
Deploying and Scaling an App on
Kubernetes with MinIO

Cloud Computing Project

Pagès, Louis César Atkinson, Lukas D’Aprea, Samuel
Chen, Shuang

Winter Semester 2020/2021

Contents

1. Introduction 3

2. Architecture and Concepts of Kubernetes 4
2.1. Control Plane Components . 4
2.2. Node Components . 5
2.3. Addons . 6
2.4. Service Discovery in Kubernetes . 6
2.5. Kubernetes objects . 6

3. Kubernetes setup 9
3.1. Install and set up kubectl . 9
3.2. Installing Minikube . 10
3.3. Interacting with the cluster . 11

4. MinIO configuration 12

5. Target Application 17
5.1. REST API . 17
5.2. Implementation . 18
5.3. Dockerization . 18
5.4. Distribution via GitLab Container Registry 19

6. Deploying an application on Kubernetes 21
6.1. Creating a Deployment . 21
6.2. Managing imagePullSecrets . 22
6.3. Defining a Service for the REST API . 23
6.4. Adding an Ingress . 23
6.5. Applying the configuration . 24

7. Scaling 26

8. Conclusion 27

References 28

A. Python source code for REST API 30

2

1. Introduction

Kubernetes is an open-source platform for automating deployment, scaling, and man-
agement of containerized applications. It was open-sourced by Google in 2014 and is
currently maintained by the Cloud Native Computing Foundation(CNCF). It provides
users with a framework to run distributed systems resiliently and takes care of scaling
and failover for the application. Kubernetes provides multiple practical functions, includ-
ing service discovery and load balancing, storage orchestration, automated rollouts and
rollbacks, automatic bin packing, self-healing and sensitive information management.

In this document, we are going to introduce some basic concepts of Kubernetes and
provide a step-by-step guide of how to deploy a simple web application of Kubernetes.
Object storage for the application will be provided by MinIO, which will be deployed on
the same Kubernetes cluster.

3

2. Architecture and Concepts of
Kubernetes

The basic structure of Kubernetes is called cluster, as depicted in Figure 2.1. A Ku-
bernetes cluster consists of a set of nodes and a control plane. The nodes are worker
machines running containerized applications. Each node hosts one or several pods, which
are the smallest unit of the application workload. The control plane is responsible for
managing the worker nodes and the pods in the cluster. In production environments, the
control plane usually runs across multiple computers and a cluster usually runs multiple
nodes, providing fault-tolerance and high availability.

In the following, we will provide an overview of control plane components, briefly touch
upon node components and cluster addons, explain service discovery in the cluster, and
present basic Kubernetes configuration objects.

Figure 2.1.: Kubernetes Cluster[12]

2.1. Control Plane Components

Control Plane Components in the Kubernetes cluster are in charge of making global
decisions about the cluster, and detecting and responding to cluster events. Control

4

plane components include API-server, persistent store, kube-scheduler, kube-controller-
manager, and cloud-controller-manager [12].

The API server is the front end for the Kubernetes control plane, which is responsible
for validating and configuring data for the api objects such as pods, services, replica-
tioncontrollers and so on. The main implementation of a Kubernetes API server is
kube-apiserver. It is designed to scale horizontally to deploy more instances. Users are
allowed to run several instances of kube-apiserver to balance traffic.

Etcd is a consistent and highly-available key value store used for all cluster data. All
Kubernetes objects are stored on etcd. In order to avoid losing master nodes and recover
under disaster scenarios, it is important to periodically backup the etcd cluster data.

Kube-scheduler is the control plane component in charge of node scheduling. It monitors
newly created Pods or nodes that are not assigned and will select a node for them to run
on. In the process of scheduling, it usually takes a variety of factors into account, includ-
ing resource requirements, hardware or software constraints, inter-workload interference,
data locality, and deadlines.

Kube-controller-manager runs controller processes. The controller in Kubernetes include
node controller, replication controller, endpoints controller, and service/token controllers.
In theory, each controller is a separate process. However, to reduce complexity, they are
all compiled into a single binary and run in a single process.

Cloud-controller-manage is responsible for embedding cloud-specific control logic. It
allows users to link their cluster into the cloud provider’s API, and separates out the
components interacting with that cloud platform from components interacting with users’
own cluster.

2.2. Node Components

Node components, including kubelet, kube-proxy, and container runtime, are responsi-
ble for maintaining running pods and providing the Kubernetes runtime environment.
Kubelet is an agent running on each node in the cluster. Its main function is to make
sure that containers are running in a Pod. Kube-proxy is a network proxy that imple-
ments part of the Kubernetes’ service concept. The container runtime is a software used
to run containers. Kubernetes supports several container runtimes, including Docker,
containerd, and any implementation of the Kubernetes Container Runtime Interface
(CRI).

5

2.3. Addons

Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster
features. Examples of Addons are dashboard, container resource monitoring, cluster-
level logging and so on.

