FaaS	Container Virtualization	OpenFaaS	Conclusion	References

Function as a Service

General Principles, Container Virtualization and OpenFaaS – Summer Term 2018

> Henry-Norbert Cocos cocos@stud.fra-uas.de

Computer Science Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

May 30, 2018

Henry-Norbert Cocos | Cloud Computing | Summer Term 2018 | Function as a Service

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		0000	O	00
Contents				

- 2 Container Virtualization
- OpenFaaS

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
●000		0000	O	00
Function	i as a Service			

Figure: Popular FaaS Offerings:

- (a) AWS Lambda [1]
- (b) Google Cloud Functions [2]
- (c) IBM Cloud Functions [3]
- (d) Apache OpenWhisk [4]

Function as a Service (FaaS)

- Event-driven
- Scalable
- Fast deployment of code
- Payment per invocation

Amazon Alexa

Alexa Skills are executed in AWS Lambda!

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0●00		0000	O	00
FaaS Ge	neral Architecture			

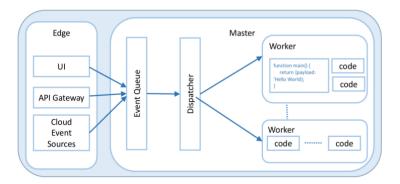


Figure: General FaaS Architecture [5]

Henry-Norbert Cocos | Cloud Computing | Summer Term 2018 | Function as a Service

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
00●0		0000	O	00
FaaS Ger	neral Architecture II	l		

Edge

- UI An UI for the management of functions
- **API Gateway** The general API for the implemented functions

Event Queue/Dispatcher

- Event Queue Manages the triggered Events
- Dispatcher Manages the scaling of invocations

Worker

• Worker Processes/Containers – Execute the function invocations

Interesting Paper

Figure 2 and the explanation of the architecture are taken from the paper of Baldini et.al. [5]

KEURT

ERSITY

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
000●		0000	O	00
Function	as a Service			

The Service consists of:

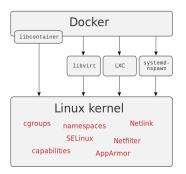
Scalability – Reaction to large number of Requests Environment – Running the code on a Platform Virtualization – Capsulation of running code

Phase 0 - No Sharing	Phase 1 - Vir	tual Machines	lachines Phase 2 - Containers		Phase 3 - Functions	
App	App	App	App	App	App	App
Runtime	Runtume	Runtime	Runtime	Runtime	Runt	time
OS	OS	OS	OS		OS	
US	VM	VM				
Hardware	Hardware		Hardware		Hardware	

Figure: Evolution of Virtualization [6]

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000	•00000	0000	O	00
Docker				

Figure: Docker


Source: https://www.docker.com/ brand-guidelines

Docker

- Released by dotCloud 2013
- Enables Container Virtualization
- A more advanced form of Application Virtualization
- Available for: Linux, MacOS, Windows

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000	0●0000	0000	O	00
Docker A	Architecture			

Figure: Docker Architecture

```
Source: https://de.wikipedia.org/
wiki/Docker_(Software)
```

Docker Architecture

- Docker uses the Linux Kernel
- libcontainer creates containers
- libvirt manages Virtual Environments
- LXC will be replaced by libcontainer

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		0000	o	00
Docker A	Application Archite	ecture I		

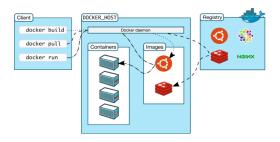


Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Applications in Docker [7]

- Client-Server Architecture
- Docker Client docker
- Docker Daemon dockerd

Docker Objects

- Images
- Containers

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		0000	O	00
Docker A	Application Archite	ecture II		

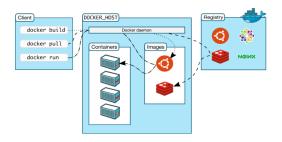


Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Docker Client docker

 Manages Docker Daemon/s

Docker Daemon dockerd

- Listens to Requests
- Manages Docker Objects (images, containers, etc.)

