
Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Solution of Exercise Sheet 9

Exercise 1 (Inter-Process Communication)

1. Describe what a critical section is.

Processes carry out read and write operations on common data. Critical sec-
tions may not be processed by multiple processes at the same time.

2. Describe what a race condition is.

It is an unintended race condition of two processes, which want to modify the
value of the same record.

3. Describe why race conditions are hard to locate and fix.

The result of a process depends on the order or timing of other events. The
occurrence of the symptoms depends on different events. The symptoms may
be different or disappear with each test run.

4. Describe how to avoid race conditions.

Race conditions can be avoided with the semaphore concept.

Exercise 2 (Synchronization)

1. Explain the advantage of signal and wait compared to busy waiting.

When using busy waiting, computing time of the CPU is wasted because it
is again and again occupied by the waiting process. Using signal and wait
causes lesser CPU workload because the waiting process is blocked and later
deblocked.

2. Name two problems that can arise from blocking.

Starvation and deadlock.

3. Explain the difference between signaling and blocking.

Signaling specifies the execution order of the critical sections of processes.

Blocking secures critical sections. The execution order of the critical sections
of the processes is not specified. It is just ensured that the execution of critical
sections does not overlap.

4. Mark the four precondition that must be fulfilled at the same time that a
deadlock can arise.

Content: Topics of slide set 9 Page 1 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

f Recursive function calls
⊠ Mutual exclusion
f Frequent function calls
f Nested for loops
⊠ No preemption

⊠ Hold and wait
f > 128 processes in blocked state
f Iterative programming
⊠ Circular wait
f Queues

5. Perform a deadlock detection with matrices and check if a deadlock occurs.

Existing resource vector =
(

8 6 7 5
)

Current allocation matrix =

 2 1 0 0
3 1 0 4
0 2 1 1

 Request matrix =

 3 2 4 5
1 1 2 0
4 3 5 4



The existing resource vector and the current allocation matrix are used to calculate
available resource vector.

Available resource vector =
(

3 2 6 0
)

Only process 2 can run with this available resource vector. The following available
resource vector results when process 2 has finished execution and deallocates its
resources.

Available resource vektor =
(

6 3 6 4
)

Only process 3 can run with this available resource vector. The following available
resource vector results when process 3 has finished execution and deallocates its
resources.

Available resource vector =
(

6 5 7 5
)

Process 1 is not blocked.

No deadlock occurs.

Exercise 3 (Communication of Processes)

1. Explain what must be considered, when using inter-process communication
via shared memory segments.

Content: Topics of slide set 9 Page 2 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

The processes need to coordinate the accesses themselves and to ensure that
their memory accesses are mutually exclusive. A receiver process, cannot read
data from the shared memory, before the sender process has finished its current
write operation. If access operations are not coordinated carefully, inconsisten-
cies occur.

2. Explain the function of the shared memory table in the Linux kernel.

Linux/UNIX operating systems contain a shared memory table, which contains
information about the existing shared memory segments. This information
includes: Start address in memory, size, owner (username and group) and
privileges.

3. Mark the impact of a restart (reboot) of the operating system on the existing
shared memory segments.
(Only a single answer is correct!)

f The shared memory segments are created new during boot and the contents
are restored.
f The shared memory segments are created new during boot, but they remain
empty. This means, only the contents are lost.
⊠ The shared memory segments and their contents are lost.
f Only the shared memory segments are lost. The operating system stores
the contents in temporary files inside the folder \tmp.

4. Mark the working principle of message queues.
(Only a single answer is correct!)

f Round Robin f LIFO ⊠ FIFO f SJF f LJF

5. Give the number of processes that can communicate with each other via a
pipe.

2

6. Explain what happens when a process tries to write data into a pipe without
free capacity.

The process that tries to write into the pipe is blocked.

7. Explain what happens when a process tries to read data from an empty pipe.

The process that tries to read from the pipe is blocked.

8. Name the two different types of pipes.

Anonymous pipes and named pipes.

9. Name the two different types of sockets.

Content: Topics of slide set 9 Page 3 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Connection-less sockets (also called: datagram sockets) and connection-
oriented sockets (also called: stream sockets).

