
FRANKFURT UNIVERSITY OF APPLIED
SCIENCES

Deployment of a Microservice Architecture
for Implementing a Redirection Gateway

in the Cloud by using Docker and
Kubernetes

by

Tomusange Brian 1291025

Sarath Chandra Mallineni 1291986
Abdullah Al Noman 1323731

Asad Ahmed 1321474

A SEMESTER PROJECT REPORT
(CLOUD COMPUTING)
Winter Semester 2020/21

UNDER THE GUIDANCE OF
Prof.Dr.Christian Baun

February 15, 2021



Docker and Kubernetes

Abstract
Cloud computing and microservices technologies are offering a

lot of facilities to handle interoperability, flexibility, orchestration and
security in software engineering. This project uses container based
technologies that are being used inside the microservice architecture
which will ease the use of and the efficiency of resource usages. We
wrapped our microservices in a container within the Docker and de-
ployed it in kubernetes and google cloud. Finally the research explores
how Dockers and Kubernetes technology can be used in microservices
making it more flexible, effective and efficient

1 Introduction

Dockers and Kubernetes have recently become a great area of interest in the develop-
ment of interoperability, flexible, and easy to use web-services. This section will give a
brief background and the objectives of this project using these technologies.

1.1 Background

The need for quality and flexible microservice in different software has consequently
led to quality and flexible Information Technology solutions. Consequently, today’s
competitive environment, customers with ever changing requirements, an appropriate
software development technology is crucial. Microservice using Dockers and Kuber-
netes is a pervasive strategy for developing software applications in such an environ-
ment. [7][1][2]

Globally, workflows have been used for transaction-led organizations, and organiza-
tions have appreciated the benefits of business process automation. It is evident that if
technology is used to automate these processes, then time-consuming and error-prone
manual intervention can be eliminated. This helps in achieving more, in less time, with
fewer mistakes. However, the real benefit is greater competitive advantage, as costs
are reduced and productivity is improved. The key drivers for process automation
are improved business efficiency and compliance. As businesses evolve, processes that
have been fundamental to the operation of an organization can become error-prone,
inefficient, or expensive.

1.2 Objectives

The major objectives of this project are the deployment of redirectional services on
a private cloud by using open source tools such as Docker and Kubernetes and the
Google cloud to combine a cloud platform.

Specific Objective are:

1. To Analyze the microservices technology.

2. To design and deploy a Microservice Architecture using Dockers and Kubernetes.

3. Integrating CI/CD Pipeline with Docker and kubernetes.

4. Test and validate the deployment.

Dept. of Computer Science 1



Docker and Kubernetes

2 Methodology

This section gives a brief review of the technologies, approaches and methods used in
microservices. Finally a detailed explanation of the methodology used to develop these
microservices is presented.

2.1 Microservice Technology

Microservices are mainly used to solve the problems that come from monolithic struc-
tures. Microservices is a style which represents the structure of an application by
combining all the autonomous services of that application.[6]. Figure 1, illustrates
how microservices can be combined in an application. Our main focus is a redirection
gateway meaning if someone wants to connect to a particular service, this redirection
gateway will help to fetch the service and handover to the user. Redirection gateway
should also be seen as a service. The following services which are available in our
project are;
1. Service A
2. Simulator service.

Figure 1: Example for Microservices[3]

2.2 Microservice Architecture

The API gateway of the microservices gives the opportunity to the clients to interact
with the services. The services are integrated with the docker images which are devel-
oped with all the other services. It gives the possibility to access these docker images
on any platform. It has the same functionality. The gateway is realized as an REST

Dept. of Computer Science 2



Docker and Kubernetes

API and is accessible via the provided UI and simple HTTP requests. The task of
the gateway is to autoscale based on the user specifications. Finally using kubernetes
we can merge these containers created above and orchestrate and deploy in one of the
cloud environments, see figure 2. It provides us a distributed platform to access the
service.

Figure 2: Top Level Architecture

We used google cloud platform to deploy our services on it. We created docker images
for the services and created a cluster using kubernetes and deployed in google cloud
environment as shown below in figure 3.

Figure 3: Detailed Architecture

Dept. of Computer Science 3



Docker and Kubernetes

2.3 Microservice Architecture using Docker and Kubernetes

We developed our services using spring boot. We also used my-sql database which was
added to our services. So, we are creating docker containers for our two services and
a mysql server and then connecting each of them with a network bridge. It serves the
purpose to record and store information. The basic idea of deploying these services are
explained below in figure 4.

