
1

 Supervised by: Prof. Dr. Christian Baun

Using Terraform and Ansible

INFRASTRUCTURE

AS CODE

By (Group 9):

Faiz Usmani 1323197

Parag Tambalkar 1322596

Pranay Raman 1321759

Shubham Girdhar 1323003

By (Group 9) :

Faiz Usmani 1323197

Parag Tambalkar 1322596

Pranay Raman 1321759

Shubham Girdhar 1323003

By (Group 9) :

Faiz Usmani 1323197

Parag Tambalkar 1322596

Pranay Raman 1321759

Shubham Girdhar 1323003

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Cloud Computing Project

Infrastructure as Code using Terraform and Ansible

2

Contents

1. Introduction .. 3

1.1 Terraform – The Maestro Provisioner ... 4

1.2 Ansible – The Configuration Expert .. 5

1.3 Azure and Cloud Shell – Cloud and Command Line Specialists 6

1.4 Visual Studio 2019 – The Pro IDE .. 6

2. Deployment Plan .. 7

3. Provisioning Infrastructure with Terraform 8

3.1 Understanding Terraform Workflow ... 8

3.2 Prerequisites ... 9

3.3 Understanding the Terraform code .. 10

3.4 Bringing up the Infrastructure with Terraform .. 18

4. Running IIS using Ansible .. 20

4.1 Understanding the Ansible Code ... 20

4.2 Invoking Ansible Playbook .. 23

5. Deploying the Web Application ... 26

6. Conclusion and Final Remarks ... 31

7. References .. 32

Infrastructure as Code using Terraform and Ansible

3

1. Introduction

Before the concept of DevOps, the deployment of applications into various environments was a daunting

task requiring time, effort, and skills. A separate Operations team with extensive knowledge and

experience of various servers, Virtual Machines (VMs), and host Operating System’s (OS) used to

manually access the servers and configure them according to the requirements of the application. In the

case of small organizations usually, developers of the application were in charge of doing this (well, not

a good sight to imagine).

Now, thanks to the advancements in the field of cloud and DevOps in recent years, these tasks are

becoming less complex. The virtual servers on cloud and onsite physical servers can be provisioned and

configured easily in minutes just by executing a script written in a user-friendly language (mostly

YAML). This is possible by a concept known as Infrastructure as Code (IaC) which allows us to deal

with servers, networks, security groups, databases, etc. as if they are a part of the software. The leading

solutions in the market nowadays for IaC are provided by Terraform, Ansible, Chef, Puppet, etc. [1].

Let us look at some of the advantages offered by Infrastructure as Code:

1. Code Once, Iterate Multiple times: As the configuration files are coded initially for creating

and configuring the environment for an application. These files can be used to spin up multiple

environments (for example testing, production, staging, etc.) and can also be used to deploy

similar environments for applications with the same OS and package requirements. They can also

be tweaked a little bit if the configurations change and Voila! We have a new environment setup

and ready to go.

2. Immune to Human error: As before, the infrastructures were configured manually and by

different people, there used to be errors known as infrastructure deviations. These were minor

differences in the configuration of environments due to the manual process of deployment by

different people on multiple servers. Now, because of using scripts for provisioning and

configurations, this process is standardized.

3. Scaling, a piece of cake!: When there is high incoming traffic in your application at a particular

time of the day or year, you can create new environments with just a few clicks and commands

and deploy multiple instances of your application. Similarly, you can bring down environments

when there is less traffic leading to cost efficiency. Scaling environments up and down is as easy

as it gets.

Now, let us have some basic understanding of the tools we will be using in this project.

Infrastructure as Code using Terraform and Ansible

4

1.1 Terraform – The Maestro Provisioner

Think of Terraform as a Master Civil Engineer/Builder, you will provide him with what you need, and

he will go ahead and build it for you in a matter of minutes. Also, before building the actual thing he will

inform and take your consent about the plan he is going to implement.

In the language of Software development – “Terraform is a tool for building, changing, and versioning

infrastructures safely and efficiently. Terraform can manage existing and popular service providers as

well as custom in-house solutions” [2].

There are three main parts in Terraform project:

1. main.tf – In the case of simple projects this is the file that has all the code to build up infrastructure,

it contains all the modules and data sources that are needed. If the project is bigger and complex, the

files are logically split based on the functionalities.

2. variables.tf – It stores the declarations for the variables which are referenced in main.tf.

3. terraform.tfvars – It is used to define the default values of the variables.