10. Communication via pipes works. . .
(Only a single answer is correct!)

f memory-based ⊠ message-based

11. Communication via message queues works. . .
(Only a single answer is correct!)

f memory-based ⊠ message-based

12. Communication via shared memory segments works. . .
(Only a single answer is correct!)

⊠ memory-based f message-based

13. Communication via sockets works. . .
(Only a single answer is correct!)

f memory-based ⊠ message-based

14. Mark the three sorts of inter-process communication that operate bidirectional.

⊠ Shared memory segments
f Anonymous pipes
⊠ Sockets

⊠ Message queues
f Named pipes

15. Mark the sort of inter-process communication that can only be used for pro-
cesses that are closely related to each other.

f Shared memory segments
⊠ Anonymous pipes
f Sockets

f Message queues
f Named pipes

16. Mark the sort of inter-process communication that allows communication over
computer boundaries.

f Shared memory segments
f Anonymous pipes
⊠ Sockets

f Message queues
f Named pipes

17. Mark the sorts of inter-process communication that remain intact without a
bound process.

⊠ Shared memory segments
f Anonymous pipes
f Sockets

⊠ Message queues
⊠ Named pipes

Content: Topics of slide set 9 Page 4 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

18. Mark the sort of inter-process communication where the operating system does
not guarantee the synchronization.

⊠ Shared memory segments
f Anonymous pipes
f Sockets

f Message queues
f Named pipes

Exercise 4 (Cooperation of Processes)

1. Explain what a semaphore is and what its purpose is.

A semaphore is a counter lock.

2. Name the two operations are used with semaphores and describe how they
work.

The access operation P(S) tries to reduce (decrement) the value of the counter
variable S.

The access operation V(S) increments the value of the counter variable S.

3. Explain the difference between Semaphores versus blocking.

In contrast to semaphores, can locks only be used to allow a single process
entering the critical section at the same time.

4. Explain what a binary semaphore is.

Binary semaphores are initialized with value 1 and ensure that 2 or more
processes cannot simultaneously enter their critical sections.

5. Explain what a mutex is and what its purpose is.

Semaphores offer the feature of counting. However, if this feature is not requi-
red, a simplified semaphore version, the mutex can be used instead. Mutexes
are used to protect critical sections, which are allowed to be accessed by only
a single process at any given moment.

6. Name the type of semaphores that has the same functionality as the mutex.

Binary semaphore.

7. Name the states a mutex can have.

Mutexes can only have 2 states: „occupied“ and „not occupied“.

8. Name the Linux/UNIX command that returns information about existing sha-
red memory segments, message queues and semaphores.

ipcs

Content: Topics of slide set 9 Page 5 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

9. Name the Linux/UNIX command that allows to erase existing shared memory
segments, message queues and semaphores.

ipcrm

Exercise 5 (Producer/Consumer Scenario)

A producer should send data to a consumer. A buffer with limited capacity should
be used to minimize the waiting times of the consumer. Data is placed into the buffer
by the producer and the consumer removes data from the buffer. Mutual exclusion
is necessary in order to avoid inconsistencies. If the buffer has no more free capacity,
the producer must block itself. If the buffer is empty, the consumer must block itself.

For synchronizing the two processes, create the required semaphores, assign them
initial values and insert semaphore operations.

Content: Topics of slide set 9 Page 6 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

typedef int semaphore ; // semaphores are of type integer
semaphore filled = 0; // counts the occupied locations in the buffer
semaphore empty = 10; // counts the empty locations in the buffer
semaphore mutex = 1; // controls access to the critial sections

void producer (void) {
int data;

while (TRUE) { // infinite loop
createDatapacket (data); // create data packet
P(empty); // decrement the empty locations counter
P(mutex); // enter the critical section
insertDatapacket (data); // write data packet into the buffer
V(mutex); // leave the critical section
V(filled); // increment the occupied locations counter

}
}

void consumer (void) {
int data;

while (TRUE) { // infinite loop
P(filled); // decrement the occupied locations counter
P(mutex); // enter the critical section
removeDatapacket (data); // pick data packet from the buffer
V(mutex); // leave the critical section
V(empty); // increment the empty locations counter
consumeDatapacket (data); // consume data packet

}
}

Exercise 6 (Semaphores)

In a warehouse, packages are delivered constantly by a supplier and picked up by
two deliverers. The supplier and the deliverers need to pass through a gate. The gate
can always be passed only by a single person. The supplier brings three packages
with every shipment to the incoming goods section. One of the deliverers can pick
two packages with every pickup from the outgoing goods section. The other deliverer
can pick only a single package per pickup from the outgoing goods section.

