
Agile 
Integration
PA Agile Integration, Kafka and Event-Streaming

Oliver Berger, Nadja Hagen

Tobias Dehn, Christopher Weiß, Uwe Eisele



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Integration

..of distributed systems is a complex challenge



Integration in Distributed Systems,
complex challenge lots of things to consider

6

Technologies

• Standards 
(SOAP, REST , 
JMS)

• Data formats 
(JSON, XML, 
Avro)

• Frameworks

• Proprietary 
Interfaces 

Programming 
Language

• Java

• C, C#, .Net

• Python

• Cobol

Application 
Architecture

• Client Server

• Monolith

• SOA

• Microservices

• Serverless

Communication 
Paradigms

• Batch

• Realtime

• Request-
Response

• Pub-Sub

• Fire & Forget



7

Service

App AppApp

ServiceService Service Service Service

Cache

Backup
Metrics

App Hadoop

Search

App

API Gateway

DWH



8

geheim



Service

9

App AppApp

ServiceService Service Service Service

BackupMetrics

App Hadoop SearchApp

API Gateway

Event Stream

DWH



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Event-Streaming Platform
Kafka
Why should you be interested?



▪ developed at LinkedIn in 2011 and made open source

▪ can process several trillion (10^12) events per day

▪ originally designed as a messaging queue

▪ based on an abstraction of a distributed commit log

▪ evolved from a messaging queue to a full-fledged event 
streaming platform

▪ de facto standard for Event-Streaming Platform (> 95% 
of Event-Streaming-Projects rely on kafka)

Apache Kafka: The Event Streaming Platform

12



Thousends of Enterprises rely on Kafka and 
Event-Streaming

13
Source: https://kafka.apache.org/powered-by

https://kafka.apache.org/powered-by


Possible Applications of Apache Kafka

14



3 Key Functionalities of a Streaming Platform

15

Pub-Sub Store Process



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Asynchronous Communication

Why do you need a Messaging System?



Why do you need a Messaging System ?

31

Sender Receiver
REST
RPC
Sockets

▪ Challenge 1: Availability

▪ Challenge 2: Processing Velocity

▪ Challenge 3: Processing Acknowledgement



Solution: Messaging

32

▪ Decoupling via Messaging

▪ Examples for Messaging-Systems: 

− MQ-Series, 

− JMS-Messaging ( ActiveMQ, Rabbit-MQ), 

− Kafka.

▪ Transfermode: Queue or Topic

Messaging 
System

Sender Receiver



Queue Mode
1 to 1 Topologie

33

▪ each message gets processed exactly once

QueueProducer

Consumer 1

Consumer 2



Topic Mode
1 to n Topologie

34

▪ each message can be consumed by independeant consumers

▪ each consumer receives all messages after subscription

▪ sequence of messages is guaranteed

▪ only new messages are delivered

TopicProducer

Consumer 1

Consumer 2



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Kafka 

Basics & Components



How would an ideal Publish-Subscribe System 
look like?

38

Queue

Publisher A Subscriber A

Subscriber BPublisher B

Publisher C

Publish
Subscribe

System

Subscriber C

Ideal Publish-
Subscribe-System
• Unlimited Lookback
• Message Retention
• Unlimited Storage
• No Downtime
• Unlimited Scaling



▪ Key Differences

− Messaging is implemented on top 
of a replicated, distributed 
unmutable commit log.

− The client has more functionality 
and, therefore, more 
responsibility.

− Messaging is optimized for 
batches instead of individual 
messages.

− Messages are retained even after 
they are consumed; they can be 
consumed again.

Kafka Architecture in Comparison to the ideal 
Pub-Sub System

39

▪ Consequences of these Design 
Decisions

− extreme horizontal scalability

− very high throughput

− high availability

− but different semantics and 
message delivery guarantees



Topics in a Publish-Subscribe System

40

Queue

Topic A
Producer 1

Topic A
Consumer 1

Topic A
Consumer M1

Topic B
Producer 1

Publish-Subscribe System

Topic B 
Consumer 1

Topic A Messages

Topic B Messages

Topic A
Producer N1

Topic B
Producer N2

Topic B 
Consumer M2



Broker in a Publish-Subscribe System

41

Topic A
Producer 1

Topic A
Consumer 1

Topic A
Consumer M1

Topic B
Producer 1

Topic B 
Consumer 1

Queue

Broker 1

Topic A

Topic BTopic A
Producer N1

Topic B
Producer N2

Topic B 
Consumer M2

Queue

Broker N

Topic A

Topic B

Zookeeper
Cluster



Partitions: Partition Count 4

42

Topic A
Producer 1

Topic A
Consumer 1

Topic A
Producer 3

Topic A 
Consumer 2.2

Queue

Broker 1

Topic A

Partition A1

Partition A3

Queue

Broker 2

Topic A

Partition A2

Partition A4

Topic A 
Consumer 2.3

Topic A 
Consumer 2.1

Consumer Group 1

Consumer Group 2



The Record – The Atomic Unit of Kafka
Synonyms: Message or Event

43

Record

key

value

header

timestamp

optional headers

Creation-time 
LogAppend-time

Business relevant data



Example: Payment Processing

44

P0:

P1:

Payments

Pays 100€ to Bob

Key: Alice

Withdraws 50€

Key: Alice

Deposits 80€

Key: Jenny

Pays 200€ to Jenny

Key: Mike

Consumer Group 2

Money Transfer
Instance

Money Transfer 
Instance

Consumer Group 1

Monitoring Instance



Serialisation
Kafka stores Byte Arrays

45

Se
ri

al
iz

er
s

D
es

er
ia

liz
er

s

Avro

JSON

String

Custom



Kafka Commit Log
Abstraction to understand Streaming

46

▪ Immutable, append-only data structure (record,event)

▪ Offset: the position of the record/event in the log

Log 0 1 92 3 87654 10 11 …..

old new

first
entry

written

next
entry

to write



Decoupling Data Producers from Data 
Consumers

47

Log 0 1 92 3 87654 10 11 ….

Consumer 1
(offset 5)

Consumer 2
(offset 10)

reads

reads

Producer 1
writes



Logical View of Topics, Partitions & Segments
Each Partition is a Commit Log

48

Topic A 

Partition 0

Partition 1

Partition 3

…

Partition n

Partition 2

Partition 0

Segment 0

Segment 1

Segment 3

…

Segment n

Segment 2

Kafka cluster

Topic A

Topic B

Topic C

Topic D

Topic E

Topic Z

…



Physical View of Topics, Partitions & Segments

50

Broker 102

Partition 1

Partition 2

Segment 0

Segment 1

Segment 2

Segment 0

Segment 1

Segment 2

Partition 0

Partition 1

Broker 101

Partition 1

Partition 1

Partition 0

Broker 102

Broker 103

Partition 0

Broker n ...

Kafka Cluster
Topic A

Topic B

Topic C

Parallelisation

Scalability

Rolling Files

Partition 2



Brokers in several Data Centers

51

B2 B5

B1

B4

B3

B6

Data Center 1 Data Center 2

Data Center 3



Managing Log File Growth
Retention-Policies

52

▪ Cleanup.policy

− delete (default)

− Segments too old: retention.ms (default 7 days)

− Partitions too large: retention.bytes (default: -1 unlimited)

− compact (keep only the freshest value

− delete and compact (Example: Order – Management)

▪ Cleanup applies to Segment-Files.

− messages are guaranteed to live at least as long as retention
time

− only non-active segment files get deleted upon Cleanup



Log Compaction

53

Compacted
Log 

952 10 11

…..k3k2k1 k5 k4

v10v6v3 v11 v12

Log 

0 1 92 3 87654 10 11

…..k1 k2 k3k1 k3 k3k5k5k2k4 k5 k4

v1 v2 v10v3 v4 v9v8v7v6v5 v11 v12

offset

key

value

offset

key

value

time

compating



Reliability & Durability: Replication of
Partitions

54

Kafka cluster

Broker 102

Partition 0

Follower

Broker 101

Partition 0

Leader

Broker 103

Partition 0

Follower

Producer 1
Consumer 1

replication
factor 3



Clients interact with Leaders

55

Kafka cluster

Broker 102

Partition 0

Follower

Broker 101

Partition 0

Leader

Broker 103

Partition 0

Follower

Producer 1 Consumer 1

Producer 2
Consumer 2



Leader Failover

56

Kafka cluster

Broker 102

Partition 0

Follower

Broker 101

Partition 0

Leader

Broker 103

Partition 0

Follower

Producer 1
Consumer 1

Broker 103

Partition 0

Leader



In-Sync Replicas

57

Kafka cluster

Broker 101   Leader

Partition 0

0 1 2 3 4 5 6 7 8 109

Broker 102   In-sync follower

Partition 0

0 1 2 3 4 5 6 7 8 9

Broker 103   Stuck follower

Partition 0

0 1 2 3 4 5 6 7

ISR

High water mark

Log end offsetcommitted



Load Balancing: Partition Leadership 

58

Kafka cluster

Broker 102

Partition 0

Follower

Broker 101

Partition 0

Leader

Broker 103

Partition 0

Follower

Producer 2

Consumer 1

Producer 2 Consumer 2

Consumer 3

Consumer 2

Producer 1



Load Balancing Partitions Leadership (2)

59

Kafka cluster

Producer 1
Consumer 1

Producer 2

Consumer 2

Broker 101
P0

P1

P2

Broker 102
P0

P1

P2

Broker 103
P0

P1

P2

Consumer 3

Consumer Group



Controller 
Election

Cluster 
Membership

Topic 
Configuration

Quotas
Access 

Control Lists

Zookeeper: What is it good for? 