The configuration files written in HashiCorp Configuration Language (HCL) describe the resources and

components which are required to run your application. Terraform will then go ahead and produce an

execution plan describing the steps to reach the desired state, and then goes ahead and executes it [3]. If

there are changes that are applied to the configuration files, terraform sees what is changed and based on

it creates incremental execution plans.

Terraform is supported by multiple cloud providers and the infrastructure that can be provisioned by it

includes application instances, networking resources, databases, SaaS features, DNS items, etc.

Also, the main difference between Terraform and the other IaC tools is that it does not re-provision

resources that are successfully provisioned if it encounters them in some future execution of the

configuration script. Instead, it focuses on the new additions and the failed resources from the previous

executions. Working of terraform is shown in Figure 1.

Figure 1: https://www.terraform.io/_next/static/images/how-terraform-works-33c33a9c82bf5aef0bf9f75eb5f5f9b2.svg

https://www.terraform.io/_next/static/images/how-terraform-works-33c33a9c82bf5aef0bf9f75eb5f5f9b2.svg

Infrastructure as Code using Terraform and Ansible

5

1.2 Ansible – The Configuration Expert

Now, after having the basic infrastructure, you find out that it requires some modifications and touchups.

For this Ansible is your go-to-guy. Think of it as an experienced craftsman.

Although Ansible is a tool that can do a lot more than configuring existing infrastructures. It is primarily

known for the configuration tasks as it is very easy to do it using Ansible. A whole network of computers

can be configured using Ansible at once.

The primary architecture of Ansible is shown in Figure 2 which consists of two kinds of nodes – Control

and Managed nodes. A Control node is the main system that has Ansible installed on it, while the

managed nodes are the clients that are connected to the Control node using SSH (secure shell) or any

other authentication techniques. The Control node has a host inventory file containing the addresses of

the Managed nodes.

The Control node sends configuration programs which are known as modules to the Managed nodes.

These programs are saved as Ansible playbooks (name of the Ansible specific configuration files written

in YAML) on the Control node. These modules compare the states of various Managed nodes to what is

mentioned in the modules, finds the mismatch, and then updates the state of the managed nodes [4].

Figure 2: Ansible_ov.png (904×602) (s81c.com)

https://1.cms.s81c.com/sites/default/files/2018-11-22/Ansible_ov.png

Infrastructure as Code using Terraform and Ansible

6

1.3 Azure and Cloud Shell – Cloud and Command Line Specialists

Azure is a cloud computing service provider by Microsoft. It offers a multitude of services including

Software as a Service, Infrastructure as a Service, Platform as a Service, etc. In the context of our project,

it will provide space and resources for our infrastructure to be built in it. The Virtual Machines which

will be built by Terraform and configured by Ansible will be hosted on Azure Cloud.

Alas! Like most of the things in the world, it is not free to use but comes with a flexible charging plan.

If you have a student email ID it will provide you with a credit of 100 dollars for a period of 1 year and

for a general email ID it gives credit of 200 dollars for 1 month. On a side note, do not forget to clean

up the resources after successfully executing and testing your project, because keeping them on Azure

for a long period of time may turn out to be a costly affair.

Here is the link to get you started:

Azure for Students – Free Account Credit | Microsoft Azure

Azure Cloud Shell is a browser integrated shell that is used to manage resources on Azure. You can use

PowerShell, Bash, or Azure CLI (a cross-platform command-line tool that can be used to run commands

on the resources present in Azure Cloud) on it. Head over to the Azure portal and click on the command

line icon at the top near the search bar to get going.

1.4 Visual Studio 2019 – The Pro IDE

A powerful Integrated Development Environment that can be used to develop software and programs

for windows, web apps, services, etc. The reason for choosing it was because of the ease by which the

ASP.NET web apps can be published on Azure VMs through its interactive User Interface.

Just make sure while installing Visual Studio 2019, these workloads are also installed – “ASP.NET and

web development”, “Azure development”, “.NET Core cross-platform development”. If Visual Studio

2019 is already installed, make sure these workloads are present by opening the “Visual Studio Installer”

through windows search and then clicking on the “Modify” button and checking the workloads.

Note – The email id used to sign-in into Visual Studio and Azure portal must be the same as the email

id used for signing in for Windows. Otherwise, during publishing the apps into VMs, some errors may

occur due to permissions issues. If the email ids are different, the id which is used in the Azure portal

should be added into the appropriate permissions of the folder where the ASP.NET app is present.

https://azure.microsoft.com/en-us/free/students/

Infrastructure as Code using Terraform and Ansible

7

2. Deployment Plan

Now, after having some basic understanding of the tools and technologies used in this project. Let us

have a look at the design of the project depicted in Figure 3 which we are going to implement [5].