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		0000	0	00
Docker A	Application Archite	ecture III		

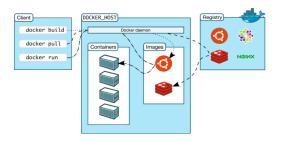


Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Docker Objects

- Containers
 - Runnable Instance
 - Isolated from other containers
- Images
 - Read-Only File
 - Defines an Application

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		0000	o	00
Docker E	Benefits			

Docker has the following benefits:

- Less resource consumption than OS Virtualization
- Isolation of Applications
- Fast deployment
- Perfect for testing purposes
- Containers can be restarted

Docker Swarm and Kubernetes

The Docker Engine has a build in solution for Cluster deployment and management. The swarm mode enables the control over multiple Docker hosts and is crucial for the scalability of applications [8]. Kubernetes is a different system that enables deployment over multiple hosts.

OF APPLIED SCIENCES

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		●000	O	00
OpenFa	aS			

O P E N F A A S

Figure: OpenFaaS

Source: https://github.com/openfaas

OpenFaaS

- Open Source Platform
- Functions can be deployed and scaled
- Event-driven
- Lightweight
- Support for multiple languages: C#, Node.js, Python, Ruby

Functions as a Service

Figure: OpenFaaS Architecture [9]

OpenFaaS Architecture [9]

- Gateway API
 - Provides a Route to the functions
 - UI for the management of functions
 - Scales functions through Docker

Function Watchdog

- Functions are added as Docker Images
- Entrypoint for HTTP Requests
- In \rightarrow STDIN

 $\mathsf{Out} \to \mathtt{STDOUT}$

Functions as a Service



Figure: OpenFaaS Architecture [9]

OpenFaaS Architecture [9]

Prometheus

- Collects Metrics
- Function Metrics can be inspected
- Can be accessed through Web-UI
- Docker
 - Isolates Functions in Docker Images
 - Docker Swarm distributes functions
 - Kubernetes can be used to orchestrate Docker Instances

FaaS	Container Virtualization	OpenFaaS	Conclusion	References
0000		000●	O	00
OpenFaaS Benefits				

OpenFaaS has the following benefits:

- Open Source
- Low resource consumption
- Deployment of functions
- Autoscaling
- Build in Monitoring and Metrics (Prometheus)

OpenFaaS on Raspberry Pi

OpenFaaS together with Docker Swarm have a low resource consumption. Therefore OpenFaaS has been installed on a cluster of 6 Raspberry Pis. Further evaluation of the service on Raspberry Pis has to be made. More information about installation on Raspberry Pi [10].

KFURT ERSITY SCIENCES

FaaS	Container Virtualization	OpenFaaS	Conclusion	References	
0000		0000	•	00	
Conclusion					

Function as a Service characteristics:

- More fine grained buisiness model (payment per invocation)
- Functions have no side effects, stateless model
- Scaling of functions with Container Virtualization (Docker)
- Shorter developement and deployment cycles (DevOps)
- Suitable technology for microservices

Outlook

FaaS is a new technology in the field of Cloud Platform Services. With the developement of IoT, Smart Homes and other event-driven technologies the number of private FaaS Frameworks and public FaaS offerings will grow in the near future!

Henry-Norbert Cocos | Cloud Computing | Summer Term 2018 | Function as a Service

OF APPLIED SCIENCES

- "AWS Lambda," https://aws.amazon.com/lambda/, accessed 27th May 2018.
- [2] "Google Cloud Functions BETA," https://cloud.google.com/functions/, accessed 27th May 2018.
- [3] "IBM Cloud Functions," https://www.ibm.com/cloud/functions, accessed 27th May 2018.
- [4] "Apache OpenWhisk," https://openwhisk.apache.org/, accessed 27th May 2018.
- [5] I. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. J. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter, "Serverless Computing: Current Trends and Open Problems," *CoRR*, vol. abs/1706.03178, 2017. [Online]. Available: http://arxiv.org/abs/1706.03178

References II

- [6] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, "A Preliminary Review of Enterprise Serverless Cloud Computing (Function-as-a-Service) Platforms," in 2017 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Dec 2017, pp. 162–169.
- [7] "Docker Docs," https://docs.docker.com/, accessed 27th May 2018.
- [8] "Docker Swarm," https://docs.docker.com/engine/swarm/, accessed 27th May 2018.
- [9] "OpenFaaS Serverless Functions Made Simple," https://docs.openfaas.com/, accessed 28th May 2018.
- [10] "Your Serverless Raspberry Pi cluster with Docker," https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/, accessed 28th May 2018.