
Prof. Dr. Christian Baun Page 1 of 14

Sample solution of the written examination in

Operating Systems
February 12th 2024

Last name:

First name:

Student number:

Mit dem Bearbeiten dieser schriftlichen Prüfung (Klausur) bestätigen Sie, dass Sie diese
alleine bearbeiten und dass Sie sich gesund und prüfungsfähig fühlen. Mit dem Erhalt

der Aufgabenstellung gilt die Klausur als angetreten und wird bewertet.

By attending this written exam, you confirm that you are working on it alone and feel
healthy and capable to participate. Once you have received the examination paper, you

are considered to have participated in the exam, and it will be graded.

• Use the provided sheets. Do not use own paper.

• You are allowed to use a self prepared, single sided DIN-A4 sheet in the exam. Only hand-
written originals are allowed, but no copies.

• Do not use a red pen.

• Time limit: 90 minutes

• Turn off your mobile phones!

Grade:
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 Σ

Maximum Points: 10 6 8 7 7 7 8 8 4 7 6 7 5 90

Achieved Points:

1.0: 90.0-85.5, 1.3: 85.0-81.0, 1.7: 80.5-76.5, 2.0: 76.0-72.0, 2.3: 71.5-67.5,
2.7: 67.0-63.0, 3.0: 62.5-58.5, 3.3: 58.0-54.0, 3.7: 53.5-49.5, 4.0: 49.0-45.0, 5.0: <45

Prof. Dr. Christian Baun Page 2 of 14

Question 1) Points: . of 10

(1)1 Point Describe what swapping is.
Process of storing and removing data to/from main memory from/into
background memory (HDDs/SSDs).

(2)1 Point Explain what singletasking is.
At any given moment, only a single program can be executed.

(3)1 Point Describe what half multi-user operating systems are.
Different users can work with the system only one after the other, but the data
and processes of the different users are protected from each other.

(4)1 Point Describe the difference between 8 bit, 16 bit, 32 bit, and 64 bit operating systems.
The bit number indicates the memory address length, with which the operating
system works internally.

(5)1/2 Point Give the maximum amount of memory, a 32-bit architecture can address.
With 32-bit architectures, 232 memory addresses and therefore up to
4, 294, 967, 296 Bytes = 4 GB can be addressed.

(6)2 Points Explain why multi-level paging and not single-level paging is used in 32-bit and
64-bit systems.
In 32-bit operating systems with a page size of 4 kB, the page table of each
process can be 4 MB in size. For 64 bit operating systems, the page tables can be
considerably larger. Multi-level paging reduces main memory usage as individual
pages of the different levels can be moved to swap memory to free up memory
capacity in main memory.

(7)1 Point Explain the event that causes a page fault exception.
A process tries to access a page, which is not located in the physical main
memory.

(8)1 Point Give the name of the best page replacement strategy and describe how it works.
The optimal strategy is the best page replacement strategy. It replaces the page
that will not be accessed for the longest time in the future. Sadly, it cannot be
implemented.

(9)1 Point Describe the key message of Laszlo Belady’s anomaly.
FIFO produces worse results for certain access patterns with increased memory.

(10)1/2 Point Give the name of the page replacement strategy that is implemented by most
modern operating systems (Hint: It is not OPT and not random).
Clock / Second Chance.

Prof. Dr. Christian Baun Page 3 of 14

Question 2) Points: . of 6

Give a command that can be used to. . .
(1)1/2 Point modify the permissions of files or directories.

chmod

(2)1/2 Point print out the path of the present working directory in the shell.
pwd

(3)1/2 Point create a new directory.
mkdir

(4)1/2 Point create an empty file.
touch

(5)1/2 Point concatenate the content of different files or print out the content of a file.
cat

(6)1/2 Point print out lines from the end of a file in the shell.
tail

(7)1/2 Point print out lines from the beginning of a file in the shell.
head

(8)1/2 Point delete files or directories.
rm

(9)1/2 Point place a string in the shell.
echo

(10)1/2 Point create a link.
ln

(11)1/2 Point search a file for lines, which contain a search pattern.
grep

(12)1/2 Point terminate a process.
kill

Prof. Dr. Christian Baun Page 4 of 14

Question 3) Points: . of 8

(1)1/2 Point Name one persistent data storage.
HDD, SSD, USB drive, CF/SD card, Magnetic tape, Floppy, CD/DVD,. . .