1. The user will login into the Azure portal and use Azure Cloud Shell to run Terraform and Ansible

scripts.

2. Terraform scripts are run and a resource group with two Windows VMs having proper network

configurations are created.

3. After the successful creation of VMs, IIS (Internet Information Services – a web server software

package specifically designed for windows) and some other modules are configured on both VMs

using their IP’s. They are required to run an ASP.NET web app on a Windows server.

4. A self-created web app or app cloned from the provided GitHub link is published on both VMs

using Visual Studio 2019 and accessed through the public IP of the load balancer.

Figure 3: Deployment Plan

Infrastructure as Code using Terraform and Ansible

8

3. Provisioning Infrastructure with Terraform

This section provides information of Terraform workflow, configuration code and how

to spin up the Infrastructure using Terraform.

3.1 Understanding Terraform Workflow

Workflow of Terraform to build the cloud infrastructure will follow the steps shown in the block diagram

shown in Figure 4. The description of each step in the workflow is provided below [6],

1. Scope: In this step, we identify the resources required for the project. In this particular project we

require resources such as Virtual Machines, resource groups, network security groups, load balancer,

etc.

2. Author: In this step, we need to create a configuration of identified resources using HCL. A detailed

overview of this process is provided in the ‘Bringing up the Infrastructure with Terraform’ sub-

section of this report.

3. Git Repository: After creating terraform configuration for the given project we need to add these

files in the Git repository of our project.

4. Azure: We need to link the project repository at GitHub with the Azure account using which we are

deploying our project. Detailed information about this process is mentioned in the ‘Deploying the

Web Application’ section of the report.

5. Initialize: To download the appropriate provider plug-ins for the project and initialize the working

directory with Terraform configuration files, we need to run terraform init command in the project

directory containing terraform configuration files.

6. Plan & Apply: Execution of terraform plan command creates execution plan to verify infrastructure

creation process. Also, terraform performs a refresh in order to determine the necessary actions to be

performed to achieve the expected state of the infrastructure. This command helps us to know in

advance that the infrastructure being created is matching with the expected infrastructure. After

successful verification of the execution plan, we need to run terraform apply command to build real

infrastructure with specified resources. It also creates a state file that stores the existing state of

infrastructure and compares configuration modification files with existing configuration of

deployment environment.

Figure 4: Terraform Workflow

Infrastructure as Code using Terraform and Ansible

9

3.2 Prerequisites

1. Azure Subscription

We need a valid Azure subscription to deploy the project on cloud. In this project we are using Azure

for Students subscription.

In this project we will be using Azure CloudShell pre-built in Azure portal. If you want to run the

scripts using local machine the next steps are necessary.

2. Install the Azure Command Line Interface (CLI) tool

 We need to install Azure CLI tool to create and manage Azure resources from PowerShell. In order to

install Azure CLI tool, we need to open PowerShell prompt as an administrator and run the command:

Invoke-WebRequest -Uri https://aka.ms/installazurecliwindows -OutFile

.\AzureCLI.msi; Start-Process msiexec.exe -Wait -ArgumentList '/I

AzureCLI.msi /quiet'; rm .\AzureCLI.msi [7]

3. Install Terraform

In order to use Terraform, we need to install Terraform as a binary package (version 0.14.5) from the

official website of Terraform.

4. Authenticate using the Azure CLI

After successful installation of Azure CLI tool, the next step is to link and authenticate Azure CLI tool

with our Azure account. Terraform requires authentication from Azure to create infrastructure. For this

we need to log into Azure account locally from the terminal using Azure CLI tool by running the

command:

az login

This will open your browser window and ask you to enter your Azure login credentials. After successful

authentication, your terminal will display your subscription information [8].

Infrastructure as Code using Terraform and Ansible

10

3.3 Understanding the Terraform code

To run our project in Azure, we need to create the required infrastructure for the web application using

Terraform. We have written configuration for all the identified resources in main.tf file and defined some

repeatedly used parameters of the variables in terraform.tfvars file [14]. The following steps are needed

to create the infrastructure,

1. We need to define the service provider as azurem and its version that is 2.0 as shown in Figure 5. To

create infrastructure, a resource group is required to hold all project-related resources. We defined

an Availability set which is the logical grouping for isolating VM resources from each other after

deployment.