2.4. Service Discovery in Kubernetes

Within a Kubernetes cluster, service discovery can be performed via DNS.[4]

The name of a service corresponds directly to a hostname. For pods, a hostname is
synthesized since there might be multiple pods within a deployment or stateful set. For
a pod in a stateful set, an index is appended to the set name. E.g. the pods in the stateful
set myset will be named myset-0, myset-1, and so on. Pod replicas in a deployment
instead append a random hash to their hostname.

The fully qualified domain name (FQDN) of a pod or service consists of the
cluster domain suffix (e.g. cluster.local), a type (e.g. svc), the namespace
(e.g. default), the deployment name, and the hostname. So a container named
foo in a stateful set bar would by default be accessible within the cluster as
foo.bar.default.svc.cluster.local. Lookup is also possible without a FQDN
(e.g. looking up a service with name some-service).

Pods can have different DNS policies (field dnsPolicy in a pod spec). The default setting
ClusterFirst enables lookup of such FQDNs in Kubernetes’ DNS service. Alternative
settings like Default inherit the node’s DNS setting, or select manual DNS configuration
with None.

2.5. Kubernetes objects

Kubernetes objects are used to set up the Kubernetes environment. These objects rep-
resent persistent entities which have a functionality and serve a role in the Kubernetes
environment.

They can be created, updated, deleted by a so called configuration file, in a .yaml file.
Using such a file makes it possible to implement infrastructure as code. With kubectl
apply, the cluster can be brought into the state specified by the configuration file. It
is also possible to interact with the objects directly e.g. with kubectl set. This is
discussed in detail in section 3.3 and section 6.

For each object, essential fields must be included in this configuration file in order to a
have meaningful configuration. Common fields include the apiVersion, kind, metadata,
and spec.

6

apiVersion This is the revision of the Kubernetes API specification for that object.
Different versions might be support different object properties. API objects are
versioned independently from the Kubernetes controller.

kind The type of the object, e.g. Service or Pod.
metadata A description of the object itself (i.e. name, labels). This description is mostly

useful for organizing configuration objects, but some fields can also serve as con-
figuration parameters.

spec This sub-object describe the state of the object, its characteristics. For example,
a Pod object might list the containers that shall run within the Pod.

In the following, we describe the most important types of Kubernetes configuration
objects that are relevant for our project.

2.5.1. Pod1

This is the smallest that can be created in a Kubernetes environment. It hosts at
least one container and serves as a logical platform for its functionality. The container
must be specified, under the spec field using container. Then, container image of the
app is declared with image. It is most of the time not instantiated individually but
rather within the declaration of a workload manager object such as StatefulSet or
Deployment.

2.5.2. Deployment2

Deployment allows us to describe the main characteristics of an application deployment
like the number of pods, the container and image to use by the pods. The main idea
is to make it easier to deploy the application and to apply updates. Most important
characteristic of this object is the ability to scale our application by adjusting the number
of pods according to the workload.

2.5.3. StatefulSet3

This object is similar to a deployment object. The difference is that pods created here can
only have unique identity meaning they have persistent identifier, potentially persistent
storage, and cannot be treated interchangeably. This configuration is used mostly if we
need persistent storage for our application.

1https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/pod-v1/
2https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/deployment-v1/
3https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/stateful-set-v1/

7

https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/pod-v1/
https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/deployment-v1/
https://kubernetes.io/docs/reference/kubernetes-api/workloads-resources/stateful-set-v1/

2.5.4. Service4

A Service allows to export our application to the (internal) network. It handles the
connections and therefore the workload going to our app by distributing requests to the
pods. As pods are not persistent resources, Service is always aware of their state and
knows how and when to send them requests.

A service is not directly represented by a physical resource such as a container. Instead,
it makes the services provided by one or more containers discoverable via some hostname
and port, as discussed in section 2.4.

The different types of services are NodePort, ClusterIP, and LoadBalancer depending
on how the service can be accessed. Later, we will use the NodePort type which ex-
poses a port on all cluster nodes on which a pod of the service runs. We also use the
LoadBalancer type, which requires an external load balancer.

2.5.5. Ingress5

To expose a service to the outside, it is possible to use a Service of type NodePort, which
will make the service accessible from the node’s public IP address. This does not permit
for load balancing, except via DNS.

A more flexible approach is to use an ingress controller [9]. The controller can be
configured via the Ingress API object. This makes it possible to provide a clear external
entry point into the cluster, to forward traffic to services according to the configured
rules, and to perform load balancing among the pods providing a service.

The ingress is generally provided by the cloud environment on which the cluster is
running, e.g. the AWS load balancer, or a separately running HAproxy instance [10].
For the purpose of this project, Nginx is used as an ingress controller [17].

