

Deployment of a Private/Hybrid Cloud

IaaS OpenStack

Referent: Prof. Dr. Christian Baun
Department of Computer Science and Engineering

Frankfurt University of Applied Sciences
Frankfurt, Germany.

Frankfurt University of Applied Sciences
Course: Cloud Computing

1

 Jathin Sreenivas
Jathin.Sreenivas@stud.fra-uas.de

 Vidya Gopalakrishnarao
vidya.gopalakrishnarao@stud.fra-uas.de

 Vineeth Bhat
vineeth.bhat@stud.fra-uas.de

Abstract

Detailed instruction on deployment of a multi-node OpenStack[1] private cloud infrastructure and
understanding the underlying components of OpenStack. To achieve this deployment, Microstack[2]
will be used which is provided in a snap[13].

Table Of Contents
Introduction 3

OpenStack Architecture 3

Deployment Instructions 4
Prerequisites 4
Install Microstack 4
Setup Control Node 5
Setup Compute Node 5
Setup Multi-node Cluster 5
Login 5
Enable/Disable Microstack 6

Instance Creation 6
Image Creation 6
Instance Creation 10
Security Group 18
Enabling Internet in the instance 22
SSH to the instance 22

OpenStack Client Tools 23

API 27

Web Application Deployment 31

Conclusion 33

References 33

https://www.openstack.org/
https://ubuntu.com/tutorials/microstack-get-started#1-overview
https://snapcraft.io/

I. Introduction
OpenStack is a free open cloud computing platform, deployed as Infrastructure-as-a-Service (IaaS), where one
can provide virtual services and resources as both public and private cloud.

OpenStack Architecture

The OpenStack architecture can be seen in Figure 1, where it shows all the components available in OpenStack
and the nodes within which these components are present.

 Figure 1. OpenStack Architecture

Nova
Nova provides the OpenStack compute service. It supports creating virtual machines, bare metal servers by
using ironic. It runs as a set of daemons on top of existing Linux servers to provide that service.

Cinder
Cinder is the OpenStack block storage service for providing volumes to Nova virtual machines, Ironic bare metal
hosts and containers. Cinder provides many useful advantages namely fault-tolerant, recoverable and open
standards.

Neutron
Neutron provides the OpenStack network connectivity service between interfaces managed by other OpenStack
services like vNICs and nova. It implements the neutron API.

Keystone
Keystone is the identity service used by OpenStack. It provides API client authentication, service discovery, and
distributed multi-tenant authorization by implementing OpenStack’s Identity API.

Frankfurt University of Applied Sciences
Course: Cloud Computing

3

Placement
The placement service in the OpenStack provides an HTTP API for tracking resource provider inventories and
usages to help other services resource allocation and management. Placements also act as web services over
data models.

Glance
Glance is the OpenStack image service which enables users to discover, register, and retrieve virtual machine
data assets that are meant to be used with other services, this currently includes images.

Horizon
Horizon service is the OpenStack dashboard which provides a web based graphical interface to OpenStack
services including Nova, Swift, Keystone, where users can access to manage OpenStack.

II. Deployment Instructions
Architecture

Figure 2 represents the architecture that can be achieved by following the deployment instructions provided
in the document. Here two physical machines are used to host three virtual machines, where one of the
VMs will act as the control node of OpenStack and the other two as compute nodes, thereby achieving
multi-node deployment of OpenStack.

 Figure 2. Architecture

Frankfurt University of Applied Sciences
Course: Cloud Computing

4

Network Topology

The default network topology of OpenStack deployed using Microstack consists of an external network to which
the internal network called test is connected via a Router as shown in Figure 3 and the instances are created in
the test network.

 Figure 3. Network Topology

There are various tools available to deploy an OpenStack infrastructure like Devstack[3], Packstack[4],
Microstack[5]. This document describes the installation using Microstack.

"MicroStack provides a single or multi-node OpenStack deployment which can run directly on your workstation.
Although made for developers to prototype and test, it is also suitable for edge, IoT, and appliances. MicroStack
is an OpenStack in a snap which means that all OpenStack services and supporting libraries are packaged
together in a single package which can be easily installed, upgraded or removed. MicroStack includes all key
OpenStack components: Keystone, Nova, Neutron, Glance, and Cinder." [2]

Prerequisites

To install OpenStack, the following prerequisites needs to be satisfied for a single node,
● A system with 16GB RAM
● Multi-core processor
● Atleast 50GB free disk space
● VMware
● Ubuntu 18.04 LTS or later (https://ubuntu.com/download/desktop)

Create three virtual machines with prerequisites mentioned above, The VMs used here are as follows,

● control-vm
● compute1-vm
● compute2-vm

Note: All the VMs must have connection to the internet, for this the VM's network must be configured to be a
bridged network.

Frankfurt University of Applied Sciences
Course: Cloud Computing

5

https://docs.openstack.org/devstack/latest/
https://www.rdoproject.org/install/packstack/
https://ubuntu.com/openstack/install#single-node-deployment
https://ubuntu.com/tutorials/microstack-get-started#1-overview
https://ubuntu.com/download/desktop

Install Microstack

To install Microstack in Ubuntu using snap, execute the following command in all the three VMs, i.e control-vm,
compute1-vm and compute2-vm. This will download and install the Microstack from the specified channel and
once the install is completed the following output will be displayed.

There are various channels available for example, microstack --devmode --beta, but the current installation is
done using edge.

Setup Control Node

Set up control-vm as a control node by executing the following command in the control-vm.

Setup Compute Node

To initialize compute1-vm as a compute node. Run the following command on the control node to get a token
that allows the compute node to join the control node.

Use the <connection-token-string> in the following command and execute it in the compute1-vm.

Setup Multi-node Cluster

Repeat the steps from compute node setup again on compute2-vm respectively in order to setup compute2-vm
as a compute node.

