269491 181048 0 Apr14 pts /0 00:00:25 okular bsrn_vorlesung_04 .pdf
bnc 16325 1 0 346638 146872 3 10:31 ? 00:00:16 evince BA.pdf
bnc 17384 2525 1 223478 61312 2 10:39 pts /5 00:00:49 dia
bnc 19561 2471 0 9576 3340 0 11:20 pts /0 00:00:00 ps -eFw

C (CPU) = CPU utilization of the process in percent
SZ (Size) = virtual process size = Text segment, heap and stack (see slide 31)
RSS (Resident Set Size) = Occupied physical memory (without swap) in kB
PSR = CPU core assigned to the process
STIME = start time of the process
TTY (Teletypewriter) = control terminal. Usually a virtual device: pts (pseudo terminal
slave)
TIME = consumed CPU time of the process (HH:MM:SS)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 21/49

Process Management Process State Models Create and Erase Processes System Calls

Independent of Parent and Child Processes
The example demonstrates that parent and child processes operate
independently of each other and have different memory areas

1 # include <stdio .h>
2 # include <unistd .h>
3 # include <stdlib .h>
4
5 void main () {
6 int i;
7 if (fork ())
8 // Parent process source code
9 for (i = 0; i < 5000000; i++)
10 printf ("\n Parent : %i", i);
11 else
12 // Child process source code
13 for (i = 0; i < 5000000; i++)
14 printf ("\n Child : %i", i);
15 }

Child : 0
Child : 1
...
Child : 21019
Parent : 0
...
Parent : 50148
Child : 21020
...
Child : 129645
Parent : 50149
...
Parent : 855006
Child : 129646
...

The output demonstrates the CPU switches between the processes
The value of the loop variable i proves that parent and child processes
are independent of each other

The result of execution can not be reproduced
Execute on a single CPU core only. . .

$ taskset --cpu-list 1 ./fork_beispiel2.c

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 22/49

Process Management Process State Models Create and Erase Processes System Calls

The PID Numbers of Parent and Child Process (1/2)

1 # include <stdio .h>
2 # include <unistd .h>
3 # include <stdlib .h>
4
5 void main () {
6 int pid_of_child ;
7
8 pid_of_child = fork ();
9

10 // An error occured --> program abort
11 if (pid_of_child < 0) {
12 perror ("\n fork () caused an error !");
13 exit (1);
14 }
15
16 // Parent process
17 if (pid_of_child > 0) {
18 printf ("\n Parent : PID: %i", getpid ());
19 printf ("\n Parent : PPID: %i", getppid ());
20 }
21
22 // Child process
23 if (pid_of_child == 0) {
24 printf ("\n Child : PID: %i", getpid ());
25 printf ("\n Child : PPID: %i", getppid ());
26 }
27 }

This example
creates a child
process
Child process and
parent process
both print:

Own PID
PID of parent
process
(PPID)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 23/49

Process Management Process State Models Create and Erase Processes System Calls

The PID Numbers of Parent and Child Process (2/2)

The output is usually similar to this one:
Parent : PID: 20835
Parent : PPID: 3904
Child : PID: 20836
Child : PPID: 20835

This result can be observed sometimes:
Parent : PID: 20837
Parent : PPID: 3904
Child : PID: 20838
Child : PPID: 1

The parent process was terminated before the child process
If a parent process terminates before the child process, it gets init as
the new parent process assigned
Orphaned processes are always adopted by init

init (PID 1) is the first process in Linux/UNIX

All running processes originate from init =⇒ init = father of all processes

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 24/49

Process Management Process State Models Create and Erase Processes System Calls

Replacing Processes via exec

The system call exec() replaces a process with another one
A concatenation takes place
The new process gets the PID of the calling process

If the objective is to start a new process out a program, it is necessary,
to create a new process with fork() and to replace this new process
with exec()

If no new process is created with fork() before exec() is called, the
parent process gets lost

Steps of a program execution from a shell:
The shell creates with fork() an identical copy of itself
In the new process, the actual program is stared with exec()

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 25/49

Process Management Process State Models Create and Erase Processes System Calls

exec Example

$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts /2 00:00:00 bash
user 12750 1772 0 11:26 pts /2 00:00:00 ps -f
$ bash
$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts /2 00:00:00 bash
user 12751 1772 12 11:26 pts /2 00:00:00 bash
user 12769 12751 0 11:26 pts /2 00:00:00 ps -f
$ exec ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts /2 00:00:00 bash
user 12751 1772 4 11:26 pts /2 00:00:00 ps -f
$ ps -f
UID PID PPID C STIME TTY TIME CMD
user 1772 1727 0 May18 pts /2 00:00:00 bash
user 12770 1772 0 11:27 pts /2 00:00:00 ps -f