4https://kubernetes.io/docs/reference/kubernetes-api/services-resources/service-v1/
5https://kubernetes.io/docs/reference/kubernetes-api/services-resources/ingress-v1/

8

https://kubernetes.io/docs/reference/kubernetes-api/services-resources/service-v1/
https://kubernetes.io/docs/reference/kubernetes-api/services-resources/ingress-v1/

3. Kubernetes setup

To use Kubernetes, we first need a cluster which we will supply via Minikube. To interact
with that cluster, we need the kubectl tool.

We present a Minikube-based test environment because it is easy to set up and integrates
various convenience tools. For local testing, it is also possible to use the Kubernetes
feature of Docker Desktop [2]. For setting up a production cluster without using managed
Kubernetes cloud services, Kubernetes distributions such as K3S can be used [11].

3.1. Install and set up kubectl

Kubectl is a Kubernetes command-line tool, which allows users to run commands against
Kubernetes clusters. Kubectl provides users with the functions including deploying
applications, inspecting and managing cluster resources, and viewing logs.

The steps to install kubectl on Windows are as follows. First, download release v1.20.0
or use the following curl command (URL should be on one line, without spaces):

curl -LO https://storage.googleapis.com/kubernetes-release/release/
v1.20.0/bin/windows/amd64/kubectl.exe↪

Next, add the binary to the PATH.

On Ubuntu, it can be installed instead with:

sudo snap install --classic kubectl

To test correct installation, we can display to Kubernetes version:

kubectl version --client

9

3.2. Installing Minikube

Minikube runs a local Kubernetes cluster using a virtual machine or using containers
[13].

For Windows users, the steps of installing Minikube are as follows.

If the Windows Package Manager is installed, use the following command to install
minikube:

winget install minikube

If the Chocolatey Package Manager is installed, use the following command:

choco install minikube

Otherwise, you should firstly download and run Windows installer.

For Linux users, there are three download options.

Binary download:

curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64↪

sudo install minikube-linux-amd64 /usr/local/bin/minikube

Debian package:

curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube_latest_amd64.deb↪

sudo dpkg -i minikube_latest_amd64.deb

RPM package:

curl -LO
https://storage.googleapis.com/minikube/releases/latest/minikube-latest.x86_64.rpm↪

sudo rpm -ivh minikube-latest.x86_64.rpm

After installation, from a terminal with administrator access (but not logged in as root),
run the following command to start minikube:

minikube start

10

3.3. Interacting with the cluster

If you already have kubectl installed, you can now use it to access your new cluster:

kubectl get pods -A

Minikube bundles the Kubernetes Dashboard, which allows you to get easily acclimated
to your new environment. The dashboard provides a graphical alternative to the kubectl
command line tool. An example of this is shown in section 6.5. The following command
will start the dashboard and open it in a browser.

minikube dashboard

We can now deploy a simple example. The following commands will create a new de-
ployment that runs the specified image, then create a service that makes this container
accessible on port 8080 of the Minikube virtual machine:

kubectl create deployment hello-minikube --image=k8s.gcr.io/echoserver:1.4
kubectl expose deployment hello-minikube --type=NodePort --port=8080

The deployment will show up when you run:

kubectl get services hello-minikube

The easiest way to access this service is to let minikube launch a web browser for you:

minikube service hello-minikube

Alternatively, use kubectl to forward the port:

kubectl port-forward service/hello-minikube 7080:8080

Now, the application will be available on http://localhost:7080/

11

4. MinIO configuration

MinIO [16] is a high-performance open-source object storage with an S3-compatible
API. It can handle unstructured data such as photos, videos, log files, backups, and
container images with currently the maximum supported object size of 5TB. In our
demo application, we use MinIO to store the images undergoing processing. In the
following, we show how MinIO can be deployed on Kubernetes.

The MinIO server has two modes, standalone and distributed. In standalone mode, there
is a single server process that stores data in a single directory. In this mode, the server
would be started as minio server /data. While standalone mode is useful for local
testing, it does not provide interesting features such as replication and high-availability
[15].

We therefore configure MinIO in its distributed mode [3], which provides additional
features. In particular, data is replicated across multiple servers in order to tolerate
partial failures, thus ensuring high availability. This is similar to a software RAID-5
configuration, except on a service level rather than on a disk controller level and with
different availability guarantees. As a minimal high availability configuration, we will
create a cluster of four MinIO servers with one disk each. For a production deployment
all servers and disks should be on different hardware systems, but for testing all will be
deployed on the same node. The MinIO server might be started in distributed mode
like this, with a glob-like expression that is used to create a list of domain names for the
other servers in the cluster:

minio server http://minio-{0...3}.example.com/data

As the first step to writing the Kubernetes configuration, we must add a Service. Here,
we create a service called minio that exposes port 9000, and will include all apps labeled
with app: minio:

apiVersion: v1
kind: Service
metadata:
name: minio
labels:
app: minio

spec:
clusterIP: None

12

ports:
- port: 9000

name: minio
selector:
app: minio

To create Pods with persistent storage, we will use a StatefulSet as explained in
section 2.5.3. The configuration is similar to a Deployment, but will provide predictable
names for the pods and allows us to add persistent storage with volumeClaimTemplates.
The general structure of the configuration is as follows:

apiVersion: apps/v1
kind: StatefulSet
metadata:
name: minio

spec:
selector: ... # which Pods should be part of the Set
serviceName: minio # Service must exist previously
replicas: 4
template:
metadata: ...
spec: ... # MinIO container configuration

volumeClaimTemplates: ... # storage configuration

The volume claim templates define persistent storage that can be mounted in containers.
Here, this includes the ReadWriteOnce access mode, so that the volume can be mounted
by a single container in read–write mode. We also apply a size limitation to 5GB. We
use the following template called data:

volumeClaimTemplates:
- metadata:

name: data
spec:
accessModes:

- ReadWriteOnce
resources:

requests:
storage: 5Gi

For the pod spec template, we create a container that runs the MinIO server in
distributed mode, exposes port 9000, and mounts a volume as defined above. For
distributed mode, the running MinIO servers must be able to connect to each other.
Here, we have minio containers in a minio service using the default Kubernetes
namespace, so that the domain name of the first server in the StatefulSet will be

13

minio-0.minio.default.svc.cluster.local, as discussed for service discovery in sec-
tion 2.4. In our configuration we also set environment variables with access credentials,
although these could also be provided via the Kubernetes secrets mechanism.

template:
metadata:
labels:

app: minio
spec:
containers:
- name: minio

env:
- name: MINIO_ACCESS_KEY
value: "minio"

- name: MINIO_SECRET_KEY
value: "minio123"

image: minio/minio
args:
- server
- http://minio-{0...3}.minio.default.svc.cluster.local/data
ports:
- containerPort: 9000
Each pod in the Set gets a volume mounted based on this field.
volumeMounts:
- name: data
mountPath: /data

Together, and after adding labels/selectors in the necessary places, we obtain the follow-
ing configuration:

apiVersion: v1
kind: Service
metadata:
name: minio
labels:
app: minio

spec:
clusterIP: None
ports:

- port: 9000
name: minio

selector:
app: minio

apiVersion: apps/v1
kind: StatefulSet

14

metadata:
name: minio

spec:
selector:
matchLabels:

app: minio
serviceName: minio
replicas: 4
template:
metadata:

labels:
app: minio

spec:
containers:
- name: minio
env:
- name: MINIO_ACCESS_KEY
value: "minio"

- name: MINIO_SECRET_KEY
value: "minio123"

image: minio/minio
args:
- server
- http://minio-{0...3}.minio.default.svc.cluster.local/data
ports:
- containerPort: 9000
volumeMounts:
- name: data
mountPath: /data

volumeClaimTemplates:
- metadata:

name: data
spec:

accessModes:
- ReadWriteOnce

resources:
requests:
storage: 5Gi

When this configuration is written to a YAML file, it can be deployed with one com-
mand:

kubectl create -f minio-deployment.yaml

Whereas the kubectl create command will attempt to create new resources which will
only succeed once, the configuration could also be deployed with kubectl apply which
is an idempotent operation.

15

We can inspect the current state of our MinIO storage by accessing our MinIO service
in the Kubernetes cluster. For that, we need to port-forward the MinIO service using
the following command:

kubectl port-forward service/minio-service 8080:9000

With 8080 being the port we will access on localhost and 9000 the port of the MinIO
service.

In Fig. 4.1, the MinIO user interface is shown. In the left part, the available storage
buckets are listed. In the right part, the files in one bucket are listed. Here, the incoming
bucket contains one picture that was just downloaded.

Figure 4.1.: MinIO Dashboard

16

5. Target Application

In this section, we describe the container-based application to be deployed on Kuber-
netes.

Security Warning: The application was developed for demonstration purposes on
virtual machine, and does not contain any authentication. It must not be deployed on
publicly accessible systems.

5.1. REST API

The application is a simple REST API that provides an image processing service: it can
download images from the internet, and then convert them into greyscale.

Specifically, the app will provide the following routes:

GET /
Returns a JSON document with a list of routes.

POST /incoming
Instructs the application to download an image into persistent storage. The request
body must be a JSON document providing an url:

{"url": "https://example.com/image.png"}

The response will be a JSON document that contains the name of the stored image,
which will be needed for the conversion step. For example:

{"path":
"/incoming/56df5bf60b0500d5e9a6e85193ca4b52b21024b8dc5ce6f8c4882bfaacea24b1"}↪

GET /incoming/<name>

Retrieves a previously downloaded image. This can directly use the path from the
previous step.

17

POST /processed
Instructs the application to convert an image to greyscale. The request body
must be a JSON document providing the path to an incoming image, as from the
previous steps.

The response will contain a similar object with a path, this time naming a
processed file:

{"path":
"/processed/011e8ba0a6ace928861845837e84578efbf75382d8c1595bb1aa66e33b621e4f"}↪

GET /processed/<name>
Retrieves a previously processed image. This can directly use the path from the
previous step.