To check if Microstack is initialized. Open http://localhost in the browser of the control-vm to view the login page
of OpenStack.

To view OpenStack dashboard in the compute node, node the <ip-address> of the control node using ifconfig
and open http://<ip-address> in the browsers of the compute1-vm and compute2-vm.

Frankfurt University of Applied Sciences
Course: Cloud Computing

6

$ sudo snap install microstack --devmode --edge

Output: microstack (edge) ussuri from Canonical✓ installed

$ sudo microstack init --auto --control

Output: microstack_init - INFO - Complete. Marked microstack as initialized!

$ sudo microstack add-compute

Output: Use the following connection string to add a new compute node to the cluster

(valid for 20 minutes from this moment):<connection-token-string>

$ sudo microstack init --auto --compute --join <connection-token-string>

Output: microstack_init - INFO - Complete. Marked microstack as initialized!

http://localhost/

Login

Execute the following command on any of the vm's to get the password to login to OpenStack.

Open OpenStack in a browser as explained above. And login as admin and use the <password> as password to
login.

Enable/Disable Microstack

To disable microstack in the VMs before shutting down the VMs, execute the following command. It will save the
changes made in the OpenStack before disabling.

To enable the microstack again, execute the following command.

This will bring up the microstack with the previously saved state.

III. Instance Creation

Now that a multi node OpenStack has been set up. The following sections explain the steps to create a virtual
machine in OpenStack.

1. Image Creation

Firstly, the image of the OS for the virtual machine must be uploaded. To find the virtual machines images that
works on the OpenStack visit https://docs.OpenStack.org/image-guide/obtain-images.html.The image can be
uploaded to OpenStack in two ways:

1.1. Using the command line:

I. Download Image: Execute the following command in any of the VMs to download

bionic-server-cloudimg-amd64-disk.img.

II. Create Image: Execute the following command to create the image in OpenStack:

Frankfurt University of Applied Sciences
Course: Cloud Computing

7

$ sudo snap get microstack config.credentials.keystone-password

Output: <password>

$ sudo snap disable microstack

$ sudo snap enable microstack

$ wget https://cloud-images.ubuntu.com/bionic/current/bionic-server-cloudimg-amd64.img

$ microstack.openstack image create --container-format bare --disk-format qcow2

--file bionic-server-cloudimg-amd64.img bionic

Frankfurt University of Applied Sciences
Course: Cloud Computing

8

+--+

| Field | Value |

+------------------+---+

| checksum | 2f444b8c4d289747d1909998055e5e75 |

| | |

| container_format | bare |
| | |

| created_at | 2021-01-02T17:28:17Z |

| | |

| disk_format | qcow2 |

| | |

| file | /v2/images/f05a6a5d-0e97-4b5d-8880-9461eedf54bf/file |
| | |

| id | f05a6a5d-0e97-4b5d-8880-9461eedf54bf |

| | |

| min_disk | 0 |

| | |

| min_ram | 0 |

| | |
| name | debian-9-openstack-amd64 |

| | |

| owner | df2d2153582a419da31561593ca7a315 |

| | |

| properties | os_hash_algo='sha512', os_hash_value='65ca22e7625cc5c24001|

| | dd0e31c50042b44976c7dd0235a1d303b20f0bac6b133c44da91e5964e|

| | b019ec19e4c2f9b77e022b4976e8dd6e1aa7e53d38a60fcc19', |
| | os_hidden='False', owner_specified.openstack.md5 = |

| | '2f444b8c4d289747d1909998055e5e75', |

| | owner_specified.openstack.object = |

| | 'images/debian-9-openstack-amd64', |

| | owner_specified.openstack.sha256 = |

| | 'ed3bae5b661a17d5120831584b7aebd06e4290504f3e0463c83f00d |
| | 83cbb4385', self='/v2/images/f05a6a5d-0e97-4b5d-8880- |

| | 9461eedf54bf' |

| | |

| protected | False |

| | |

| schema | /v2/schemas/image |

| | |
| size | 626980864 |

| | |

| status | active |

| | |

| tags | |

| | |

| updated_at | 2021-01-02T17:29:51Z |
| | |

| visibility | shared |

+------------------+---+

III. Image List: To check if the image has been created, execute the following command and check if an

image with the name bionic is created:

 Sample Output:

1.2. Using OpenStack Dashboard:

I. Download Image: Visit https://docs.OpenStack.org/image-guide/obtain-images.html and download

bionic-server-cloudimg-amd64-disk.img which is the image of Ubuntu Bionic Server OS by clicking on
bionic-server-cloudimg-amd64-disk.img as shown in Figure 4.

Figure 4. Download Bionic Server

Frankfurt University of Applied Sciences
Course: Cloud Computing

9

$ microstack.openstack image list

+--------------------------------------+---------+--------+

| ID | Name | Status |

+--------------------------------------+---------+--------+

| 54627c07-61c9-4185-b2ad-f8cea7be4aa5 | bionic | active |

| cbdfad7c-a5be-4335-93bd-c7be28c87a0c | cirros | active |
+--------------------------------------+---------+--------+

https://docs.openstack.org/image-guide/obtain-images.html

II. Create Image: Go to the Images tab under the Compute tab then select Create image as shown in Figure

5.

Figure 5. Create Image

● Now enter the image details as shown in Figure 6 and click Create Image.

Figure 6. Image Details

Troubleshoot: In case there is an error while creating an image: “Request entity too large, nginx”. This is
caused due to nginx limiting the size of the file being uploaded. This can be corrected by increasing the size in
the nginx.conf file. Follow the steps below to correct the error in the control-vm,

Frankfurt University of Applied Sciences
Course: Cloud Computing

10

$ sudo vi /var/snap/microstack/common/etc/nginx/snap/nginx.conf

In the http section, add the following line,

That increases the maximum file size to 32GB. After the file is saved, restart microstack or enable and disable
the microstack.