(2)1/2 Point Name one non-persistent data storage.
Cache and Registers (SRAM), Main memory (DRAM).

(3)1/2 Point The storage of computer systems is distinguished into the categories primary,
secondary, and tertiary storage. Give the name of the category or categories the
CPU can access directly.
Primary storage.

(4)1 Point Give the name of the category or categories of subtask (3) the CPU can only
access via a controller.
Secondary storage and tertiary storage.

(5)11/2 Points Name one example for each category of subtask (3).
Primary storage: Register, Cache, Main memory.
Secondary storage: HDD, SSD, CF/SD flash storage card.
Tertiary storage: CD/DVD drive, magnetic tape.

(6)1 Point Describe what near-line storage is.
Near-line storage is tertiary storage that is automatically and without human
intervention connected to the system (e.g. tape library).

(7)1 Point Describe what off-line storage is.
Off-line storage is tertiary storage that is stored in cabinets or storage rooms
and must be connected manually to the system.

(8)2 Points Name one advantage and one drawback of NAND memory compared with NOR
memory.
Benefits:

• Lesser data lines =⇒ requires less surface area as NOR memory
• Lower manufacturing costs compared with NOR flash memory
• Available with bigger storage capacity than NOR flash memory
• Lesser power consumption compared with NOR memory

Drawbacks:
• No random access =⇒ Poorer latency compared with NOR memory
• Read and write operations can only be carried out for entire pages
• Erase operations can only be carried out for entire blocks

Prof. Dr. Christian Baun Page 5 of 14

Question 4) Points: . of 7

(1)1 Point Explain the effect when executing this command in the command-line shell:
$ chmod 777 script.sh
The user (owner), the members of the assigned group, and all other users that
have access to the system get permissions to read, write and execute the file
script.sh.
-rwxrwxrwx

(2)1 Point Explain the effect when executing this command in the command-line shell:
$ chmod 544 script.sh
The user (owner) gets permissions to read and execute, and the members of the
assigned group, and all other users that have access to the system get the
permission to read the file script.sh.
-r-xr--r--

(3)1 Point Explain the effect when executing this command in the command-line shell:
$ chmod 000 script.sh
The user (owner), the members of the assigned group, and all other users that
have access to the system get all permissions to read, write and execute the file
script.sh taken away.

(4)1 Point Explain the effect when executing this command in the command-line shell:
$ chmod u-x folder
The user (owner) gets the permission to execute the directory folder taken
away. As consequence, the user cannot make folder its new present working
directory.
drw-r-x---

(5)1/2 Point For executing a program written in the language C one requires a(n). . .

f Booster
⊠ Compiler

f Interpreter
f Mixer

f All of them
f None of them

(6)1/2 Point For executing a program written in the language Python one requires a(n). . .

f Booster
f Compiler

⊠ Interpreter
f Mixer

f All of them
f None of them

(7)1 Point Explain the purpose of the Page-Table Base Register (PTBS).
It stores the address where the page table of the current process starts.

(8)1 Point Explain the purpose of the Page-Table Length Register (PTLR).
It stores the length of the page table of the current process.

Prof. Dr. Christian Baun Page 6 of 14

Question 5) Points: . of 7

(1)1/2 Point Local variables of functions reside inside the. . .
f Heap ⊠ Stack f Text Segment

(2)1/2 Point Call parameters and return addresses of functions reside inside the. . .
f Heap ⊠ Stack f Text Segment

(3)1/2 Point Constants and variables which get values assigned in global declarations (outside
of functions) reside inside the. . .
⊠ Heap f Stack f Text Segment

(4)1/2 Point Environment variables of a process reside inside the. . .
f Heap ⊠ Stack f Text Segment

(5)1/2 Point The machine code of a process resides inside the. . .
f Heap f Stack ⊠ Text Segment

(6)1/2 Point Command line arguments of a process reside inside the. . .
f Heap ⊠ Stack f Text Segment

(7)4 Points The figure shows the structure of a UNIX process in memory. Fill in the missing
labels (technical terms) of the process-related data and the missing information
about the content of this data.