Because of the exec, the ps -f command replaced the bash and got
its PID (12751) and PPID (1772)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 26/49

Process Management Process State Models Create and Erase Processes System Calls

A further exec Example
1 # include <stdio .h>
2 # include <unistd .h>
3
4 int main () {
5 int pid;
6 pid = fork ();
7
8 // If PID !=0 --> Parent process
9 if (pid) {

10 printf ("... Parent process ...\n");
11 printf ("[Parent] Own PID: %d\n", getpid ());
12 printf ("[Parent] PID of the child : %d\n", pid);
13 }
14 // If PID =0 --> Child process
15 else {
16 printf ("... Child process ...\n");
17 printf ("[Child] Own PID: %d\n", getpid ());
18 printf ("[Child] PID of the parent : %d\n", getppid ());
19
20 // Current program is replaced by "date"
21 // "date" will be the process name in the process table
22 execl ("/bin/date", "date", "-u", NULL);
23 }
24 printf ("[%d] Program abort \n", getpid ());
25 return 0;
26 }

The system call
exec() does
not exist as
wrapper
function
But multiple
variants of the
exec()
function exist
One of these
variants is
execl()

Helpful overview about the different variants of the exec() function

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 27/49

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html

Process Management Process State Models Create and Erase Processes System Calls

Explanation of the exec Example

$./ exec_example
... Parent process ...
[Parent] Own PID: 25646
[Parent] PID of the child : 25647
[25646] Program abort
... Child process ...
[Child] Own PID: 25647
[Child] PID of the parent : 25646
Di 24. Mai 17:25:31 CEST 2016

$./ exec_example
... Parent process ...
[Parent] Own PID: 25660
[Parent] PID of the child : 25661
[25660] Program abort
... Child process ...
[Child] Own PID: 25661
[Child] PID of the parent : 1
Di 24. Mai 17:26:12 CEST 2016

After printing its PID via
getpid() and the PID of its
parent process via getppid(),
the child process is replaced via
date

If the parent process of a
process terminates before the
child process, the child process
gets init as new parent
process assigned

Since Linux Kernel 3.4 (2012) and Dragonfly BSD 4.2 (2015),
it is also possible that other processes than PID=1 become the
new parent process of an orphaned process
http://unix.stackexchange.com/questions/149319/
new-parent-process-when-the-parent-process-dies/
177361#177361

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 28/49

http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361
http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361
http://unix.stackexchange.com/questions/149319/new-parent-process-when-the-parent-process-dies/177361#177361

Process Management Process State Models Create and Erase Processes System Calls

3 possible Ways to create a new Process

Process forking: A running process creates with fork() a new,
identical process
Process chaining: A running process creates with exec() a new
process and terminates itself this way because it gets replaced by the
new process
Process creation: A running process creates with fork() a new,
identical process, which replaces itself via exec() by a new process

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 29/49

Process Management Process State Models Create and Erase Processes System Calls

Have Fun with Fork Bombs

A fork bomb is a program, which calls the fork system call in an
infinite loop
Objective: Create copies of the process until there is no more free
memory

The system becomes unusable

Python fork bomb

1 import os
2
3 while True:
4 os.fork ()

C fork bomb

1 # include <unistd .h>
2
3 int main(void)
4 {
5 while (1)
6 fork ();
7 }

PHP fork bomb

1 <?php
2 while (true)
3 pcntl_fork ();
4 ?>

Only protection option: Limit the maximum number of processes and
the maximum memory usage per user

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 30/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (1/6)
Default allocation of the virtual
memory on a Linux system with a
32-bit CPU

1GB for the system (kernel)
3 GB for the running process

The structure of processes on 64 bit systems is not different from 32 bit
systems. Only the address space is larger and thus the possible extension of
the processes in the memory.