Or

Once disabled enable using the following command,

III. Image List: Now in the Images tab under the Compute tab, the bionic image should be added as shown
in Figure 7.

Figure 7. Image Created

2. Instance Creation

To create the instance of the image can be done in two ways:

2.1. Using the command line:

I. Create a new Key-pair: Execute the following commands to create a new SSH key which then can be

used to login to the instance

Frankfurt University of Applied Sciences
Course: Cloud Computing

11

client_max_body_size 32768M;

$ sudo snap restart microstack

$ sudo snap disable microstack

$ sudo snap enable microstack

$ ssh-keygen -q -N ""

Note: A file name need not be provided. Press Enter to continue

II. Create key-pair in OpenStack:

III. Create the instance: Execute the following command to create the instance

Frankfurt University of Applied Sciences
Course: Cloud Computing

12

Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):

$ microstack.openstack keypair create --public-key ~/.ssh/id_rsa.pub mykey

+------------------+---+

| Field | Value |

+------------------+---+

|fingerprint | ab:eb:bc:55:9e:c2:4f:0b:ad:f0:62:7b:02:f0:89:e7 |
|name | mykey |

|user_id | cd22ff23ece040bca3d12639abddd726 |

+------------------+---+

$ microstack.openstack server create --flavor <flavor-id> --image <image-id>
--security-group <default-security-group-id> --key-name mykey --nic

net-id=<test-network-id> bionic

+-------------------------------------+---+

| Field | Value |
+-------------------------------------+---+

| OS-DCF:diskConfig | MANUAL |
| OS-EXT-AZ:availability_zone | |

OS-EXT-SRV-ATTR:host	None
OS-EXT-SRV-ATTR:hypervisor_hostname	None
OS-EXT-SRV-ATTR:instance_name	

| OS-EXT-STS:power_state | NOSTATE |
| OS-EXT-STS:task_state | scheduling |

| OS-EXT-STS:vm_state | building |
| OS-SRV-USG:launched_at | None |

| OS-SRV-USG:terminated_at | None |
| accessIPv4 | |

| accessIPv6 | |
| addresses | |

| adminPass | t86Ncrk6GnjS |
| config_drive | |

| created | 2021-01-02T17:46:42Z |
| flavor | m1.small (2) |

hostId	
id	3017568b-8aa4-44da-8e84-9efc0bf9ee79
image	debian-9-openstack-amd64 (f05a6a5d-0e97-4b5d-8880-9461eedf54bf)

| key_name | mykey |
| name | Debianserver |

| progress | 0 |
| project_id | df2d2153582a419da31561593ca7a315 |

| properties | |
| security_groups | name='71b2f9f3-07ed-485f-88ba-d80f04c2eb5a' |

| status | BUILD |
| updated | 2021-01-02T17:46:43Z |

| user_id | cd22ff23ece040bca3d12639abddd726 |
| volumes_attached | |

+-------------------------------------+---+

2.2. Using OpenStack Dashboard:

I. Create the instance: Follow the steps in order to create an instance.

● Provide the name and select the zone available and click on next as shown in Figure 8.

Figure 8. Instance Details

● Select “No” for creating a new volume as we do not need any volume and select the image from

which an instance needs to be created as shown in Figure 9.

Figure 9. Instance Source

● Select the appropriate flavour highlighted in Figure 10. If the flavour is expanded, details about

the flavour will be shown. Depending on the size and capability needed for the instance, flavour
with greater capacity has to be selected.

Frankfurt University of Applied Sciences
Course: Cloud Computing

13

Figure 10. Instance Flavor

● Select the test network as shown in Figure 11, as it is the one to which the instance must be
connected.

Figure 11. Instance Networks

● The default security group will be selected as highlighted in Figure 12, if not select the security
group.

Frankfurt University of Applied Sciences
Course: Cloud Computing

14

Figure 12. Instance Security Groups

● Create the key-pair as it will be needed later to login using SSH, by clicking on “Create Key Pair”,
which is highlighted in Figure 13.

Figure 13. Instance Key Pair

● As shown in Figure 14, a pop-up window will appear where the name of key pair and type must
be selected and then click on “Create Keypair”.

Frankfurt University of Applied Sciences
Course: Cloud Computing

15

Figure 14. Instance Key Pair creation

● Private Key is created as shown in Figure 15. Copy the key and save it in a file for later use and
click on “Done”.

Figure 15. Instance SSH Key Pair Creation

Frankfurt University of Applied Sciences
Course: Cloud Computing

16

● Save the keypair created in a file, for example “bionic-id.pub” in the control-vm. Then change the

permissions of the file to read only by running the following command with the specific access
permissions. This is because the SSH will not accept the file if it's editable or executable.

● Once a new keypair is created click on “Launch instance” as shown in Figure 16 to create the

instance and a new instance will be created.

Figure 16. Instance Key Pair allocation

2.3. Allocating Floating IP:

Once the instance is created, a floating IP has to be allocated to it. The following steps explain how to
associate a floating IP to an instance.

● First create a floating IP by clicking on “Network”, then select “Floating IPs” and then click on
“Allocate IP To Project” on the page as shown in Figure 17.

Fig 17. Floating IP Creation

Frankfurt University of Applied Sciences
Course: Cloud Computing

17

$ chmod 400 <filename>

● A pop-up will appear as shown in Figure 18, to create a floating IP. Choose “external” for the

Pool, Provide a description and then click on Allocate IP. A new floating IP will be created.

Figure 18. Allocate Floating IP

● Now move back to the Instance tab within the Compute Tab. Then click on the drop down on the

provided in the instance you want to associate floating IP to as shown in Figure 19. Then click on
the option of “Associate Floating IP”.