Figure 4: Network between Services[4]

3 Implementation

The section details the implementation steps towards achieving our desired objectives.
We used a hybrid approach in our development, although we had some specific mile
stones which we have detailed in this section.

3.1 Creating a Docker Image

We created two services and one mysql server, so three images were created. An ac-
count on docker hub was created first so that we can push our microservices image
and mysql image on docker hub which is a prerequisite for kubernetes deployment. We
had set up the environment in our local machine for building and pushing the docker
images in the docker hub.

Therefore we first created a network for mysql, and this would be running as a docker
container later. We also configured the database credential for making it compatible

Dept. of Computer Science 4



Docker and Kubernetes

with our services. Table 1 below shows the commands for creating the images success-
fully.

$ docker network create service-tracker-db

$ docker container run - -mysqldb - -
network service-tracker-db-eMYSQL_ROOT_PASSWORD

=root123-e MYSQL_DATABASE=service_tracker_db-dmysql:8.0.22

$ dockercontainerlogs-f mysqldb

$ docker container exec -it mysqldb bash

Table 1: Command for Creating Images.

We then created two docker images of our services and before uploading to the
docker hub we added a tag and then pushed it to the docker hub repository by using
some commands as shown in Table 2. Our services were loaded in the docker hub and
thus they were exposed locally in our machine and available for pull.

Dept. of Computer Science 5

$
docker
network
create
service-tracker-db
$
docker
container
run
-
-
network
service-tracker-db -e MYSQL_ROOT_PASSWORD
=root123 -e
MYSQL_DATABASE=service_tracker_db -d mysql:8.0.22
$
docker
container
logs
 -f
mysqldb
$
docker
container
exec
-it
mysqldb
bash


Docker and Kubernetes

$ docker image build -t service-a

$ docker image build -t simulator-service

$ docker container run --network service-

tracker-db --nameservice-a-container -p

8080:8080 -d service-a

$ docker container run --network service-tracker-db--name

simulator-service-container -p 8081:8081-dsimulator-service

$ docker tag service-a

abdullah1122/cloud_deployment:service-a-0.0.1-SNAPSHOT

$ docker push abdullah1122/cloud_deployment:

service-a-0.0.1-SNAPSHOT

$ docker tag simulator-serviceabdullah1122/cloud_deployment:

simulator-service-0.0.1-SNAPSHOT

$ docker push abdullah1122/cloud_deployment:

simulator-service-0.0.1-SNAPSHOT

$ docker tag mysql:8.0.22abdullah1122/cloud_deployment:

mysql-0.0.1-SNAPSHOT

$ docker push abdullah1122/cloud_deployment:

mysql-0.0.1-SNAPSHOT

Table 2: Command for loading services to docker hub.

After executing the above command in Table 2, our microservice images was on the
docker hub like below in Figure 5.

Dept. of Computer Science 6

$
docker
image
build
-t
service-a
$
docker
image
build
-t
simulator-service
$
docker
container
run
--network
service-
tracker-db
--nameservice-a-container
-p 
8080:8080
-d
service-a
$
docker
container
run
--network
service-tracker-db --name
simulator-service-container
-p
8081:8081 -d simulator-service
$
docker
tag
service-a
abdullah1122/cloud_deployment:service-a-0.0.1-SNAPSHOT
$
docker
push
abdullah1122/cloud_deployment:
service-a-0.0.1-SNAPSHOT
$
docker
tag
simulator-service abdullah1122/cloud_deployment:
simulator-service-0.0.1-SNAPSHOT
$
docker
push
abdullah1122/cloud_deployment:
simulator-service-0.0.1-SNAPSHOT
$
docker
tag
mysql:8.0.22 abdullah1122/cloud_deployment:
mysql-0.0.1-SNAPSHOT
$
docker
push
abdullah1122/cloud_deployment:
mysql-0.0.1-SNAPSHOT


Docker and Kubernetes

Figure 5: Image on Docker Hub

3.2 Kubernetes Deployment

We configured the environment for kubernetes deployment in our system and set up
mysql for persisting volume and secret[5]. We also wrote the yaml file for deploying
everything in the kubernetes cluster. We deployed our services and exposed them to
the cloud. We did this using following commands in Table 3 and eventually our services
are exposed to the external IP address from where we could access them.