Prof. Dr. Christian Baun Page 7 of 14

Question 6) Points: . of 7

(1)1 Point Describe which information inodes store.
An inode stores a file’s metadata, except the file name.

(2)1 Point Describe what a cluster in the file system is.
File systems address clusters and not blocks of the storage device. Each file
occupies an integer number of clusters.

(3)1/2 Point Give one example for an absolute path name.
Every absolute path name begins with the root symbol (/).
Example: /var/log/messages

(4)1/2 Point Name one Linux file system that implements block addressing.
Minix, ext2, ext3

(5)1/2 Point Name one Linux file system that implements journaling.
ext3, ext4, ReiserFS, XFS, JFS

(6)1/2 Point Name one Linux file system that implements extents.
ext4, JFS, XFS, btrfs

(7)1/2 Point Name one Windows file system that implements the file allocation table.
FAT12, FAT16, FAT32, exFAT

(8)1/2 Point Name one Windows file system that implements journaling.
NTFS

(9)1/2 Point Name one Windows file system that implements extents.
NTFS

(10)1/2 Point Name one file system that implements copy-on-write.
ZFS, btrfs, ReFS

(11)1 Point Describe what the master file table is.
The file system NTFS contains a master file table (MFT). It contains the
references of the files to the clusters. It also contains the metadata of the files like
file size, file type, date of creation, date of last modification and possibly the file
content, etc. The content of small files ≤ 900 Bytes is stored directly in the MFT.

Prof. Dr. Christian Baun Page 8 of 14

Question 7) Points: . of 8

(1)1 Point Explain what a zombie process is.
A zombie process has completed execution (via the system call exit) but its
entry in the process table exists until the parent process has fetched (via the
system call wait) the exit status (return code). Its PID can not yet be assigned
to a new process.

(2)3 Points The following C source code creates a child process.
1 # include <stdio.h>
2 # include <unistd .h>
3 # include <stdlib .h>
4
5 void main () {
6 int returnvalue = fork ();
7
8 if (returnvalue < 0) {
9 printf ("Error .\n");

10 exit (1);
11 }
12 else if (returnvalue > 0) {
13 printf (" Parent .\n");
14 exit (0);
15 }
16 else {
17 printf ("Child .\n");
18 exit (0);
19 }
20 }

Give the value of the returnvalue variable for the child process and for the
parent process. In your answer, explain the importance of the return value in the
parent process.
In the child process, fork() has the return value 0.
In the parent process fork() has a positive return value that is equal to the
PID of the newly created child process.
The return value of fork() in the parent process allows the parent process to
identify the child process.

(3)2 Points Name two differences of a child process from the parent process shortly after its
creation.
The PID, the PPID, and the memory areas.

(4)2 Points Describe the consequences if a parent process is terminated before the child
process.
If a parent process terminates before the child process, it gets init or systemd
as the new parent process assigned. Orphaned processes are always adopted by
init or systemd. The PPID of the cild process then becomes value 1.

Prof. Dr. Christian Baun Page 9 of 14

Question 8) Points: . of 8

(1)1 Point Explain why fairness is a relevant criteria in scheduling.
If a scheduling algorithm is not fair, low-priority processes may starve.

(2)2 Points Explain the difference between preemptive and non-preemptive scheduling.
When using preemptive scheduling, the CPU may be removed from a process
before its execution is completed.
When using non-preemptive scheduling, a process, which gets the CPU assigned
by the scheduler, remains control over the CPU until its execution is finished or
it gives the control back on a voluntary basis.

(3)1 Point Name the scheduling method that Windows operating systems implement.
Multilevel feedback scheduling.

(4)4 Points Explain how the scheduling method of Windows operating systems works.
(Hint: A schematic diagram may help here!)