Figure 19. Associate Floating IP to instance

Frankfurt University of Applied Sciences
Course: Cloud Computing

18

● A window “Manage Floating IP Allocations” will open as shown in Figure 20, select the floating IP

created from the drop down and click on “Allocate”. This will allocate the floating IP to the
instance. This will be displayed in the dashboard as shown in Figure 21.

Figure 20. Manage Floating IP Associations

● Once allocated it will be shown in the instance.

Figure 21. Associated Floating IP

3. Security Group

While creating the instance a default security group is assigned to the instance. The purpose of the security
group is to handle the traffic and provide security to the instance. The default security group provided by
OpenStack will restrict the traffic to and from the instance.

For this purpose a new security group that allows the traffic flow to and from the instance is created in the
dashboard and assigned to the instance.

3.1. Go to the Network tab within the Project tab. Then select the "Security Groups". The screen will be
displayed as shown in Figure 22. Then select "Create Security Group" to create a new security group.

Frankfurt University of Applied Sciences
Course: Cloud Computing

19

Figure 22 .Security Groups

3.1.1. Provide a name for the security group. There should be no spaces in the name as shown

in Figure 23, then click on "Create Security Group"

Figure 23 .Security Groups Create

3.1.2. A new window will open to show the rules available in the security group created. Add

new rules to enable the traffic flow. Click on "Add Rule" as shown in Figure 24. A pop-up
window will appear as shown in Figure 25. Create a rule with following specification,

● Rule : Custom TCP Rule
● Direction : Ingress
● Port : Provide a port number using which the application in the instance will be

accessed
Then click on "Add". The Figure 26 shows the adding of new rule in dashboard.

Frankfurt University of Applied Sciences
Course: Cloud Computing

20

Figure 24. Security Group Rules

Figure 25. Adding New Rule

Frankfurt University of Applied Sciences
Course: Cloud Computing

21

Figure 26. New Rule Added

3.1.3. Move to the "Compute" tab and then select "Instance" tab as shown in Figure 27

3.1.4. Select the dropdown at the end of an instance in which the security group has to be
updated as displayed in figure(Instances Security Group). Click on "Edit Security Group".

Figure 27. Instances Edit Security Group

3.1.5. A pop-up window will open as shown in Figure 28. Add the security group that is needed

from left to right and click on “Save”. This will update the security group for the instance.

Frankfurt University of Applied Sciences
Course: Cloud Computing

22

Figure 28. Adding new security group to Instance

4. Enabling Internet in the instance

By default the instance created will not have connection to the internet. To enable this the control node should
act as a router. This can be achieved by executing the following commands in control-vm terminal.

Note: This will not persist if the system is restarted. The commands have to be executed in case the changes
are required after restart of control-vm.

5. SSH to the instance

Once all the necessary configuration is done for the instance. The instance can be connected by SSH to the
instance from the control-vm machine.

To perform this action, use the key-pair file created and saved in the control-vm (explained in Key-pair creation
section) and execute the following command in the control-vm terminal.

For example:

Troubleshooting: Incase if there is an issue that the instance is not booted up correctly. The instance can be
rebuilt using the same image file. This will erase everything from the instance boot up new instance. Following
instructions will explain how to rebuild an instance.

● Click on the drop down provided on the instance you want to rebuild.
● Select the appropriate image file and click on rebuild. This will take a few minutes to rebuild. Once

completed the status will turn to Active.

Frankfurt University of Applied Sciences
Course: Cloud Computing

23

$ sudo iptables -t nat -A POSTROUTING -s 10.20.20.1/24 ! -d 10.20.20.1/24 -j MASQUERADE

$ sudo sysctl net.ipv4.ip_forward=1

$ ssh -i <filename> <user@ip address>

$ ssh -i bionic-id.pub ubuntu@10.20.20.33

IV. OpenStack Client Tools

OpenStack client[17] is a unified command-line client, which enables access to the project API through
easy-to-use commands. The MicroStack CLI syntax is identical to the client delivered by the python-openstack
client package. Following commands will interact with the OpenStack to perform the required actions

1. Service Catalog: OpenStack keystone service catalog allows API clients to dynamically discover and
navigate to cloud services. The service catalog may differ from deployment-to-deployment, user-to-user, and
project-to-project[16]. The service catalog itself is composed of a list of services and each service is
associated with one or more related endpoints. For additional commands -
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/catalog.html

Frankfurt University of Applied Sciences
Course: Cloud Computing

24

$ microstack.openstack catalog list

+-----------+-----------+---+

| Name | Type | Endpoints |

+-----------+-----------+---+

| placement | placement | microstack |

| | | admin: http://192.168.0.110:8778 |

| | | microstack |

| | | public: http://192.168.0.110:8778 |

| | | microstack |

| | | internal: http://192.168.0.110:8778 |

| | | |

| nova | compute | microstack |

| | | internal: http://192.168.0.110:8774/v2.1 |

| | | microstack |

| | | admin: http://192.168.0.110:8774/v2.1 |

| | | microstack |

| | | public: http://192.168.0.110:8774/v2.1 |

| | | |

| neutron | network | microstack |

| | | public: http://192.168.0.110:9696 |

| | | microstack |

| | | admin: http://192.168.0.110:9696 |

| | | microstack |

| | | internal: http://192.168.0.110:9696 |

| | | |

| cinderv3 | volumev3 | microstack |

| | | internal:http://192.168.0.110:8776/v3/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | microstack |

| | | admin: http://192.168.0.110:8776/v3/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | microstack |

| | | public: http://192.168.0.110:8776/v3/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | |

| keystone | identity | microstack |

| | | public: http://192.168.0.110:5000/v3/ |

| | | microstack |

| | | internal: http://192.168.0.110:5000/v3/ |

| | | microstack |

| | | admin: http://192.168.0.110:5000/v3/ |

| | | |

| cinderv2 | volumev2 | microstack |

| | | admin: http://192.168.0.110:8776/v2/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | microstack |

| | | public: http://192.168.0.110:8776/v2/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | microstack |

| | | internal: http://192.168.0.110:8776/v2/c2bd9d300b5340b79ef5e7798b6f77a4 |

| | | |

https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/keystone/latest/contributor/service-catalog.html
https://docs.openstack.org/python-openstackclient/latest/cli/command-objects/catalog.html