Dept. of Computer Science 7



Docker and Kubernetes

$ kubectl create deployment service-a--abdullah1122

/cloud_deployment:service-a-0.0.1-SNAPSHOT

$ kubectl create deployment simulator-service--abdullah1122/

cloud_deployment:simulator-service-0.0.1-SNAPSHOT

$ kubectl create deployment mysql

--abdullah1122/cloud_deployment:mysql-0.0.1-SNAPSHOT

$ kubectlexposedeploymentsimulator-service --type=LoadBalancer

--port 81 --target-port 8081

$ kubectlexposedeploymentservice-a --type=LoadBalancer

--port 80 --target-port 8080

Table 3: Command for Creating Images.

The above deployment commands in Table 3, deployed and exposed our services
which resulted in a running pod in kubernetes cluster. Finally we had successfully
deployed our microservices to Kubernetes as shown in Figure 6 and we can access it
through external IP.

Figure 6: Exposed Services

3.3 Uploading Docker Images to Google Cloud

As we have already set up the minikube, kubernetes and deployed our microservices in
the local kubernetes cluster. Here we deployed the same services in the google cloud
following these steps

Dept. of Computer Science 8

$
kubectl
create
deployment
service-a--abdullah1122
/cloud_deployment:service-a-0.0.1-SNAPSHOT
$
kubectl
create
deployment
simulator-service--abdullah1122/
cloud_deployment:simulator-service-0.0.1-SNAPSHOT
$
kubectl
create
deployment
mysql
--abdullah1122/cloud_deployment:mysql-0.0.1-SNAPSHOT
$
kubectl
expose
deployment
simulator-service
--type=LoadBalancer
--port
81
--target-port
8081
$
kubectl
expose
deployment
service-a
--type=LoadBalancer
--port
80
--target-port
8080


Docker and Kubernetes

1. We needed to register for google cloud platform first. Then after we logged in
to the google cloud platform and we created a project named CloudDeployment.
Then we created a cluster named as cluster-1. we have our docker images in
docker hub and we would need to push the docker images to the google container
registry.[8] The google container registry is the same as docker hub. Before push-
ing we had to set another environment name Google Cloud SDK (Command line
interface). So, we have downloaded Google SDK and installed it on our local
system by following the google SDK installation instruction.[7]

2. After installing the google SDK on our system, we then ran the initialization
command in Table 4.

$ gcloud init

Table 4: Initialization Command

It asked to pick the configuration to use, so here we re-initialized the configura-
tion that we had created in google cloud platform as shown in Figure. 7, so we
selected 1.

Figure 7: Image of initialization window

In the next step it asked us to choose the account to perform the operation so
we selected our own account and then logged to the system. We set the com-
pute region and zone. We then followed the steps to configuring this environment.

3. Now we are ready to push our docker images to Google cloud registry using the
command in Table 5. In that step we need to tag the docker image with the
project name so we have run the following command.

Dept. of Computer Science 9

$
gcloud
init


Docker and Kubernetes

$ docker tag service-a gcr.io/clouddeployment-298120

/service-a

$ docker tag simulation-service gcr.io/clouddeployment-

298120/simulation-service

Table 5: Command for Tagging services

Then for pushing it to the google container registry we used the command in
Table 6.

$ gcloud docker push gcr.io/clouddeployment-298120

/service-a

$ gcloud docker push gcr.io/clouddeployment-298120/

simulation-service

Table 6: Command for pushing services to google container

First time it failed because of authentication issues so we run the command in
Table 7 to solve that issue.

$ gcloud auth configure-docker

Table 7: Authentication command

Finally our first service “service-a” was deployed on google container registry. For our
other service and mysql docker images we followed the same procedure and uploaded
it on the google container registry. We used the commands in Table 8 for pushing the
image on to the google cloud.

$ dockertagsimulator-servicegcr.io/clouddeployment-

298120/simulator-service:v1

$ dockerpushgcr.io/clouddeployment-298120/simulator

-service:v1

Table 8: Commands for pushing images to cloud.

Following the final output for pushing it in the google container registry, we deployed
our images in the Kubernetes cluster, so that they were connected with cloudshell. We
ran the deployment command in Table 9 for our services

Dept. of Computer Science 10

$
docker
tag
service-a
gcr.io/clouddeployment-298120
/service-a
$
docker
tag
simulation-service 
gcr.io/clouddeployment-
298120/simulation-service
$
gcloud
docker
push
gcr.io/clouddeployment-298120
/service-a
$
gcloud
docker
push
gcr.io/clouddeployment-298120/
simulation-service
$
gcloud
auth
configure-docker
$
docker
tag
simulator-service gcr.io/clouddeployment-
298120/simulator-service:v1
$
docker
push
gcr.io/clouddeployment-298120/simulator
-service:v1


Docker and Kubernetes

$ kubectl create deployment service-a --image=gcr.io/

clouddeployment-298120/service-a

$ kubectl create deployment simulator-service--image=gcr.

io/clouddeployment-298120/simulator-service:v1

Table 9: Commands for deployment.