60



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Kafka APIs



Kafka Core Components: 4 Core-APIs

63

Producer Consumer

Consumer

Queue

Producer

Stream
Processor

Stream
Processor

DB DB

▪ Producer API: Enables to write
messages

▪ Consumer API: Enables to read
messages

▪ Streams API: Enables to analyze and 
transform messages

▪ Connect API: Enables the creation of
reusable Clients

Consumer 
Groups



Kafka Clients supported by Confluent

▪ https://github.com/confluentinc/
examples/tree/5.3.1-
post/clients/cloud

▪ client code in many languages

▪ JVM: Java, Groovy, Scala, Kotlin, 
Clojure

▪ C-Library: C, C#, Go,  NodeJS, 
Python, Ruby, 

https://github.com/confluentinc/examples/tree/5.3.1-post/clients/cloud


Kafka Core Components: Producer API

65

Producer Consumer

Consumer

Queue

Producer

Stream
Processor

Stream
Processor

DB DB
Consumer 

Groups



Producer
KafkaProducer

Producer API: High Level Architecture & 
Design

66

Producer Record

[Partition]

[Headers]

Topic

[key]

Serializer Partitioner

Topic A
Partition 0

Batch 0

Batch 1

Batch 2

value

[timestamp]

Topic B
Partition 1

Batch 0

Batch 1

Batch 2

Fail 
?

Retry
?

send()

No

Yes

Yes

Can‘t retry

Throw excep

Success

return
metadata



Default Partitioner

67

Partition = hash(key) % # 
partitions

partition 0

partition 1

partition 2

Producer

Partitioner

key1

key 2

key 3

key 4



Acknowledgement

69

Broker 101

Broker 102

Broker 103

Producer

leader

follower

follower

send1

acks=0

Broker 101

Broker 102

Broker 103

Producer

leader

follower

follower

send1

acks=1

2ack

Broker 101

Broker 102

Broker 103

Producer

leader

follower

follower

send1

acks=all (-1)

4ack

Broker 104 out of sync

replica

2

3

fetch

acks



Development: A Basic Producer in Java

70



Kafka Core Components: Consumer API

71

Producer Consumer

Consumer

Queue

Producer

Stream
Processor

Stream
Processor

DB DB
Consumer 

Groups



Consuming from Kafka: Single Consumer

72

Consumer 

P0

P1

P2

P3



Consuming from Kafka: Consumer Group

73

Consumer 3 

P0

P1

P2

P3

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group



Consuming from Kafka: Multiple Groups

74

P0

P1

P2

P3

Consumer n
group-id = grp-1 

Consumer 1 
group-id = grp-1

Consumer Group 1

…

Consumer n
group-id = grp-2 

Consumer 1 
group-id = grp-2

Consumer Group 2

…



▪ number of useful consumers in a 
group is constrained by the
number of partitions

Scalability is limited by Number of Partitions

75

Consumer 

P0

P1

P2

P3

Consumer 3 

P0

P1

P2

P3

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group

Consumer 3 

P0

P1

P2

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group

Consumer 5 



How are Partitions assigned to Consumers 1

76

P0

P1

P2

Consumer 3 

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group

To
p

ic
 A

key1

key 2

key 3

key 4

Producer

Partitioner

key1

key 2

key 3

key 4



How are Partitions assigned to Consumers 2

77

P0

P1

P2

Consumer 3 

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group

To
p

ic
 A

key1

key 2

key 3

key 4

To
p

ic
 B

P0

P1

P2

Producer

Partitioner

key1

key 2

key 3

key 4



How are Partitions assigned to Consumers 3

78

P0

P1

P2

Consumer 3 

Consumer 2 

Consumer 4 

Consumer 1 

Consumer Group

To
p

ic
 A

key1

key 2

key 3

key 4

To
p

ic
 B

P0

P1

P2

▪ partition.assignment.strategy
consumer property:

− RangeAssignor (used in 
stream-processing for co-
partitioned topics)

− RoundRobinAssignor

− StickyAssignor



Consumer Liveliness 1-3

82

Broker 101

Broker 102

Broker 103
Group 

coordinator

Broker m

…

…
.