Multilevel feedback scheduling works with multiple queues. Each queue has a
different priority or time multiplex (e.g. 70%:15%:10%:5%). Each new process is
added to the top queue. This way it has the highest priority. Each queue uses
Round Robin. If a process returns the CPU on voluntary basis, it is added to
the same queue. If a process utilized its entire time slice, it is inserted in the
next lower queue, with has a lower priority. The priorities are therefore
dynamically assigned with this method.
No complicated estimations. Processes with many Input and output operations
are preferred because they are inserted in the original queue again when they
resigns the CPU on voluntary basis =⇒ This way they keep their priority value.
Older, longer-running processes are delayed.

Prof. Dr. Christian Baun Page 10 of 14

Question 9) Points: . of 4

(1)4 Points Explain how the Completely Fair Scheduler of the Linux kernel (Kernel 2.6.23
until Kernel 6.5.13) works.
(Hint: A schematic diagram may help here!)

The kernel implements a CFS scheduler for every CPU core and maintains a
variable vruntime (virtual runtime) for every SCHED_OTHER process. The value
represents a virtual processor runtime in nanoseconds. vruntime indicates how
long the particular process has already used the CPU core. The process with the
lowest vruntime gets access to the CPU core next. The management of the
processes is done using a red-black tree (self-balancing binary search tree). The
processes are sorted in the tree by their vruntime values.
Aim: All processes should get a similar (fair) share of computing time of the
CPU core they are assigned to. For n processes, each process should get 1/n of
the CPU time. If a process got the CPU core assigned, it can run until its
vruntime value has reached the targeted portion of 1/n of the available CPU
time. The scheduler aims for an equal vruntime value for all processes.
The values are the keys of the inner nodes. leaf nodes (NIL nodes) have no keys
and contain no data. NIL stands for none, nothing, null, which means it is a null
value or null pointer. For fairness reasons, the scheduler assigns the CPU core
next to the leftmost process in the tree. If a process gets replaced from the CPU
core, the vruntime value is increased by the time the process did run on the
CPU core.
The nodes (processes) in the tree move continuously from right to left =⇒ fair
distribution of CPU resources.
The scheduler takes into account the static process priorities (nice values) of
the processes. The vruntime values are weighted differently depending on the
nice value. In other words: The virtual clock can run at different speeds.

Prof. Dr. Christian Baun Page 11 of 14

Question 10) Points: . of 7

(1)1 Point Describe what a critical section is.
Processes carry out read and write operations on common data. Critical sections
may not be processed by multiple processes at the same time.

(2)1 Point Describe what a race condition is.
It is an unintended race condition of two processes, which want to modify the
value of the same record.

(3)1 Point Describe why race conditions are hard to locate and fix.
The result of a process depends on the order or timing of other events. The
occurrence of the symptoms depends on different events. The symptoms may be
different or disappear with each test run.

(4)1 Point Explain what a system call is.
If a user-mode process must carry out a higher privileged task (e.g. access
hardware), it can tell this the kernel via a system call. A system call is a
function call in the operating system, which triggers a switch from user mode to
kernel mode (=⇒ context switch).

(5)1 Point Explain what the standard library is and its purpose.
The standard library is logically located between the user mode processes and
the kernel. It handles the communication between user mode processes and
kernel and takes care about the context switching between user mode and kernel
mode. It implements wrapper functions for the system calls for improving
portability and security.

(6)1 Point Explain what a semaphore is.
A semaphore is a counter lock. It is used to protect (lock) critical sections.

(7)1 Point Explain what a mutex is.
If the Semaphore-feature of counting is not required, a simplified alternative, the
mutex can be used instead. Mutexes (derived from Mutual Exclusion) are used
to protect critical sections, which are allowed to be accessed by only a single
process at any given moment. Mutexes can only have 2 states: occupied and not
occupied. Mutexes have the same functionality as binary semaphores.

Prof. Dr. Christian Baun Page 12 of 14

Question 11) Points: . of 6

(1)6 Points Perform the deadlock detection with matrices and check if a deadlock occurs.

Existing resource vector =
(

10 5 7
)

Current
allocation

matrix
=


0 1 0
2 0 0
3 0 2
2 1 1
0 0 2


Request
matrix =


7 4 3
1 2 2
6 5 0
4 1 1
4 3 5



The existing resource vector and the current allocation matrix are used to
calculate the available resource vector.

