Edge-Computing Framework (EdgeX)

J. Wagner, D. Gibietz, D. Helmer

Department of Computer Science and Engineering Frankfurt University of Applied Sciences

Frankfurt am Main, 2021

J. Wagner, D. Gibietz, D. Helmer

Outline

Introduction

- 2 EdgeX architecture
- 3 How it works

Use case

- 5 Data processing
- 6 Live demonstration

Introduction

- EdgeX Foundry is an open source software framework
- It is serving between physical "things" and applications or clouds
- EdgeX provides multiple protocols to connect IoT devices, like MQTT, REST or BLE
- It allows to encrypt, transform, filter or format the data before forwarding it to an external source over different protocols like MQTT

Figure: The EdgeX gateway between the "things" and the IT-System. Source: https://docs.edgexfoundry.org/1.2/

EdgeX architecture

Figure: Visualisation of the EdgeX platform architecture.

Source: https://docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers

J. Wagner, D. Gibietz, D. Helmer

Edge-Computing Framework (EdgeX)

< □ > < □ > < □ > < □ > < □ > < □ >

• EdgeX data flow:

- Sensor data of a 'thing' is collected
- Sensor data is transferred to the Core Services
- Data can be filtered, formated, ... before sending them to a cloud
- Data can be used to trigger other devices
- Cloud can further process the data, analyze it, simply store it and more

• Using REST for communication

- $\bullet~$ Device $\leftrightarrow~$ Gateway and Gateway $\leftrightarrow~$ Cloud
- REST \longrightarrow **RE**presentational **S**tate **T**ransfer
- Allows simple machine-to-machine communication
- The services are made available via Docker and Docker-Compose

Use case

- IoT gateway should be close to the edge devices
- Often needed system architecture: Multiple edge devices sending data to a cloud service via the IoT gateway
- Deployment of EdgeX on a SBC. Temperature values send by multiple nodes are forwarded to a data base in the cloud.

Figure: Data flow of overall system architecture

- The communication with the physical nodes is called "south side"
- South side means the south of the communication (device layer)
- This layer interacts with the devices and sensors
- Various protocols, such as REST, MQTT or even SNMP, are available for the south side connection
- After installation and running of EdgeX the REST service start by default
- The developed script sends a variety of real sensor data
- It is later presented in a live demo

- Device profile: defines a 'device type'
- Create digital representation of a device
 - Multiple devices can be created with one profile
- Create valuedescriptors / variables
 - Data sent by devices must be predefined

Live demo on how to add devices later in the presentation

- Exporting data to the north side is possible by using either Application service or rule engine
 - For deployment rule engine was chosen
- Rule engine since Geneva release: EMQ's Kuiper
- Service consists of three components: Source, SQL and Sink
 - Source: Data stream that is accessed by kuiper
 - SQL: Statements to filter the data of the source
 - Sink: Data sink that uses a defined protocol for forwarding messages

Data processing North side

- An exemplary northside use case is implemented with AWS
- AWS was selected since all needed services were included in the free-trier

Figure: Data flow within AWS northside

Live demonstration

J. Wagner, D. Gibietz, D. Helmer

Frankfurt am Main, 2021

11/12

Thank you for your attention!