We exposed the deployed services, using the commands in Table 10;

$ kubectl expose deployment simulator-service --type=

LoadBalancer--port 81 --target-port 8081

$ kubectl expose deployment service-a --type=LoadBalancer

--port 80 --target-port 8080

Table 10: Commands for exposing the services to cloud.

Our services were exposed now in google cloud. We could check it by running the
following command and we also found the external IP of the service so that we could
solve the external IP part as seen in Figure 8.

Figure 8: Exposed Services on google cloud

Now we can access our rest services with the external IP and port as shown in Figure
9 and Figure 10. The following is the final deployed output and we could access our
service globally.

Figure 9: Response of our REST services (A)

Dept. of Computer Science 11

$
kubectl
create
deployment
service-a
--image=gcr.io/
clouddeployment-298120/service-a
$
kubectl
create
deployment
simulator-service --image=gcr.
io/clouddeployment-298120/simulator-service:v1
$
kubectl
expose
deployment
simulator-service
--type=
LoadBalancer--port
81
--target-port
8081
$
kubectl
expose
deployment
service-a
--type=LoadBalancer
--port
80
--target-port
8080


Docker and Kubernetes

Figure 10: Response of our REST services (B)

4 Integrating CI/CD Pipeline for Kubernetes De-

ployment

This section explains how we integrated CI/CD pipeline for kubernetes in our project
and deployed it on google cloud platform.

4.1 Installing Jenkins on Google Cloud

In the first phase of that we needed three virtual machine
1. Jenkins Server
2. Kubernetes Master (k8smaster)
3. Kubernetes Worker (k8sworker)

Our Jenkins server was connected to k8smaster which did the continuous deploy-
ment. We set up the Github and Docker hub that fits in CI/CD integration. The
image in Figure 11, below shows the necessary steps

Figure 11: Installation steps

Dept. of Computer Science 12



Docker and Kubernetes

1. Checkin/Push our code to GitHub

2. Pull our code from Github into our Jenkins server.

3. Use Grade/Maven build tool for building the artifacts

4. Create docker images

5. Push latest docker images to DockerHub

6. Pull the latest images from DockerHub into Jenkins

7. Using our deployment file to deploy our applications inside our kubernetes cluster

The first thing we did was to create a GCE Virtual Machine. After creating a VM on
GCE, we went to GCP Compute Engine from the navigation menu and click Create
Instance with the name, region and the zone. We also configured the firewall rules for
this virtual machine named jenkins see Figure 12.

Figure 12: Jenkins initialization

To install Jenkins, we first connected with the ssh terminal of our virtual machine then
installed the java first using the commands in table 11.

$ sudo apt update // update the software packages

$ sudo apt install default-jre // install jre jenkins environment

Table 11: Jenkins Environment Set Up Command.

Then we added a repository key to the system which we did by importing the GPG
keys of the Jenkins. This command gave the output as ok and then we needed to
append the Debian package repository address to the server’s sources.list using the
commands in table 12.

Dept. of Computer Science 13

$
sudo
apt
update
 //
update
the
software
packages
$
sudo
apt
install
default-jre
 //
install
jre
jenkins
environment


Docker and Kubernetes

$ wget -q -o - https://pkg.jenkins.io/debian-stable/jenkins.

io.key | sudo apt-key add-

$ sudo sh -c ’echo deb https://pkg.jenkins.io/debian-stablebinary/

> /etc/apt/sources.list.d/jenkins.list’

Table 12: Commands for appending the Debian package.

We installed Jenkins using the commands in Table 13 after setting up a correct
environment.

$ sudo apt-get update // update the software packages

$ sudo apt-get install jenkins // install jenkins

Table 13: Commands for installing Jenkins.

4.2 Creating a Jenkins pipeline script

After installing jenkins we verified our installation by accessing our initial login page
and then change the username and password for the jenkins virtual machine. Our
installation was successful completed and we setup the SSH pipeline for jenkins, setting
up the maven, and docker for Jenkins.[9] We added a current jenkins user to the docker
group so that Jenkins used Docker for building and pushing the docker images. We
created a Jenkins pipeline script. So for running the pipeline we needed to store the
github, docker and kubernetes, k8smaster server credentials in our jenkins. Jenkins
pipeline script worked step by step and eventually upload it into the Google Cloud
kubernetes and we were able to see that our services were running on the google cloud.
The final script is on the github. The link is in Appendix A. In summary the CI/CD
integration for our microservice deployment project was a success.