2. Compute services[18] - OpenStack Compute is used to host and manage cloud computing systems.

OpenStack Compute interacts with OpenStack Identity for authentication, OpenStack Placement for resource
inventory tracking and selection, OpenStack Image service for disk and server images, and OpenStack
Dashboard for the user and administrative interface. Image access is limited by projects, and by users. For
additional commands - https://docs.openstack.org/nova/latest/admin/services.html

3. Flavors - Flavors[15] define the compute, memory, and storage capacity of nova computing instances. It

specifies the hardware configuration for a server. Execute the following command to list all the flavors. For
additiona commands to create and manage flavors - https://docs.openstack.org/nova/latest/user/flavors.html

4. Floating IP - Each instance has a private, fixed IP address and can also have a public, or floating IP address.

Private IP addresses are used for communication between instances, and public addresses are used for
communication with networks outside the cloud, including the Internet. Execute the following command to
view the floating IP of the instances. For additional commands to manage IP addresses -
https://docs.openstack.org/ocata/user-guide/cli-manage-ip-addresses.html

Frankfurt University of Applied Sciences
Course: Cloud Computing

25

| glance | image | microstack |

| | | internal: http://192.168.0.110:9292 |

| | | microstack |

| | | admin: http://192.168.0.110:9292 |

| | | microstack |

| | | public: http://192.168.0.110:9292 |

| | | |

+-----------+-----------+---+

$ microstack.openstack compute service list

+----+----------------+----------------------------+----------+---------+-------+----------------------------+
| ID | Binary | Host | Zone | Status | State | Updated At |

+----+----------------+----------------------------+----------+---------+-------+----------------------------+
| 3 | nova-conductor | node2 | internal | enabled | up | 2021-01-21T19:26:29.000000 |
| 4 | nova-scheduler | node2 | internal | enabled | up | 2021-01-21T19:26:27.000000 |

7	nova-compute	node2	nova	enabled	up	2021-01-21T19:26:27.000000
9	nova-compute	controller-virtual-machine	nova	enabled	down	2021-01-14T03:11:29.000000
10	nova-compute	compute-virtual-machine	nova	enabled	up	2021-01-21T19:26:21.000000

| 11 | nova-compute | compute2 | nova | enabled | up | 2021-01-21T19:26:28.000000 |
+----+----------------+----------------------------+----------+---------+-------+----------------------------+

$ microstack.openstack flavor list

+----+-----------+-------+------+-----------+-------+-----------+

| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |

+----+-----------+-------+------+-----------+-------+-----------+

| 1 | m1.tiny | 512 | 1 | 0 | 1 | True |

| 2 | m1.small | 2048 | 20 | 0 | 1 | True |

| 3 | m1.medium | 4096 | 20 | 0 | 2 | True |

| 4 | m1.large | 8192 | 20 | 0 | 4 | True |

| 5 | m1.xlarge | 16384 | 20 | 0 | 8 | True |

+----+-----------+-------+------+-----------+-------+-----------+

$ microstack.openstack floating ip list

https://docs.openstack.org/nova/latest/install/index.html
https://docs.openstack.org/nova/latest/admin/services.html
https://docs.openstack.org/nova/latest/user/flavors.html
https://docs.openstack.org/nova/latest/user/flavors.html
https://docs.openstack.org/ocata/user-guide/cli-manage-ip-addresses.html

5. Hypervisor - OpenStack Compute supports many hypervisors such as KVM, LXC, QEMU etc.[19]

6. Image - A virtual machine image is a single file which contains a virtual disk that has a bootable operating

system installed on it. The Following command retrieves the list of images. To get further details about a
single image, use openstack image show <image-name> command[20].

7. Keypair - After launching a virtual machine, a key pair has to be injected, which allows SSH access to the

instance. A single key pair can be used for multiple instances that belong to that project. Execute the
following command to list the key pair.

8. Networks - OpenStack Networking handles the creation and management of a virtual networking

infrastructure, including networks, switches, subnets, and routers for devices managed by the OpenStack

Frankfurt University of Applied Sciences
Course: Cloud Computing

26

+------------------------------------+-------------------+----------------+------------------------------------+------------------------------------+--------------------------------+

| ID |Floating IP Address|Fixed IP Address| Port |Floating Network | Project |

+------------------------------------+-------------------+----------------+------------------------------------+------------------------------------+--------------------------------+

|a3845b2b-5b84-4979-bed6-74e213fd0915|10.20.20.53 | 192.168.222.66 |51b1969b-1de6-4225-8592-bdbc05d51092|2d039649-b494-40ef-b02c-028dcc7f2417|c2bd9d300b5340b79ef5e7798b6f77a4|

+--------------------------------------+---------------------+------------------+--------------------------------------+----------------------------+--------------------------------+