The text segment contains the
program code (machine code)
Can be shared by multiple processes

Must be stored for this reason only
once in physical memory
Is therefore usually read-only

exec() reads the text segment from
the program file

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 31/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (2/6)

The heap grows dynamically and
consists of 2 parts:

1 data segment
2 BSS

The data segment contains initialized
variables and constants

Contains all data, which get values
assigned in global declarations
(outside of functions)

Example: int sum = 0;

exec() reads the data segment from
the program file

The user space in the memory structure of the processes is the user context
(see slide 3). It is the virtual address space (virtual memory) allocated by
the operating system =⇒ see slide set 5

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 32/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (3/6)

The area BSS (block started by
symbol) contains uninitialized
variables
Contains global variables (declaration is
outside of functions), which get no
initial values assigned

Example: int i;

Moreover, the process can dynamically
allocate memory in this area at runtime

In C with the function malloc()

exec() initializes all variables in the
BSS with 0

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 33/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (4/6)

The stack is used to implement nested
function calls

It also contains command line
arguments of the program call and
environment variables

Operates according to the LIFO (Last
In First Out) principle

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 34/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (5/6)

With every function call, a data
structure with the following contents is
placed onto the stack:

Call parameters
Return address
Pointer to the calling function in the
stack

The functions also add (push) their
local variables onto the stack
When returning from from a function,
the data structure of the function is
removed (pop) from the stack

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 35/49

Process Management Process State Models Create and Erase Processes System Calls

Structure of a UNIX Process in Memory (6/6)

The command size returns the size (in
Bytes) of the text segment, data
segment and BSS of program files

The contents of the text segment and
data segment are included in the
program files
All contents in the BSS are set to
value 0 at process creation

$ size /bin/c*
text data bss dec hex filename

46480 620 1480 48580 bdc4 /bin/cat
7619 420 32 8071 1f87 /bin/ chacl

55211 592 464 56267 dbcb /bin/ chgrp
51614 568 464 52646 cda6 /bin/ chmod
57349 600 464 58413 e42d /bin/ chown

120319 868 2696 123883 1e3eb /bin/cp
131911 2672 1736 136319 2147f /bin/cpio

Sources

UNIX-Systemprogrammierung, Helmut Herold,
Addison-Wesley (1996), P.345-347
Betriebssysteme, Carsten Vogt, Spektrum (2001),
P.58-60
Moderne Betriebssysteme, Andrew S. Tanenbaum,
Pearson (2009), P.874-877

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 36/49

Process Management Process State Models Create and Erase Processes System Calls

Remember: Virtual Memory (Slide Set 5)

Source: http://cseweb.ucsd.edu/classes/wi11/cse141/Slides/19_VirtualMemory.key.pdf

Processes are stored in physical memory (here 2GB) by virtual memory, not in a continuous manner and not always in main memory
Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 37/49

http://cseweb.ucsd.edu/classes/wi11/cse141/Slides/19_VirtualMemory.key.pdf

Process Management Process State Models Create and Erase Processes System Calls

User Mode and Kernel Mode

x86-compatible CPUs implement 4 privilege levels
Objective: Improve stability and security
Each process is assigned to a ring permanently and
can not free itself from this ring

Implementation of the privilege levels

The register CPL (Current Privilege Level) stores the current privilege level
Source: Intel 80386 Programmer’s Reference Manual 1986
http://css.csail.mit.edu/6.858/2012/readings/i386.pdf

In ring 0 (= kernel mode) runs the kernel
Here, processes have full access to the hardware
The kernel can also address physical memory (=⇒ Real Mode)

In ring 3 (= user mode) run the applications
Here, processes can only access virtual memory (=⇒ Protected Mode)

Modern operating systems use only 2 privilege levels (rings)

Reason: Some hardware architectures (e.g. Alpha, PowerPC, MIPS) implement only 2 levels

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 38/49

http://css.csail.mit.edu/6.858/2012/readings/i386.pdf

Process Management Process State Models Create and Erase Processes System Calls

System Calls (1/2)

We already know. . .

All processes outside the operating system kernel are only allowed to access their own virtual memory

If a user-mode process must carry out a higher privileged task (e.g.
access hardware), it can tell this the kernel via a system call

A system call is a function call in the operating system that triggers a
switch from user mode to kernel mode (=⇒ context switch)

Context switch

A process passes the control over the CPU to the kernel and is suspended until the request is completely processed
After the system call, the kernel returns the control over the CPU to the user-mode process
The process continues its execution at the point, where the context switch was previously requested

The functionality of a system call is provided in the kernel
Thus, outside of the address space of the calling process

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 39/49

Process Management Process State Models Create and Erase Processes System Calls

System Calls (2/2)
System calls are the interface, which provides the operating system to
the user mode processes

System calls enable the user mode programs among others to create and
manage processes and files and to access the hardware

Simply stated. . .