Note: the API accepts requests with a JSON payload only when the content type is set
correspondingly. With cURL, the request for processing an image would look like:

curl -H 'Content-Type: application/json' http://example.com/processed --data
'{"path":"/incoming/56df5bf60b0500d5e9a6e85193ca4b52b21024b8dc5ce6f8c4882bfaacea24b1"}'↪

5.2. Implementation

The REST API was implemented in Python using the Flask web framework [6]. The
conversion is carried out by the ImageMagick convert tool [1], which is invoked as a
separate process. To interface with MinIO storage, the MinIO Python SDK is used
[14].

While the idea of this application and early versions of the code were substantially
based on the OpenFAAS demo by Ellis [5], the code was substantially restructured and
extended. This involved conversion to a simpler REST API, having the API configure
MinIO storage buckets itself, as well as substantial restructuring and modernization of
the Python code.

The full source code for the Python application is shown in appendix A.

5.3. Dockerization

To deploy the application on Kubernetes, it must be first packaged as a container image.
To this end, the following Dockerfile was used:

18

FROM ubuntu:20.04
WORKDIR /app

RUN apt-get update \
&& DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends
\↪
python3 python3-pip imagemagick libmagic1

COPY ./image_app/requirements.txt ./
RUN python3.8 -m pip install -r requirements.txt

copy project
COPY ./image_app ./image_app

EXPOSE 5000

CMD ["python3.8", "./image_app/__main__.py"]

First, this Dockerfile installs required system prerequisites such as Python, ImageMag-
ick, and libmagic for determining the MIME type of the images. To keep the im-
age small, the --no-install-recommends flag excludes optional dependencies. The
DEBIAN_FRONTEND=noninteractive environment variable prevents the package installa-
tion process from expecting human interaction.

Next, the requirements.txt list with Python dependencies is copied into the container
and installed. This includes Flask, the MinIO client SDK, as well as requests for
making external HTTP requests, and python-magic for interacting with libmagic.

Finally, the entire application source code is copied into the container and configured as
the default command when executing the container.

5.4. Distribution via GitLab Container Registry

For using our container image in a Kubernetes cluster, it is necessary to store the image
in a container registry. Instead of creating a public image on Docker Hub, we opted
for using the Container Registry feature of a self-hosted GitLab instance [7]. This has
advantages such as being independent from rate limits during testing, and being able to
automatically build the image in a CI pipeline.

In our case, we used the following .gitlab-ci.yml pipeline to automatically rebuild the
image whenever new code was pushed:

stages:
- build

19

docker-build:
image: docker:latest
stage: build
services:

- docker:dind
before_script:
- echo $CI_BUILD_TOKEN | docker login -u "$CI_REGISTRY_USER"
--password-stdin $CI_REGISTRY↪

script:
- docker build --pull -t "$CI_REGISTRY_IMAGE" .
- docker push "$CI_REGISTRY_IMAGE"

There are no special tricks involved here. The CI job (which has the application
source code already checked out) logs into our private registry using a temporary token,
builds the image, then pushes it into the registry. The $CI_REGISTRY_IMAGE
variable contains an image name that is automatically derived from the Git
repository name. In the following, we will assume that the image name is
pkg.example.com/kube-image-processing.

20

6. Deploying an application on Kubernetes

In this section, we deploy the container image from section 5 on our Minikube Kubernetes
environment. This will involve creating a deployment with multiple pods running this
container, managing secrets to access the private container registry, exposing the API as a
service, and adding an ingress to make the service accessible from outside Kubernetes.

6.1. Creating a Deployment

Our deployment looks as follows.

apiVersion: apps/v1
kind: Deployment
metadata:
name: web-deployment
labels:
app: web.app

spec:
replicas: 2
selector:
matchLabels:

app: web.app
template:
metadata:

labels:
app: web.app

spec:
containers:

- name: web-container
note the private registry – need imagePullSecret
image: pkg.example.com/kube-image-processing
ports:

- containerPort: 5000
env:

- name: minio_hostname
value: minio:9000

- name: minio_access_key
value: minio

- name: minio_secret_key

21

value: minio123
imagePullSecrets:

- name: kube-image-processing-regcred

In this YAML file, a deployment named web-deployment is created, indicated by the
.metadata.name field. The Deployment creates two replicated Pods, indicated by the
.spec.replicas field. The .spec.selector field defines how the Deployment finds
which Pods to manage. Here, we select a label that is defined in the Pod template (app:
web.app).

The template field contains several sub-fields. The Pods are labeled app:
web.app using the .metadata.labels field. The .template.spec field indi-
cates that the Pods run one container: web-container, which runs the image
pkg.example.com/kube-image-processing.

In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a
policy by which to access them. The Service abstraction enables the frontends to be
able to decouple from the backends. A Service in Kubernetes is a REST object, similar
to a Pod. Like all of the REST objects, you can POST a Service definition to the API
server to create a new instance. The name of a Service object must be a valid DNS label
name[18].