Available resource vector =
(

3 3 2
)

Only process 2 can run with this available resource vector. The following
available resource vector results when process 2 has finished execution and
deallocates its resources.

Available resource vector =
(

5 3 2
)

Only process 4 can run with this available resource vector. The following
available resource vector results when process 4 has finished execution and
deallocates its resources.

Available resource vector =
(

7 4 3
)

Only process 1 can run with this available resource vector. The following
available resource vector results when process 1 has finished execution and
deallocates its resources.

Available resource vector =
(

7 5 3
)

Only process 3 can run with this available resource vector. The following
available resource vector results when process 3 has finished execution and
deallocates its resources.

Available resource vector =
(

10 5 5
)

Process 5 is not blocked.
No deadlock occurs.

Prof. Dr. Christian Baun Page 13 of 14

Question 12) Points: . of 7

(1)1/2 Point Name one sort of inter-process communication that can only be used for
processes that are closely related to each other.
Anonymous pipes.

(2)1/2 Point Name one sort of inter-process communication that allows communication over
computer system boundaries.
Sockets.

(3)3 Points The figure shows the working principle of signaling, a technique that is used to
specify an execution order of critical sections of processes.

Describe where you see room for improvement in terms of CPU utilization.
The figure shows busy waiting at the signal variable s. The technique is also
called active waiting, spinlock, or polling. CPU resources are wasted, because
the wait operation occupies the processor at regular intervals.

(4)2 Points Explain one possible way of implementing the signaling technique shown in
subtask (3) in Linux.
One way to specify in Linux an execution order with passive waiting, is by using
the function sigsuspend. Thereby a process blocks itself until another process
sends it an appropriate signal (usually SIGUSR1 or SIGUSR2) with the command
kill (or the system call of the same name) and in this way signals that it
should continue working.
Alternative system calls and function calls by which a process can block itself
until it is woken up again by a system call are pause and sleep.

(5)1 Point Name a technique for process synchronisation, which has less drawbacks than
signaling shown in subtask (3).
Passive waiting, (blocking) Sockets, Semaphore concept, Message Queues,
Shared Memory with Semaphores,. . .

Prof. Dr. Christian Baun Page 14 of 14

Question 13) Points: . of 5

(1)2 Points The figure shows the working principle of a synchronisation technique that
ensures that the execution of critical sections does not overlap and does not
specify the execution order of the critical sections.

Explain one possible way of implementing the signaling technique shown in this
subtask in Linux.
Alternative 1: Implementation of locking with the signals SIGSTOP (No. 19) and
SIGCONT (No. 18). With SIGSTOP another process can be stopped. With
SIGCONT another process can be reactivated.
Alternative 2: A local file serves as a locking mechanism for mutual exclusion.
Each process verifies before entering its critical section whether it can open the
file exclusively. e.g. with the system call open or standard library function fopen.
If this is not the case, it must pause for a certain time (e.g. with the system call
sleep) and then try again (busy waiting). Alternatively, it can pause itself with
sleep or pause and hope that the process that has already opened the file
unblocks it with a signal at the end of its critical section (passive waiting).

(2)1/2 Point Name one sort of inter-process communication that operates bidirectional.
Shared memory segments, Message queues, Sockets.

(3)1/2 Point Name one sort of inter-process communication where the operating system does
not guarantee the synchronization.
Shared memory segments.

(4)2 Points Explain the meaning of the lines and columns in the file /proc/buddyinfo.
$ cat /proc/buddyinfo
Node 0, zone DMA 1 1 1 0 2 1 1 0 1 1 3
Node 0, zone DMA32 208 124 1646 566 347 116 139 115 17 4 212
Node 0, zone Normal 43 62 747 433 273 300 254 190 20 8 287

The DMA row shows the first 16 MB of the system.
The DMA32 row shows all memory > 16 MB and < 4 GB of the system.
The Normal row shows all memory > 4 GB of the system.
Column 1: number of free memory chunks („buddies“) of size 20 ∗ PAGESIZE
Column 2: number of free memory chunks („buddies“) of size 21 ∗ PAGESIZE
. . .
Column 11: number of free memory chunks („buddies“) of size 210 ∗ PAGESIZE