Content: Topics of slide set 9 Page 7 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

sema gate = 1
sema outgoing = 1
sema empty = 10
sema occupied = 0

Supplier
{

while (TRUE)
{

P(gate);
<Pass through gate>;
V(gate);

<Enter incoming
goods section>;

P(empty);
P(empty);
P(empty);
<Unload 3 packets>;
V(occupied);
V(occupied);
V(occupied);

<Leave incoming
goods section>;

P(gate);
<Pass through gate>;
V(gate);
}

}

Deliverer_X
{

while (TRUE)
{

P(gate);
<Pass through gate>;
V(gate);

P(outgoing);
<Enter outgoing
goods section>;

P(occupied);
P(occupied);
<Pick 2 packets>;
V(empty);
V(empty);

<Leave outgoing
goods section>;
V(outgoing);

P(gate);
<Pass through gate>;
V(gate);
}

}

Deliverer_Y
{

while (TRUE)
{

P(gate);
<Pass through gate>;
V(gate);

P(outgoing);
<Enter outgoing
goods section>;

P(occupied);
<Pick 1 packet>;
V(empty);

<Leave outgoing
goods section>;
V(outgoing);

P(gate);
<Pass through gate>;
V(gate);
}

}

Exactly one process Supplier, one process Deliverer_X and one process
Deliverer_Y exist.

For synchronizing the three processes, create the required semaphores, assign them
values and insert semaphore operations.

These conditions must be met:

• Only a single process can pass through the gate.
It is impossible that multiple processes pass though the gate simultaneously.

• Only one of both existing deliverers can access the outgoing goods section.
It is impossible that both deliverers access the outgoing goods section simul-
taneously.

Content: Topics of slide set 9 Page 8 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

• It should be possible that the supplier and one of the deliverers can simulta-
neously unload and pick goods.

• The capacity of the warehouse is 10 packages.

• No deadlocks are allowed.

• At the beginning, the warehouse contains no packets and the gate, as well as
the incoming goods section and the outgoing goods section are free.

Source: TU-München, Übungen zur Einführung in die Informatik III, WS01/02

Exercise 7 (Inter-Process Communication)

Develop a part of a real-time system, which consists of four processes:

1. Conv. This process reads the measured values of A/D converters (analog/di-
gital). It checks the measured values for plausibility and converts them if this
is necessary. Because we have no physical A/D converter, the process Conv
must generate random numbers. These numbers must be in a certain range of
values to simulate an A/D converter.

2. Log. This process reads the measured values from the A/D converter (Conv)
and writes them into a local file.

3. Stat. This process reads the measured values from the A/D converter (Conv)
and calculates statistical data, including the average value and the sum.

4. Report. This process reads the results of Stat and prints out the statistical
data in the shell.

These synchronization conditions must be met:

• Conv must first write measured values before Log and Stat can read the
measured values.

• Stat must first write statistical data before Report can read the statistical
data.

Develop and implement the real-time system in C with the appropriate system
calls and implement the exchange of data between the four processes once with
pipes, message queues and shared memory segments with semaphores. This
implies that you program three implementation variants of the real-time system. The
source code should be clear to understand because of intensive use of comments.

Content: Topics of slide set 9 Page 9 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Approach

The processes Conv, History, Stats and Reports are parallel processes, which are
implemented via infinite loops. Implement a framework for the start of the infinite
processes with the system call fork. Monitor your parallel processes with appropriate
commands like top, ps and pstree and determine the parent-child relations.

The program can be terminated with the key combination Ctrl-C. To realize this,
you need to implement a signal handler for the signal SIGINT. Please make sure that
when the program is terminated, all occupied resources (message queues, shared
memory segments, semaphores) are released.

Develop and implement the following three variants where the exchange of data
between the four processes works once with pipes, message queues and shared
memory segments with semaphores.

Monitor the message queues, shared memory segments and semaphores with the
command ipcs. With ipcrm it is possible to erase message queues, shared memory
segments and semaphores if your program incorrectly missed to free these occupied
resources.

Exercise 8 (Shell Scripts, Data Compression)

1. Program a shell script, which creates a file testdata.txt.

• The file should be filled with zeros.

• The zeros provides the virtual device file /dev/zero.
(Examples: dd if=/dev/zero of=/path/to/file bs=512 count=1

• The file size should be at least 128 and 512 kB maximum.

