
Infrastructure as Code (with Terraform)
Terraform vs. Ansible

12.02.2021

Gökhan Yildirim, Samir Hamiani, Victoria Chaikovska

Frankfurt University of Applied Sciences
Faculty of Computer Science and Engineering

1

Outline
● Infrastructure as a Code
● Infrastructure as a code (Terraform)
● Terraform lifecycle
● Infrastructure as a code (Ansible)
● Ansible playbook
● Introduction of the Infrastructure
● Terraform and Ansible Live Demo
● Comparison Ansible and Terraform
● Summary

2

Infrastructure as a code

● “Infrastructure as Code (IaC) is the managing and provisioning of infrastructure through code

instead of through manual processes.” [1]

● There are 2 types of IaC tools :

○ configuration management tools

○ orchestration

● Advantages of Iac:

○ simplicity

○ efficiency and speed

○ low risk

○ Costs

3[1] What is Infrastructure as Code (IaC)?URL: https://www.redhat.com/en/what-is-infrastructure-as-code-iac

Infrastructure as a code (Terraform)

● Engine which allows to develop and modify infrastructures

● On various types of providers

● Simple syntax allows simple modularity and works well with multi-cloud systems

● Managing IaC is also a foundation for DevOps practices

● The main language of terraform is HCL

4

Infrastructure as a code (Terraform)

5

Terraform lifecycle

● terraform init - initialize the working directory in

● terraform validate - to check the written code for syntax errors

● terraform refresh - to coordinate the actual state

● terraform plan - for creating an execution plan

● terraform apply - the creation of our infrastructure.

● terraform destroy - destroying the infrastructure

6

Infrastructure as a code (Ansible)

● Open-Source tool for providing infrastructure as code

● Ansible configure slave nodes

● Configurations of the slaves are done with Ansible modules

● Modules are written in YAML and include a routine of tasks

● Modules can be executed in the console or in Playbook

● Playbooks describes the commands to achieve the desired state

● This state can be basic settings or a complete setup

7

Infrastructure as a code (Ansible)

8

Ansible playbook

● The list of all configs existing in the control node, command $ ansible-config

● Specifying User:

 $ ansible-playbook FileName.yml --user muser

● Run Ansible:

 $ ansible-playbook FileName.yml

● Check bad syntax:

 $ ansible-playbook NAME.yml --syntax-check

● Running a playbook in dry-run mode:

 $ ansible-playbook playbooks/PLAYBOOK_NAME.yml --check

9

 Introduction of the Infrastructure
j

10

 Terraform and Ansible
 LIVE DEMO

 Comparison Terraform and Ansible

Terraform

● Type: Mainly infrastructure
Orchestration tool

● Support: Only partial Support for
packaging and templating.
Terraform offers direct access to
HashiCorp’s support

● Ease set-up and usage: Tool is
simpler to use and to set-up

● Lifecycle management: Lifecycle
management

Ansible

● Type: Mainly configuration tool
Install/Update software on that
infrastructure

● Support: Complete Support for
packaging and templating.

● Ease set-up and usage: It is easy to
install and use. The tool has a master
without agents (agentless)

● Lifecycle management: No Lifecycle
management

12

 Comparison Terraform and Ansible

Terraform

● Infrastructure: Provides support for
immutable infrastructure

● Availability: Not Applicable
● Modules: The modules offer for users

an abstract away of any reusable parts.
● GUI: Only 1/3 parts of GUIs are

available
● Language: Uses declarative language
● Market: Relatively new

Ansible

● Infrastructure: Provides support for
mutable infrastructure

● Availability: The tool has a secondary
node in case an active node not
function

● Modules: Ansible Galaxy available, it
consists of a repository or library

● GUI: GUI is presented as a
command-line tool

● Language: Uses procedural language
● Market: More mature

13

 Summary

● Which tool to choose? What tool is better?

● Both tools are well-known for their unambiguous advantages in creating

infrastructure as a code

● These tools are very helpful in deploying repeatable environments with

complex requirements

● Terraform and Ansible are automated: configuring, provisioning and managing

the infrastructure

14

 Summary

● It is recommendable to use Terraform for orchestration and Ansible

configuration management

● In comparison to Terraform Ansible is more tricky in use

● Ansible takes much more time for learning, because the documentation of

Ansible has only minimal basic information

● To get experience in Ansible you should start to learn automating deployments,

configuration and management of the infrastructure

15

● What is Infrastructure as Code (IaC)?URL: https://www.redhat.com/en/

what-is-infrastructure-as-code-iac

● Ansible vs Terraform: Understanding the Differences. URL: https://www.whizlabs.com/

blog/ansible-vs-terraform/

● Ansible vs Terraform vs Puppet:Which to Choose? URL: https://phoenixnap.com/blog/

ansible-vs-terraform-vs-puppet

● Running AdHoc Commands. URL: https://ansible-tips-and-tricks.readthedocs.io/en

/latest/ansible/commands/

References

16

● DevOps101 — First Steps on Terraform: Terraform + OpenStack +

 Ansible. URL: https://medium.com/hackernoon/terraform-openstack

 -ansible-d680ea466e22

● What Is Ansible? – Configuration Management And Automation With

Ansible. URL: https://www.edureka.co/blog/what-is-ansible/

References

17

18