A system call is a request from a user mode
process to the kernel in order to use a service
of the kernel

Comparison between System Calls and Interrupts

Interrupts (=⇒ slide set 3) are triggered by events outside user-mode processes

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 40/49

Process Management Process State Models Create and Erase Processes System Calls

Example of a System Call: ioctl()

This way, Linux programs call device-specific instructions
ioctl() enables processes to communicate with and control of:

Character devices (Mouse, keyboard, printer, terminals, . . .)
Block devices (SSD/HDD, CD/DVD drive, . . .)

Syntax:

ioctl (File descriptor, request code number, integer value or pointer to data);

Typical application scenarios of ioctl():
Format floppy track
Initialize modem or sound card
Eject CD
Retrieve status and link information of the WLAN interface
Access sensors via the Inter-Integrated Circuit (I2C) data bus

Helpful overviews about system calls

Linux: http://www.digilife.be/quickreferences/qrc/linux%20system%20call%20quick%20reference.pdf
Linux: http://syscalls.kernelgrok.com
Linux: http://www.tutorialspoint.com/unix_system_calls/
Windows: http://j00ru.vexillium.org/ntapi

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 41/49

http://www.digilife.be/quickreferences/qrc/linux%20system%20call%20quick%20reference.pdf
http://syscalls.kernelgrok.com
http://www.tutorialspoint.com/unix_system_calls/
http://j00ru.vexillium.org/ntapi

Process Management Process State Models Create and Erase Processes System Calls

System Calls and Libraries

Working directly with system calls is
unsafe and the portability is poor
Modern operating systems provide a
library, which is logically located between
the user mode processes and the kernel

Examples of such libraries

C Standard Library (UNIX), GNU C library glibc (Linux), C Library
Implementationen (BSD), Native API ntdll.dll (Windows) Image Source: Wikipedia

(Shmuel Csaba Otto Traian, CC-BY-SA-3.0)

The library is responsible for:
Handling the communication between user mode processes and kernel
Context switching between user mode and kernel mode

Advantages which result in using a library:
Increased portability, because there is no or very little need for the user
mode processes to communicate directly with the kernel
Increased security, because the user mode processes can not trigger the
context switch to kernel mode for themselves

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 42/49

Process Management Process State Models Create and Erase Processes System Calls

Step by Step (1/4) – read(fd, buffer, nbytes);

In step 1-3 stores the user mode
process the parameters on the
stack
In 4 calls the user mode process
the library wrapper function
for read (=⇒ read nbytes from
the file fd and store it inside
buffer)
In 5 stores the library wrapper function the system call number in the
accumulator register EAX (32 bit) or RAX (64 bit)

The library wrapper function stores the parameters of the system call in
the registers EBX, ECX and EDX (or for 64 bit: RBX, RCX and RDX)

Source of this example

Moderne Betriebssysteme, Andrew S. Tanenbaum, 3rd edition, Pearson (2009), P.84-89

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 43/49

Process Management Process State Models Create and Erase Processes System Calls

Step by Step (2/4) – read(fd, buffer, nbytes);

In 6, the software interrupt
(exception) 0x80 (decimal: 128)
is triggered to switch from user
mode to kernel mode

The software interrupt
interrupts the program
execution in user mode and
enforces the execution of an
exception handler in kernel
mode

The kernel maintains the System Call Table, a list of all system calls
In this list, each system call is assigned to a unique number and an internal kernel function

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 44/49

Process Management Process State Models Create and Erase Processes System Calls

Step by Step (3/4) – read(fd, buffer, nbytes);

The called exception handler is a
function in the kernel, which
reads out the content of the
EAX register
The exception handler function
calls in 7, the corresponding
kernel function from the system
call table with the arguments,
which are stored in the registers
EBX, ECX and EDX
In 8, the system call is executed

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 45/49

Process Management Process State Models Create and Erase Processes System Calls

Step by Step (4/4) – read(fd, buffer, nbytes);

In 9, the exception handler
returns control back to the
library, which triggered the
software interrupt
Next, this function returns in 10
back to the user mode process,
in the way a normal function
would have done it
To complete the system call, the user mode process must clean up the
stack in 11 just like after every function call
The user process can now continue to operate

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 46/49

Process Management Process State Models Create and Erase Processes System Calls

Example of a System Call in Linux
System calls are called like library wrapper functions