Consumer 2 

Consumer n 

Consumer 1 

Consumer Group

Group leader

heartbeat

delegates calculation

session.timeout.ms

heartbeat.intervall.ms

manages consumer

group and partition
assignments

calculates partition

assignments

Poll

max.poll.intervall.ms



▪ Offset: Position of a record in the partition

▪ Group_id, topic, partition is tracked in topic: __consumer_offsets

▪ Consumer Offset Topic tracks which message should be read next

Consumers and Offsets

84

Consumer 3 

P0

P1

P2

Consumer 2 

Consumer 1 

Consumer Group

__consumer_offsets

read

write offsets



Development: Basic Consumer in .NET/C#

85



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Kafka Examples

Bosch Powertools & Deutsche Bahn Passenger Information



▪ 2.2 X 10^12 messages per day (6 x 10^15 Byte Petabyte)

▪ up to 400 Microservices per cluster

▪ 20 – 200 Broker per cluster

Todays Ecosystems are pretty big

88



RefinemySite Bosch

90

▪ Digital platform for Lean Managemant in construction

▪ Collaborative planning, coordination and communication

▪ Real-time

▪ > 400 Projects, >550 Companies and >100k Daycards

▪ Key functions:

− Planing tool

− Calendar

− Dynamic task design and assignment

− Documentation

− Statistics (KPIS)



Kafka as Single Source 
of Truth

Confluent Cloud
Kafka as Event-

Sourcing Backbone

Replication of Data 
between 

Microservices via 
Topics

Simple Bootstrapping 
of new Services by
reprocessing the

Event Stream

Real-Time & Near
Realtime Notifications

of Users

19 independently 
deployable Units

29 People across
Europe, started in 

2016

Topics with different 
Avro-Schemas

RefinemySite:  Lean Construction SaaS

91



Passenger Information of Deutsche Bahn

92

▪ Talk at Confluent Streaming event
11.11.2019



Facts and Figures

▪ ~100 persons in 12 Scrum Teams

▪ 24/7 running (DevOps)

▪ multiple daily deployments in 
production

▪ ~100 virtual servers

▪ ~100 Microservices

Kafka-Project: DB Passenger Information

93

Kafka

Msg In (Avg)

4k
/sec

Broker

6 in 3 
AZs

Topic/
Partition

320
/3,3k

Msg In

300M
/day

Volume In

1TB
/day

Volume In

13MB
/sec

February 2020 (OOP Talk DB/Novatec)



Content

▪ Integration

▪ Event-Streaming Platform Kafka

▪ Asynchronous Communication

▪ Kafka Basics & Components

▪ Kafka APIs

▪ Kafka Examples

▪ Kafka Exercises



Kafka Exercises

Introduction and preparation of the next unit



Sources



Sources

1. https://www.enterpriseintegrationpatterns.com/patterns/messaging/

2. Enterprise Integration Patterns, Gregor Hohpe and Bobby Woolf: ISBN 

0321200683

3. https://kafka.apache.org/

4. https://www.confluent.io/what-is-apache-kafka/

5. https://www.confluent.io/resources/

6. https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/apache-kafka-

eine-schluesselplattform-fuer-hochskalierbare-systeme.html

7. https://www.slideshare.net/KaiWaehner/apache-kafka-vs-integration-middleware-mq-
etl-esb?ref=https://www.kai-waehner.de/blog/2019/03/07/apache-kafka-middleware-
mq-etl-esb-comparison/

8. https://www.confluent.io/blog/apache-kafka-vs-enterprise-service-bus-esb-friends-
enemies-or-frenemies/

9. https://microservices.io

97

https://www.enterpriseintegrationpatterns.com/patterns/messaging/
https://kafka.apache.org/
https://www.confluent.io/what-is-apache-kafka/
https://www.confluent.io/resources/
https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/apache-kafka-eine-schluesselplattform-fuer-hochskalierbare-systeme.html
https://www.slideshare.net/KaiWaehner/apache-kafka-vs-integration-middleware-mq-etl-esb?ref=https://www.kai-waehner.de/blog/2019/03/07/apache-kafka-middleware-mq-etl-esb-comparison/
https://www.confluent.io/blog/apache-kafka-vs-enterprise-service-bus-esb-friends-enemies-or-frenemies/


Novatec Consulting GmbH
Dieselstraße 18/1
D-70771 Leinfelden-Echterdingen

T. +49 711 22040-700
info@novatec-gmbh.de
www.novatec-gmbh.de

Senior Consultant

Christopher Uldack

Christopher.Uldack@novatec-gmbh.de

Senior Managing Consultant

Oliver Berger

Oliver.Berger@novatec-gmbh.de