5 Discussions and Conclusion

Finally, we were able to deploy our redirectional service gateway using dockers and
kubernetes. We further went ahead to integrate the CI/CD Pipeline with Docker and
kubernetes. We did validations and performance testing to checking our deployment.
The results were tremendous as services could be redirected by our gateway. However
some areas of further improvement include the following;

1. In the case of high traffic there is a likelihood of system failure. We did not
interest ourselves in analyzing the throughput of the systems as it was beyond
our area of research.

2. Security is a major issue in cloud technologies and more work needs to be done
in this area to identify the security gaps and thus find solutions to these breach.

3. The dynamics of data being managed by an external third party need to be
carefully studied particularly when deploying this technology.

Dept. of Computer Science 14

$
wget
-q
-o
-
https://pkg.jenkins.io/debian-stable/jenkins.
io.key
|
sudo
apt-key
add -
$
sudo
sh
-c
'echo
deb
https://pkg.jenkins.io/debian-stable binary/
>
/etc/apt/sources.list.d/jenkins.list'
$
sudo
apt-get
update
//
update
the
software
packages
$
sudo
apt-get
install
jenkins
//
install
jenkins


Docker and Kubernetes

References

[1] Yoshiteru Ishida Akhmad Alimudin. Service-based container deployment on kuber-
netes using stable marriage problem. Proceedings of the 2020 The 6th International
Conference on Frontiers of Educational Technologies, 2020.

[2] Ruth G. Lennon Brandon Thurgood. Cloud computing with kubernetes cluster
elastic scaling. Proceedings of the 3rd International Conference on Future Networks
and Distributed Systems, 2019.

[3] Edureka. Microservices architecture training. Available at https://www.edureka.
co/blog/what-is-microservices/ (01.01.2021).

[4] Javainuse. Deploy spring boot + mysql application to docker. Available at https:
//www.javainuse.com/devOps/docker/docker-mysql (21.01.2021).

[5] Jhooq. Deployment of dockers and kubernets. Available at https://jhooq.com/

deploy-spring-boot-microservices-on-kubernetes/#step-5 (17.01.2021).

[6] Harold Castro-Mauricio Verano Lorena Salamanca Rubby Casallas Mario Vil-
lamizar, Oscar Garcés. Evaluating the monolithic and the microservice architec-
ture pattern to deploy web applications in the cloud. International Conference on
Emerging Trends in Information Technology and Engineering, 2020.

[7] Jaimeel M shah Nikhil Marathe, Ankita Gandhi. Docker swarm and kubernetes in
cloud computing environment at proceedings of the third international conference
on trends in electronics and informatics. 2019.

[8] Iustin-Alexandru Ivanciu1 Robert Botez1, Calin-Marian Iurian1 and Virgil Do-
brota1. Deploying a dockerized application with kubernetes on google cloud plate-
form. 13th International Conference on Communications, 2020.

[9] Vaibhav Bejgam Sriniketan Mysari. Continuous integration and continuous deploy-
ment pipeline automation using jenkins ansible. 2020.

A Appendix

The full code of our implementation and integration can be found on the github link:-
https://github.com/abdullahalnoman8/cloud_deployment

Dept. of Computer Science 15

https://www.edureka.co/blog/what-is-microservices/
https://www.edureka.co/blog/what-is-microservices/
https://www.javainuse.com/devOps/docker/docker-mysql
https://www.javainuse.com/devOps/docker/docker-mysql
https://jhooq.com/deploy-spring-boot-microservices-on-kubernetes/#step-5
https://jhooq.com/deploy-spring-boot-microservices-on-kubernetes/#step-5
https://github.com/abdullahalnoman8/cloud_deployment

	Introduction
	Background
	Objectives

	Methodology
	Microservice Technology
	Microservice Architecture
	Microservice Architecture using Docker and Kubernetes

	Implementation
	Creating a Docker Image
	Kubernetes Deployment
	Uploading Docker Images to Google Cloud

	Integrating CI/CD Pipeline for Kubernetes Deployment
	Installing Jenkins on Google Cloud
	Creating a Jenkins pipeline script

	Discussions and Conclusion
	Appendix