• How large the file becomes, should be specified randomly via RANDOM.
1 #!/ bin/bash
2 #
3 # Skript : testdaten_erzeugen .bat
4 #
5 # falls Ordner nicht vorhanden , Ordner erzeugen
6
7 VERZEICHNIS =/ tmp/ testdaten
8 DATEINAME = testdata .txt
9

10 if [! -d $VERZEICHNIS] ; then
11 if mkdir $VERZEICHNIS ; then
12 echo "Ein Verzeichnis für Testdaten wurde erstellt ."
13 else
14 echo "Es konnte kein Verzeichnis erstellt werden ."
15 fi

Content: Topics of slide set 9 Page 10 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

16 else
17 echo "Ein Verzeichnis für Testdaten existiert schon."
18 exit 1
19 fi
20
21 if touch `echo " $VERZEICHNIS / $DATEINAME "` ; then
22 # Zufallszahl zwischen 128 und 512 erstellen
23 ZUFALLSZAHL =`awk -vmin =128 -vmax =512 'BEGIN{srand (); print

int(min+rand ()*(max -min +1))}'`
24 # Die Datei mit Nullen füllen
25 `dd if=/ dev/zero of= $VERZEICHNIS / $DATEINAME bs= $ZUFALLSZAHL

count =1K`
26 echo "Eine Datei für Testdaten wurde erstellt ."
27 else
28 echo "Es konnte keine Datei erstellt werden ."
29 exit 1
30 fi

2. Program a shell script, which reads a file name as command line argument.

• The shell script should check the file to find out if it is a file, a link or a
directory.

• If it is a file, the user should have with select these options to choose
from:

1) ZIP
2) ARJ
3) RAR
4) GZ
5) BZ2
6) All
7) Exit

• If the user selects a compression algorithm, the file should be compressed
with this compression algorithm and the file name should be adjusted
accordingly. The file size of the original file and the file size of the com-
pressed file should be printed out both for comparison reasons. e.g.:

testdata.txt <filesize>
testdata.txt.rar <filesize>

• If the user selects the option (All), the script should compress the file
with all compression algorithms and print out the file size of the original
file and the file sizes of the compressed files for comparison reasons.

testdata.txt <filesize>
testdata.txt.zip <filesize>
testdata.txt.arj <filesize>
testdata.txt.rar <filesize>
testdata.txt.gz <filesize>

Content: Topics of slide set 9 Page 11 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

testdata.txt.bz2 <filesize>
1 #!/ bin/bash
2 #
3 # Skript : archivieren .bat
4 #
5 # Funktion zum komprimieren einer Datei via ZIP
6 zip_packen () {
7 if zip -r $1.zip $1 ; then
8 echo "Die Datei $1 wurde via ZIP komprimiert ."
9 else

10 echo "Die Kompression der Datei $1 via ZIP ist
fehlgeschlagen ."

11 fi
12 }
13
14 # Funktion zum komprimieren einer Datei via ARJ
15 arj_packen () {
16 if arj a $1.arj $1 ; then
17 echo "Die Datei $1 wurde via ARJ komprimiert ."
18 else
19 echo "Die Kompression der Datei $1 via ARJ ist

fehlgeschlagen ."
20 fi
21 }
22
23 # Funktion zum komprimieren einer Datei via RAR
24 rar_packen () {
25 if rar a $1.rar $1 ; then
26 echo "Die Datei $1 wurde via RAR komprimiert ."
27 else
28 echo "Die Kompression der Datei $1 via RAR ist

fehlgeschlagen ."
29 fi
30 }
31
32 # Funktion zum komprimieren einer Datei via GZ
33 gz_packen () {
34 if gzip -c $1 > $1.gz ; then
35 echo "Die Datei $1 wurde via GZ komprimiert ."
36 else
37 echo "Die Kompression der Datei $1 via GZ ist

fehlgeschlagen ."
38 fi
39 }
40
41 # Funktion zum komprimieren einer Datei via BZ2
42 bz2_packen () {
43 if bzip2 -zk $1 ; then
44 echo "Die Datei $1 wurde via BZ2 komprimiert ."
45 else
46 echo "Die Kompression der Datei $1 via BZ2 ist

fehlgeschlagen ."
47 fi
48 }
49

Content: Topics of slide set 9 Page 12 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