6.2. Managing imagePullSecrets

One important aspect of this deployment is the imagePullSecrets field. This would
require authentification for Kubernetes to pull a private container image with a particular
namespace[19]. Our project being developed in a self-hosted GitLab and for private
purposes, we pull the container image created by the CI pipeline of GitLab. We need to
specify the name of the corresponding secret we create in our Kubernetes environment
with the following command:

kubectl create secret docker-registry kube-image-processing-regcred
--docker-server=pkg.example.com/kube-image-processing
--docker-username=USERNAME --docker-password=TOKEN

↪
↪

Besides the name of the secret, 3 parameters are important. The first being the docker-
server wich is simply the container image namespace. A username attached to the GitLab
project with a token needs to be declared for Kubernetes to be able to pull the image. A
token to access the container registry can be generated on the GitLab project space.

Here, we create the secret via the command line interface, to avoid checking in the secrets
in version control. However, the secret is just another configuration object like a Pod,
and could also be defined in a file.

22

6.3. Defining a Service for the REST API

The following configuration is used to define a service. This is just a logical abstraction
over the pods providing the REST API, and does not perform any load balancing by
itself.

apiVersion: v1
kind: Service
metadata:
name: web-service

spec:
selector:
app: web.app

type: NodePort
ports:

- protocol: TCP
port: 80
targetPort: 5000

This specification creates a new Service object named web-service, which targets TCP
port 5000 on any Pod with the app: web.app label. The controller for the Service
selector continuously scans for Pods that match its selector, and then POSTs any updates
to an Endpoint object also named “web-service”.

6.4. Adding an Ingress

For a web application on Kubernetes, the user has to be able to browse to the application
in their web browser. Otherwise, the application is useless. Therefore, we need to set up
access to a pod from outside and this process is referred to as Ingress. Ingress is an API
object that manages external access to the service in a cluster typically HTTP. Usually,
the ingress also provides a load balancer[9].

In our scenario, we first have to add an ingress controller. In Minikube, a builtin NGINX
ingress controller is available but must be explicitly activated:

minikube addons enable ingress

Then, define the Ingress configuration object:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: web-ingress

23

annotations:
some examples use a rewrite here, but that seems to break routing
kubernetes.io/ingress.class: nginx

spec:
rules:

- http:
paths:

- path: /
pathType: Prefix
backend:
service:
name: web-service
port:
number: 80

In the above configuration, all traffic is forwarded to the web-service. More complicated
configurations are also possible, such as mounting the service under a path prefix, or
using virtual hosts, i.e. routing requests based on the domain name of the request.

6.5. Applying the configuration

To make these changes take effect, they can be applied. Again, we can use kubectl
create or kubectl apply depending on the desired semantics:

kubectl create -f imageProcessingDeployment.yml

To check if the deployment has been successful, we can ask Kubernetes to list all resources
of a particular type.

To check if a deployment has been created:

kubectl get deployments

Also, we can check if the pods have been created:

kubectl get pod

The Ingress resource will also contain the IP address under which the application can
be accessed:

kubectl get ingress

We can visualize the current state of our Kubernetes deployment by launching the Ku-
bernetes dashboard which comes bundled with Minikube:

24

minikube dashboard

This will open a browser tab as shown in Fig. 6.1. We can see that our cluster is up to
date and running without failures. From this dashboard, we can access details, status,
and logs of all Kubernetes resources such as Pods and Services.

Figure 6.1.: Kubernetes dashboard

25

7. Scaling

In the previous chapters, we have created a deployment and exposed it publicly via a
Service. Kubenetes also allows us to scale the application, which can efficiently keep up
with user demand when the traffic increases. Scaling can be accomplished by changing
the number of replicas in a Deployment, which will increase the number of Pods.

The number of replicas can be changed by editing the configuration and then running
kubectl apply to bring the cluster into the specified state. Alternatively, the number of
replicas can be set directly via the command line. For example, the following command
will increase the number of REST API servers to three:

kubectl scale --replicas=3 deployment/web-deployment

Of course, running multiple instances of an application requires a mechanism to balance
traffic. In Kubernetes, this can be achieved by Services, which have an integrated
load-balancer to distribute network traffic to all Pods of an exposed Deployment. By
continuously monitoring the running Pods using endpoints, Services can ensure the
traffic is sent only to available Pods.

26

8. Conclusion

In this project, we have explained essential Kubernetes concepts and have applied them
to deploy a simple web application, using a MinIO deployment on the same cluster as
persistent object storage. Kubernetes does introduce substantial up front complexity
through its configuration mechanism (e.g. separating the service concept from deploy-
ments and pods). But once that hurdle is overcome, the well designed object system has
an attractive uniformity to it, and has very good support for scripting and automation.