$ microstack.openstack hypervisor list

+----+----------------------------+-----------------+---------------+-------+

| ID | Hypervisor Hostname | Hypervisor Type | Host IP | State |

+----+----------------------------+-----------------+---------------+-------+

| 1 | node2 | QEMU | 192.168.0.110 | up |
| 2 | controller-virtual-machine | QEMU | 192.168.0.104 | down |

| 3 | compute-virtual-machine | QEMU | 192.168.0.105 | up |

| 4 | compute2 | QEMU | 192.168.0.106 | up |

+----+----------------------------+-----------------+---------------+-------+

$ microstack.openstack image list

+--------------------------------------+--------+--------+

| ID | Name | Status |
+--------------------------------------+--------+--------+

| 54627c07-61c9-4185-b2ad-f8cea7be4aa5 | bionic | active |

| cbdfad7c-a5be-4335-93bd-c7be28c87a0c | cirros | active |

+--------------------------------------+--------+--------+

$ microstack.openstack keypair list

+------------+---+

| Name | Fingerprint |

+------------+---+
| microstack | 3d:43:ec:21:37:0a:11:21:e2:ae:b1:3d:6f:1d:ae:db |

| myKey | 9c:49:6e:fc:36:fa:39:3a:47:47:48:03:7f:f0:a0:f0 |

| newKey | cb:80:5a:a9:5b:79:af:e4:46:c0:20:24:3d:03:3c:81 |

| testkey | 22:68:e6:7d:bf:6b:91:41:61:42:dc:46:03:e5:79:fd |

+------------+---+

https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html
https://docs.openstack.org/image-guide/index.html

Compute service (nova). A network is an isolated Layer 2 networking segment. There are two types of
networks, project and provider networks. Project networks are fully isolated and are not shared with other
projects. Only an OpenStack administrator can create provider networks. Networks can be connected via
routers. Execute the following commands to list the networks. For additional commands to manage networks -
https://docs.openstack.org/python-openstackclient/pike/cli/command-objects/network.html

9. Security Groups - Security groups are sets of IP filter rules that are applied to all project instances, which

define networking access to the instance. Group rules are project specific; project members can edit the
default rules for their group and add new rule sets.

10. Server - A server[14] is a virtual machine (VM) instance, a physical machine or a container. Execute the

following command to view the list of servers. For additional commands to create and manage servers -
https://docs.openstack.org/python-openstackclient/pike/cli/command-objects/server.html#server-list

Additional commands can be found by executing this command,

Frankfurt University of Applied Sciences
Course: Cloud Computing

27

$ microstack.openstack network list

+--------------------------------------+----------+--------------------------------------+

| ID | Name | Subnets |

+--------------------------------------+----------+--------------------------------------+

| 2d039649-b494-40ef-b02c-028dcc7f2417 | external | dfe00b34-077e-49e6-b254-227ed175e522 |

| 9a96c71e-2ea8-4b57-8fce-0ccc9016e319 | test | bfbfc303-0281-4d6d-b501-0da5572eed1a |

+--------------------------------------+----------+--------------------------------------+

$ microstack.openstack security group list

+--------------------------------------+-----------------+------------------------+----------------------------------+------+
| ID | Name | Description | Project | Tags |

+--------------------------------------+-----------------+------------------------+----------------------------------+------+
| 9ee20efb-33e6-4a26-9faa-4e906146a713 | default | Default security group | c2bd9d300b5340b79ef5e7798b6f77a4 | [] |

| d8eb33c0-eaf5-4ed9-92f3-0a22e5be7b54 | mySecurityGroup | | c2bd9d300b5340b79ef5e7798b6f77a4 | [] |

| de059903-71ab-416b-970c-08f8681118d9 | default | Default security group | d6d822f4ef67469fbf64bc4b8379461c | [] |
+--------------------------------------+-----------------+------------------------+---+

$ microstack.openstack server list

+--------------------------------------+--------+---------+----------------------------------+--------+----------+
| ID | Name | Status | Networks | Image | Flavor |
+--------------------------------------+--------+---------+----------------------------------+--------+----------+

| 35479735-8b26-447d-a07f-d97c65ff0397 | bionic | SHUTOFF | test=192.168.222.66, 10.20.20.53 | bionic | m1.small |
+--------------------------------------+--------+---------+----------------------------------+--------+----------+

$ microstack.openstack command list

https://docs.openstack.org/api-guide/compute/server_concepts.html

V. API

● Install CURL using the following command:

● Environment Variables:

● API to get the auth token:

Output :

Frankfurt University of Applied Sciences
Course: Cloud Computing

28

$ sudo apt install curl

$ export OS_PROJECT_NAME=admin
$ export OS_USERNAME=adminAPI
$ export OS_PASSWORD=<password>
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PROJECT_DOMAIN_NAME=Default
$ export OS_AUTH_URL=http://192.168.64.2:5000/v3/
$ export OS_HORIZON_URL=http://192.168.64.2:8774/v2.1/

$ curl -v -s -X POST $OS_AUTH_URL/auth/tokens?nocatalog -H "Content-Type:

application/json"

-d '{ "auth": { "identity": { "methods": ["password"],"password": {"user":
{"domain": {"name": "'"$OS_USER_DOMAIN_NAME"'"},"name": "'"$OS_USERNAME"'",

"password": "'"$OS_PASSWORD"'"} } },
"scope": { "project": { "domain": { "name": "'"$OS_PROJECT_DOMAIN_NAME"'" },

"name":

"'"$OS_PROJECT_NAME"'" } } }}' \ | python3 -m json.tool

* Trying 192.168.0.110:5000...

* TCP_NODELAY set
* Connected to 192.168.0.110 (192.168.0.110) port 5000 (#0)
> POST /v3//auth/tokens?nocatalog HTTP/1.1

> Host: 192.168.0.110:5000

> User-Agent: curl/7.68.0

> Accept: */*

> Content-Type: application/json

> Content-Length: 252

>

} [252 bytes data]

* upload completely sent off: 252 out of 252 bytes

* Mark bundle as not supporting multiuse

< HTTP/1.1 201 CREATED

< Server: nginx/1.19.0

< Date: Thu, 21 Jan 2021 19:29:53 GMT

< Content-Type: application/json

< Content-Length: 648

< Connection: keep-alive

< X-Subject-Token: gAAAAABgCdYwP0u9ZfF9TVLBrG9h4I8brbaUpcYWlk3lG2eh3p7Og2R9bABLd34jHpJtNTkj36OIzp_rR-