The mechanism is similar for all operating systems
In a C program, no difference is visible

1 # include <syscall .h>
2 # include <unistd .h>
3 # include <stdio .h>
4 # include <sys/ types .h>
5
6 int main(void) {
7 unsigned int ID1 , ID2;
8
9 // System call

10 ID1 = syscall (SYS_getpid);
11 printf (" Result of the system call: %d\n", ID1);
12
13 // Wrapper function of the glibc , which calls the system call
14 ID2 = getpid ();
15 printf (" Result of the wrapper function : %d\n", ID2);
16
17 return (0);
18 }

$ gcc SysCallBeispiel .c -o SysCallBeispiel
$./ SysCallBeispiel
Result of the system call: 3452
Result of the wrapper function : 3452

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 47/49

Process Management Process State Models Create and Erase Processes System Calls

Selection of System Calls

Process
management

fork Create a new child process
waitpid Wait for the termination of a child process
execve Replace a process by another one. The PID is kept
exit Terminate a process

File
management

open Open file for reading/writing
close Close an open file
read Read data from a file into the buffer
write Write data from the buffer into a file
lseek Reposition read/write file offset
stat Determine the status of a file

Directory
management

mkdir Create a new directory
rmdir Remove an empty directory
link Create a directory entry (link) to a file
unlink Erase a directory entry
mount Attach a file system to the file system hierarchy
umount Detatch a file system

Miscellaneous
chdir Change current directory
chmod Change file permissions of a file
kill Send signal to a process
time Seconds since January 1st, 1970 („UNIX time“)

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 48/49

Process Management Process State Models Create and Erase Processes System Calls

Linux System Calls
The list with the names of the system calls in the Linux kernel. . .

is located in the source code of kernel 2.6.x in the file:
arch/x86/kernel/syscall_table_32.S
is located in the source code of kernel 3.x, 4.x and 5.x in these files:
arch/x86/syscalls/syscall_[64|32].tbl or
arch/x86/entry/syscalls/syscall_[64|32].tbl

arch/x86/syscalls/syscall_32.tbl
...
1 i386 exit sys_exit
2 i386 fork sys_fork
3 i386 read sys_read
4 i386 write sys_write
5 i386 open sys_open
6 i386 close sys_close
...

Tutorials how to implement own system calls

https://www.kernel.org/doc/html/v4.14/process/adding-syscalls.html
https://brennan.io/2016/11/14/kernel-dev-ep3/
https://medium.com/@jeremyphilemon/adding-a-quick-system-call-to-the-linux-kernel-cad55b421a7b
https://medium.com/@ssreehari/implementing-a-system-call-in-linux-kernel-4-7-1-6f98250a8c38
http://tldp.org/HOWTO/Implement-Sys-Call-Linux-2.6-i386/index.html
http://www.ibm.com/developerworks/library/l-system-calls/

Prof. Dr. Christian Baun – 7th Slide Set Operating Systems – Frankfurt University of Applied Sciences – WS2122 49/49

https://www.kernel.org/doc/html/v4.14/process/adding-syscalls.html
https://brennan.io/2016/11/14/kernel-dev-ep3/
https://medium.com/@jeremyphilemon/adding-a-quick-system-call-to-the-linux-kernel-cad55b421a7b
https://medium.com/@ssreehari/implementing-a-system-call-in-linux-kernel-4-7-1-6f98250a8c38
http://tldp.org/HOWTO/Implement-Sys-Call-Linux-2.6-i386/index.html
http://www.ibm.com/developerworks/library/l-system-calls/

	Process Management
	Process and Process Context
	Hardware Context
	System Context
	Process Table and Process Control Blocks

	Process State Models
	Process States
	Process State Model with 2 States
	Process State Model with 3 States
	Process State Model with 5 States
	Process State Model with 6 States
	Process State Model with 7 States
	Process State Model of Linux/UNIX

	Create and Erase Processes
	Process Creation via fork()
	Process Tree
	Information about processes in Linux/UNIX
	Parent and Child Processes
	PID Numbers
	Replacing Processes via exec()
	exec() Example
	Creating new Processes
	Have Fun with Fork Bombs
	Structure of a UNIX Process in Memory
	Remember: Virtual Memory (Slide Set 5)

	System Calls
	User Mode and Kernel Mode
	System Calls
	System Calls and Libraries
	System Calls and Libraries – Example
	Example of a System Call