Of course, a production Kubernetes deployment will necessarily be more involved than
the presented Minikube demo. This would involve deploying a Kubernetes cluster on
multiple machines, and then configuring the deployments to be distributed over those
machines in an appropriate manner. For example, the different MinIO replicas should not
share hardware in order to maximize availability. Given the complexity in maintaining
actual hardware in a cluster, it understandable that managed Kubernetes clusters rented
out by cloud service providers enjoy great popularity.

It is also worth pointing out that the presented application was fairly simple: just two
kinds of services. Larger-scale systems will definitely run into substantial repeated con-
figuration, and will therefore avoid using the raw Kubernetes configuration system. In-
stead, reusable components might be provides as operators that define new configuration
resource types. Higher-level configuration systems like Helm Charts [8] use configura-
tion templates to inject variables at configuration-time, thus making it possible to build
reusable configuration packages.

27

References

[1] Convert Between Image Formats. url: https://www.imagemagick.org/script/
convert.php (visited on 02/04/2021).

[2] Deploy on Kubernetes. url: https : / / docs . docker . com / docker - for - windows /
kubernetes/ (visited on 02/04/2021).

[3] Distributed MinIO Quickstart Guide. url: https://docs.min.io/docs/distributed-
minio-quickstart-guide.html (visited on 02/04/2021).

[4] DNS for Services and Pods. url: https://kubernetes.io/docs/concepts/services-
networking/dns-pod-service/ (visited on 01/15/2021).

[5] Alex Ellis. Get storage for your Severless Functions with Minio & Docker. Jan. 22,
2018. url: https://blog.alexellis.io/openfaas-storage-for-your-functions/ (visited
on 02/04/2021).

[6] Flask. url: https://flask.palletsprojects.com/en/1.1.x/ (visited on 02/04/2021).
[7] GitLab Container Registry. url: https ://docs .gitlab . com/ee/user/packages/

container_registry/ (visited on 02/04/2021).
[8] Helm: THe package manager for Kubernetes. url: https://helm.sh/ (visited on

02/04/2021).
[9] Ingress. url: https://kubernetes.io/docs/concepts/services-networking/ingress/

(visited on 02/03/2021).
[10] Ingress Controllers. url: https : / / kubernetes . io / docs / concepts / services -

networking/ingress-controllers/ (visited on 02/04/2021).
[11] K3S – Lightweight Kubernetes. url: https://k3s.io/ (visited on 02/04/2021).
[12] Kubernetes Components. url: https://kubernetes. io/docs/concepts/overview/

components/ (visited on 12/14/2020).
[13] Minikube. url: https://minikube.sigs.k8s.io/docs/ (visited on 02/04/2021).
[14] minio on PyPI. url: https://pypi.org/project/minio/ (visited on 02/04/2021).
[15] MinIO Quickstart Guide. url: https : / / docs . min . io / docs / minio - quickstart -

guide.html (visited on 02/04/2021).
[16] MinIO: Object Storage for the Era of the Hybrid Cloud. url: https://min. io/

(visited on 02/04/2021).
[17] NGINX Ingress Controller. url: https ://kubernetes .github. io/ ingress - nginx/

(visited on 02/04/2021).

28

https://www.imagemagick.org/script/convert.php
https://www.imagemagick.org/script/convert.php
https://docs.docker.com/docker-for-windows/kubernetes/
https://docs.docker.com/docker-for-windows/kubernetes/
https://docs.min.io/docs/distributed-minio-quickstart-guide.html
https://docs.min.io/docs/distributed-minio-quickstart-guide.html
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://blog.alexellis.io/openfaas-storage-for-your-functions/
https://flask.palletsprojects.com/en/1.1.x/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://docs.gitlab.com/ee/user/packages/container_registry/
https://helm.sh/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://k3s.io/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://minikube.sigs.k8s.io/docs/
https://pypi.org/project/minio/
https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-quickstart-guide.html
https://min.io/
https://kubernetes.github.io/ingress-nginx/

[18] Service. url: https://kubernetes.io/docs/concepts/services-networking/service/
(visited on 02/03/2021).

[19] Using GitLab as a container registry for Kubernetes. url: https : / / juju . is /
tutorials/using-gitlab-as-a-container-registry#7-pull-our-container (visited on
02/02/2021).

29

https://kubernetes.io/docs/concepts/services-networking/service/
https://juju.is/tutorials/using-gitlab-as-a-container-registry#7-pull-our-container
https://juju.is/tutorials/using-gitlab-as-a-container-registry#7-pull-our-container

A. Python source code for REST API

from typing import Optional
from flask import Flask, request, make_response, Response
from minio import Minio # type: ignore
from minio.error import S3Error # type: ignore
from requests import get as http_get
import os
import subprocess
import io
import hashlib
import magic # type: ignore

INCOMING_BUCKET = 'incoming'
PROCESSED_BUCKET = 'processed'

app = Flask(__name__)

@app.route('/')
def handle_index():

return dict(routes=[
dict(path='/incoming', method='POST'),
dict(path='/processed', method='POST'),
dict(path='/incoming/<name>', method='GET'),
dict(path='/processed/<name>', method='GET'),

])

@app.route('/incoming', methods=['POST'])
def add_incoming():

"""
Download the provided URLs and save them in a bucket.