< MNPsbfhPjKqMntsrI99dmsLeY6xP0dFrH0NPthyF2Pj7xXYk4Jb5elxsBVYGaf889ToBJSDiC4XyZVac-Y

< pGVXkznWuh-Z04AlGSQ

< Vary: X-Auth-Token

● Copy the X-Subject-Token from the response header and export to the environment variable as

● Copy the project id (project/id) from the response JSON and export to the environment variable as

● API to retrieve flavors

Frankfurt University of Applied Sciences
Course: Cloud Computing

29

< x-openstack-request-id: req-44038b92-f718-437c-8662-be6f2c04c09a

<

{ [648 bytes data]

* Connection #0 to host 192.168.0.110 left intact
* Closing connection -1

{

 "token": {
 "methods": [
 "password"
],

 "user": {
 "domain": {
 "id": "default",
 "name": "Default"
 },

 "id": "c543b521d98d494d85fc362c9185cd84",
 "name": "admin",
 "password_expires_at": null
 },

 "audit_ids": [
 "KsooIzFzTVqQy2I0WwCY6g"
],

 "expires_at": "2021-01-21T20:29:52.000000Z",
 "issued_at": "2021-01-21T19:29:52.000000Z",
 "project": {
 "domain": {
 "id": "default",
 "name": "Default"
 },

 "id": "c2bd9d300b5340b79ef5e7798b6f77a4",
 "name": "admin"
 },

 "is_domain": false,
 "roles": [
 {

 "id": "d710ac3171e24af39f5e19758d1def8b",
 "name": "member"
 },

 {

 "id": "ba0fb7c382924ad39dd5c909c7ee9343",
 "name": "admin"
 },

 {

 "id": "dbcadf4ca8d84962b252a10f382b85f2",
 "name": "reader"
 }

]

 }

}

$ export OS_TOKEN=<X-Subject-Token>

$ export OS_PROJECT_ID=<project-id>

Output:

Frankfurt University of Applied Sciences
Course: Cloud Computing

30

$ curl -s -H "X-Auth-Token: $OS_TOKEN" $OS_HORIZON_URL/$OS_PROJECT_ID/flavors |

python3 -m json.tool

{
 "flavors": [
 {

 "id": "1",
 "name": "m1.tiny",
 "links": [
 {
 "rel": "self",
 "href": "http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/1"
 },
 {

 "rel": "bookmark",
 "href": "http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/1"
 }

]
 },
 {

 "id": "2",
 "name": "m1.small",
 "links": [
 {
 "rel": "self",
 "href": "http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/2"
 },
 {

 "rel": "bookmark",
 "href": "http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/2"
 }

]
 },
 {

 "id": "3",
 "name": "m1.medium",
 "links": [
 {
 "rel": "self",
 "href": "http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/3"
 },
 {

 "rel": "bookmark",
 "href": "http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/3"
 }

]
 },
 {

 "id": "4",
 "name": "m1.large",
 "links": [
 {
 "rel": "self",
 "href": "http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/4"
 },
 {

 "rel": "bookmark",
 "href": "http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/4"
 }

]
 },

● API to retrieve images

Output:

Frankfurt University of Applied Sciences
Course: Cloud Computing

31

 {
 "id": "5",
 "name": "m1.xlarge",
 "links": [
 {

 "rel": "self",
 "href": "http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/5"
 },

 {
 "rel": "bookmark",
 "href": "http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/flavors/5"
 }
]
 }

]
}

$ curl -s -H "X-Auth-Token: $OS_TOKEN" $OS_HORIZON_URL/$OS_PROJECT_ID/images |
python3 -m json.tool

{

 "images": [
 {
 "id": "54627c07-61c9-4185-b2ad-f8cea7be4aa5",
 "name": "bionic",
 "links": [
 {
 "rel": "self",

"href":

"http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/images/54627c07-61c9-4185-b2ad-f8cea7be4aa
5"
 },

 {
 "rel": "bookmark",

"href":

"http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/images/54627c07-61c9-4185-b2ad-f8cea7be4aa5"
 },

 {
 "rel": "alternate",
 "type": "application/vnd.openstack.image",
 "href": "http://192.168.0.110:9292/images/54627c07-61c9-4185-b2ad-f8cea7be4aa5"
 }
]

 },
 {
 "id": "cbdfad7c-a5be-4335-93bd-c7be28c87a0c",
 "name": "cirros",
 "links": [
 {
 "rel": "self",

"href":

"http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/images/cbdfad7c-a5be-4335-93bd-c7be28c87a0
c"
 },

 {
 "rel": "bookmark",

"href":

"http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/images/cbdfad7c-a5be-4335-93bd-c7be28c87a0c"
 },

● API to retrieve servers

Output:

For more APIs:
https://docs.openstack.org/api-quick-start/index.html#current-api-versions

VI. Web Application Deployment
The instance created can be used to deploy a web application or any other PaaS. Following instructions will
explain the deployment of a web application that provides a simulation on real-time scheduling algorithms[11].

1. Download the source code using the following command.

2. Install pip3 using python3. Before installing pip3 update the ubuntu by running following command,

Frankfurt University of Applied Sciences
Course: Cloud Computing

32

 {
 "rel": "alternate",
 "type": "application/vnd.openstack.image",
 "href": "http://192.168.0.110:9292/images/cbdfad7c-a5be-4335-93bd-c7be28c87a0c"
 }

]
 }
]

}

$ curl -s -H "X-Auth-Token: $OS_TOKEN" $OS_HORIZON_URL/$OS_PROJECT_ID/images |

python3 -m json.tool

{

 "servers": [
 {

 "id": "35479735-8b26-447d-a07f-d97c65ff0397",
 "name": "bionic",
 "links": [
 {

 "rel": "self",
"href":

"http://192.168.0.110:8774/v2.1/c2bd9d300b5340b79ef5e7798b6f77a4/servers/35479735-8b26-447d-a07f-d97

c65ff0397"