50 # Untersuchen ob die als Kommandozeilenargument ü bergebene
Datei existiert

51 if [! -e $1] ; then
52 # Die Datei existiert nicht.
53 echo "Die Datei $1 existiert nicht."
54 # Das Skript beenden .
55 exit 1
56 fi
57
58 # Untersuchen ob die Datei ein Verzeichnis ist.
59 if [-d $1] ; then
60 echo "Das Kommandozeilenargument ist ein Verzeichnis ."
61 exit
62 elif [-L $1] ; then
63 echo "Das Kommandozeilenargument ist ein symbolischer Link."
64 exit
65 elif [-f $1] ; then
66 echo "Das Kommandozeilenargument ist eine reguläre Datei."
67
68 # Auswahlm ö glichkeiten ausgeben .
69 select auswahl in ZIP ARJ RAR GZ BZ2 Alle Beenden
70
71 do
72 if [" $auswahl " = "ZIP"] ; then
73 zip_packen $1
74 ls -lh $1|awk '{print $9 ,$5}'
75 ls -lh $1.zip|awk '{print $9 ,$5}' | column -t
76 exit
77 elif [" $auswahl " = "ARJ"] ; then
78 arj_packen $1
79 ls -lh $1|awk '{print $9 ,$5}'
80 ls -lh $1.arj|awk '{print $9 ,$5}' | column -t
81 exit
82 elif [" $auswahl " = "RAR"] ; then
83 rar_packen $1
84 ls -lh $1|awk '{print $9 ,$5}'
85 ls -lh $1.rar|awk '{print $9 ,$5}' | column -t
86 exit
87 elif [" $auswahl " = "GZ"] ; then
88 gz_packen $1
89 ls -lh $1|awk '{print $9 ,$5}'
90 ls -lh $1.gz|awk '{print $9 ,$5}' | column -t
91 exit
92 elif [" $auswahl " = "BZ2"] ; then
93 bz2_packen $1
94 ls -lh $1|awk '{print $9 ,$5}'
95 ls -lh $1.bz2|awk '{print $9 ,$5}' | column -t
96 exit
97 elif [" $auswahl " = "Alle"] ; then
98 zip_packen $1
99 arj_packen $1

100 rar_packen $1
101 gz_packen $1
102 bz2_packen $1
103 ls -lh $1* | awk '{print $9 ,$5}' | column -t
104 exit

Content: Topics of slide set 9 Page 13 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

105 else [" $auswahl " = " Beenden "]
106 echo "Das Skript wird beendet ."
107 exit
108 fi
109 done
110 else
111 exit 1
112 fi

3. Test the shell script with the generated file testdata.txt. What is the result?

Exercise 9 (Shell Scripts, File Browser)

Program a shell script, which implements a file browser via select.

• The list of files and directories in the current directory should be printed out
and the individual entries should be selectable.

• If a file is selected, the file name with the extension, the number of characters,
words and lines as well as an information about the file content is printed out.
e.g.:

<Filename>.<Extension>
Characters: <Number>
Lines: <Number>
Words: <Number>
Content: <Information>

Information about the number of characters, words and lines of a file returns
the command wc. Information about the contents of a file provides the com-
mand file.

• If a directory is selected, the script should navigate into that directory and
print out the files and directories in that directory.

• It should also be possible to move up the directory tree into the directory’s
parent directory (cd ..).

1 !/ bin/bash
2 #
3 # Skript : datei_browser .bat
4 #
5 file=""
6
7 while true
8 do
9 if ["$file" == ".."] ; then

10 # In der Verzeichnisstruktur eine Ebene höher gehen
11 cd ..
12 elif [-d $file] ; then

Content: Topics of slide set 9 Page 14 of 15

Prof. Dr. Christian Baun
Operating Systems (WS2324)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

13 cd $file # In ein Verzeichnis wechseln
14 else
15 break
16 fi
17
18 select file in ".." * # Dateiauswahlliste ausgeben
19 do
20 break
21 done
22 done
23
24 if [-f $file]
25 then
26 echo $file # Dateinamen mit Endung ausgeben
27 echo " Zeichen : "`wc -m $file | awk '{ print $1 }'`
28 echo " Zeilen : "`wc -l $file | awk '{ print $1 }'`
29 echo "Wörter: "`wc -w $file | awk '{ print $1 }'`
30 echo " Inhalt : "
31 cat $file # Inhalt der Datei ausgeben
32 fi

Content: Topics of slide set 9 Page 15 of 15

	(Inter-Process Communication)
	(Synchronization)
	(Communication of Processes)
	(Cooperation of Processes)
	(Producer/Consumer Scenario)
	(Semaphores)
	(Inter-Process Communication)
	(Shell Scripts, Data Compression)
	(Shell Scripts, File Browser)