Request object:

- url (str): the URL to download into the bucket.

Response:

- path (str): the path under which the file was stored
"""

30

data = request.get_json()
url = data['url']

name = download_to_minio(MINIO_CLIENT, url)
path = f'/incoming/{name}'

response = make_response(dict(path=path), 201)
response.headers['location'] = path
return response

@app.route('/processed', methods=['POST'])
def add_processed():

"""
Convert the named images to greyscale.

The names must refer to objects in the INCOMING bucket.

Request object:

- path (path): the names of images to be converted in the INCOMING
bucket.

Response object:

- path (str): the path of the object in the PROCESSED bucket
"""
data = request.get_json()
PREFIX = '/incoming/'
incoming_path = data['path']

if not isinstance(incoming_path, str):
return make_response(dict(error=".path must be string"), 400)

if not incoming_path.startswith(PREFIX):
return make_response(

dict(
error=".path must start with `/incoming/`",
path=incoming_path,

),
400,

)

name = incoming_path[len(PREFIX):]

processed_name = convert_image_to_greyscale(MINIO_CLIENT, name)
processed_path = f'/processed/{processed_name}'

response = make_response(dict(path=processed_path), 201)

31

response.headers['location'] = processed_path
return response

@app.route('/incoming/<name>')
def get_incoming(name: str):

"""Download an incoming image."""
with MINIO_CLIENT.get_object(INCOMING_BUCKET, name) as mc_response:

data: bytes = mc_response.read()

return Response(data, mimetype=guess_mime_type(data))

@app.route('/processed/<name>')
def get_processed(name: str):

"""Download an incoming image."""
with MINIO_CLIENT.get_object(PROCESSED_BUCKET, name) as mc_response:

data: bytes = mc_response.read()

return Response(data, mimetype=guess_mime_type(data))

def download_to_minio(mc: Minio, url: str) -> str:
r = http_get(url)
data = r.content

name = derive_name_for_data(data)
mc_put_object(mc, INCOMING_BUCKET, name, data)
return name

def convert_image_to_greyscale(mc: Minio, incoming_name: str) -> str:
with mc.get_object(INCOMING_BUCKET, incoming_name) as mc_response:

data: bytes = mc_response.read()

pipe the image through the ImageMagick `convert` command
proc = subprocess.run(

['convert', '-', '-colorspace', 'Gray', '-'],
input=data,
stdout=subprocess.PIPE, # capture output
check=True, # exception on error

)

processed_data = proc.stdout
processed_name = derive_name_for_data(processed_data)
mc_put_object(mc, PROCESSED_BUCKET, processed_name, processed_data)
return processed_name

32

def mc_put_object(
mc: Minio,
bucket_name: str,
object_name: str,
data: bytes,
mimetype: Optional[str] = None,
**kwargs,

) -> None:

if mimetype is None:
mimetype = guess_mime_type(data)

mc.put_object(bucket_name,
object_name,
io.BytesIO(data),
len(data),
content_type=mimetype,
**kwargs)

def mc_ensure_bucket_exists(mc: Minio, bucket_name: str) -> None:
try:

mc.make_bucket(bucket_name)
except S3Error as err:

if err.code == 'BucketAlreadyOwnedByYou':
return

else:
raise

def derive_name_for_data(data: bytes) -> str:
hasher = hashlib.sha256()
hasher.update(data)
return hasher.hexdigest()

def guess_mime_type(data: bytes) -> str:
return magic.from_buffer(data[:1024], mime=True)

if __name__ == '__main__':
MINIO_CLIENT = Minio(

os.environ['minio_hostname'],
access_key=os.environ['minio_access_key'],
secret_key=os.environ['minio_secret_key'],
secure=False,

)

create buckets, if they don't exist yet

33

mc_ensure_bucket_exists(MINIO_CLIENT, INCOMING_BUCKET)
mc_ensure_bucket_exists(MINIO_CLIENT, PROCESSED_BUCKET)

Start the web app.
It is visible externally,
but that is desired since the app runs in a Docker container
app.run(host='0.0.0.0', port=5000)

34

	Introduction
	Architecture and Concepts of Kubernetes
	Control Plane Components
	Node Components
	Addons
	Service Discovery in Kubernetes
	Kubernetes objects

	Kubernetes setup
	Install and set up kubectl
	Installing Minikube
	Interacting with the cluster

	MinIO configuration
	Target Application
	REST API
	Implementation
	Dockerization
	Distribution via GitLab Container Registry

	Deploying an application on Kubernetes
	Creating a Deployment
	Managing imagePullSecrets
	Defining a Service for the REST API
	Adding an Ingress
	Applying the configuration

	Scaling
	Conclusion
	References
	Python source code for REST API