 },

 {

 "rel": "bookmark",
"href":

"http://192.168.0.110:8774/c2bd9d300b5340b79ef5e7798b6f77a4/servers/35479735-8b26-447d-a07f-d97c65ff

0397"

 }

]

 }

]

}

$ git clone https://github.com/bhatvineeth/SchedulingSimulation.git

$ sudo apt-get update

https://docs.openstack.org/api-quick-start/index.html#current-api-versions
https://github.com/bhatvineeth/SchedulingSimulation

Now install pip3 by running the following command,

3. Install a virtual environment.

4. Change the directory to SchedulingSimulator app

5. Install Virtual env within this folder by executing following command

6. To create a virtual env, it has to find the pyhton3 files so execute this to find the python3 source folder,

7. Now execute the below command using the python3 path obtained in the previous step.

8. Install django

9. Change the directory to SchedulingSimulator

10. In settings.py edit the ALLOWED_HOSTS: [] to ALLOWED_HOSTS: [<ip address of inscance>] then

save the file.

11. Execute manage.py to start the server. Note that this port 8000 must be added in the security groups
while creating a new security group.

12. Application will be available on localhost:8000 in the browser of control-vm.

To know more about the application and its usage refer the following literature,
https://github.com/bhatvineeth/SchedulingSimulation/blob/master/Documentation/Paper/Scheduling_Sim
ulator.pdf

Frankfurt University of Applied Sciences
Course: Cloud Computing

33

$ sudo apt install python3-pip

$ pip3 install virtualenv

$ cd SchedulingSimulation/SchedulingSimulator/

$ sudo apt install virtualenv

$ which python3

$ virtualenv env -p <python3 path>
$. env/bin/activate

$ pip3 install django

$ cd SchedulingSimulator

$ python manage.py runserver 0.0.0.0:8000

https://github.com/bhatvineeth/SchedulingSimulation/blob/master/Documentation/Paper/Scheduling_Simulator.pdf
https://github.com/bhatvineeth/SchedulingSimulation/blob/master/Documentation/Paper/Scheduling_Simulator.pdf

VII. Conclusion

To conclude, OpenStack is a good open source Infrastructure as a Service (IaaS), that provides huge potential
in scalability, by allowing a large number of nodes interconnected to provide the necessary services. Also,
providing flexibility by having modular components that interact to form the final infrastructure. These modular
components can be added or removed when the necessity arises. In this document it shows the deployment of
OpenStack using Microstack, through which one can easily deploy the infrastructure. Micostack deploys
OpenStack with minimal system requirements and also handles the burden of configuration of OpenStack and
its network before deployment. The main intention of Microstack is to provide an OpenStack environment in a
developer’s system for testing or development purposes and also support IoT applications. Microstack is a part
of Canonical and it only works on Ubuntu. There are various tools available that help in deployment like
Devstack. Which is provided by OpenStack for deployment. The downside of this is it takes a considerable
amount of time to deploy and the configurations are to be done manually and requires the system to be highly
capable.

VIII. References
[1] “OpenStack: Open Source Cloud Computing Infrastructure” - https://www.openstack.org/, Accessed On:

29/01/2021
[2] “Microstack Overview” - https://ubuntu.com/tutorials/microstack-get-started#1-overview/, Accessed On:

29/01/2021
[3] “OpenStack Docs: DevStack Overview” - https://docs.openstack.org/devstack/latest/, Accessed On:

29/01/2021
[4] “Packstack — RDO” - https://www.rdoproject.org/install/packstack/, Accessed On: 29/01/2021
[5] “Single-node OpenStack deployment” - https://ubuntu.com/openstack/install#single-node-deployment/,

Accessed On: 29/01/2021
[6] “Get Ubuntu Server” - https://ubuntu.com/download/server/, Accessed On: 29/01/2021
[7] “Fedora” - https://getfedora.org/, Accessed On: 29/01/2021
[8] “CentOS Download” - https://www.centos.org/download/, Accessed On: 29/01/2021
[9] “openSUSE TOOLS” - https://www.opensuse.org/, Accessed On: 29/01/2021
[10]“Scheduling Simulator Codebase Github” - https://github.com/bhatvineeth/SchedulingSimulation/,

Accessed On: 29/01/2021
[11]“Scheduling Simulator Report” -

https://github.com/bhatvineeth/SchedulingSimulation/blob/master/Documentation/Paper/Scheduling_Sim
ulator.pdf, Accessed On: 29/01/2021

[12]“Snap” - https://snapcraft.io/, Accessed On: 29/01/2021
[13]“OpenStack Server concepts” - https://docs.openstack.org/api-guide/compute/server_concepts.html/,

Accessed On: 30/01/2021
[14]“OpenStack Flavors” - https://docs.openstack.org/nova/latest/user/flavors.html/, Accessed On:

30/01/2021
[15]“Service Catalog Overview” -

https://docs.openstack.org/keystone/latest/contributor/service-catalog.html/, Accessed On: 30/01/2021
[16]“OpenStack Client” - https://docs.openstack.org/python-openstackclient/latest/, Accessed On:30/01/2021
[17]“OpenStack Compute Service” - https://docs.openstack.org/nova/latest/install/index.html, Accessed On:

30/01/2021
[18]“OpenStack Hypervisors” - https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html,

Accessed On: 30/01/2021
[19]“OpenStack Virtual Machine Image Guide” - https://docs.openstack.org/image-guide/index.html,

Accessed On: 30/01/2021
[20]“OpenStack Networking” - https://docs.openstack.org/mitaka/networking-guide/intro.html, Accessed On:

30/01/2021
[21]“Manage project security” - https://docs.openstack.org/nova/latest/admin/security-groups.html, Accessed

On: 30/01/2021

Frankfurt University of Applied Sciences
Course: Cloud Computing

34