 [9]

Figure 5: Terraform Configuration Service Provider Resource Group and Availability

Set

Infrastructure as Code using Terraform and Ansible

11

2. We need to create Network Security Group (NSG) to filter the traffic to and from resources in Azure.

Below image (Figure 6) shows NSG configuration,

3. It is very important to define the rules to filter the traffic. For our project, we have created four

different rules for the following purpose as shown in Figure 7 and Figure 8:

a) Allowing Ansible to connect with the VMs.

b) Allowing Visual Studio installed in our local machine to interact with Azure to deploy web

application.

c) Allowing web clients to connect to our web application.

d) Optional rule if we need Remote Desktop Protocol RDP for troubleshooting purpose.

Figure 6: Terraform Configuration

Figure 7: Terraform Configuration Security Rules Part 1

Infrastructure as Code using Terraform and Ansible

12

4. Now we need to define the infrastructure for Virtual Network which is the representation of our network

in the cloud. We also defined subnets under the Virtual Network shown in below Figure 9.

Figure 8: Terraform Configuration Security Rules Part 2

Figure 9: Terraform Configuration Virtual Network

Infrastructure as Code using Terraform and Ansible

13

5. We need to assign a static IP address to the load balancer in advance. Also, need to assign public IP

address for each VM that we are deploying as shown in below image (Figure 10). We require two

VMs for this project.

6. It is important for every VM to connect to the network. For this, we created a virtual Network

Interface Card (vNIC) for each VM as shown in Figure 11. vNIC severs as a gateway between

network and VMs. It is required to provide IP configuration to each of the Network Interface Card.

Before creating vNIC it is mandatory to ensure that our subnet is up and running.

Figure 10: Terraform Configuration Assign IP

Figure 11: Terraform Configuration NIC

Infrastructure as Code using Terraform and Ansible

14

7. We need to apply the NSG rules that were created in second and third steps to the VMs and NICs in

our network. Configuration for applying NSG is shown in below Figure 12.

8. Now we are ready with the declaration for creating the VMs. We need a load balancer to rout the

traffic to our VMs. The load balancer directs the traffic towards the healthiest VM and avoids

redirection of traffic towards failed VM. As load balancer is acting as a mediator between outside

traffic and VMs, we need to configure frontend and backend of load balancer where backend part

will consist of NICs and VMs. Load balancer configuration is shown in below Figure 13.

Figure 12: Terraform Configuration NSG to VNet and NIC

Figure 13: Terraform Configuration Load Balancer

Infrastructure as Code using Terraform and Ansible

15

9. As described in the previous step, load balancer directs the traffic to the healthiest VM in the network.

For this we configured the health probe for VMs as shown in Figure 14. This will periodically check

on both VMs for an open port 80.

10. Using the health probe defined in the step above, we need to create a rule to direct the incoming

traffic on port 80 to the healthiest VM available in the backend as shown in below Figure 15.

11. As an important step we need to create VMs and associate it with vNICs created in earlier steps.

Association configuration is coded as shown in Figure 16 and Figure 17.

Figure 14: Terraform Configuration health probe

Figure 15: Terraform Configuration Load Balancer Traffic

Figure 16: Terraform Configuration Associate VMs and vNIC Part 1.

Infrastructure as Code using Terraform and Ansible

16

12. We need to install a custom script VM extension on each virtual machine using the code shown in

Figure 18. This will download the ConfigureRemotingForAnsible.ps1 script from GitHub. Execution

of this script will open the Windows Remote Management (WinRM). Using WinRM Ansible

connects with Azure Cloud Shell.

Figure 17: Terraform Configuration Associate VMs and vNIC Part 2

Figure 18: Terraform Configuration Extensions for VMs

Infrastructure as Code using Terraform and Ansible

17

13. After declaring all the required resources in main.tf file, we are now ready with our Terraform code

for the deployment of our infrastructure. Before proceeding to understand Ansible configuration and

deployment steps, we need to look at terraform.tfvars (Figure 19) and variables.tf (Figure 20) file

where we have stored values for frequently used variables in order to maintain consistency. The

values of variables in these files can be modified without affecting the main configuration.

Figure 19: Terraform Configuration terraform.tfvars

Figure 20: Terraform Configuration variables.tf

Infrastructure as Code using Terraform and Ansible

18

3.4 Bringing up the Infrastructure with Terraform

1. Open Azure portal and click on the Azure cloud CLI icon adjacent to the search bar and select

PowerShell as shell type.

2. Create a new directory. In this directory we will save all the necessary files that are required for

building the Infrastructure. Use the below command:

 md terraform

3. Now we need to move to the newly created directory. Use the following command to move to the

created directory:

 cd terraform

4. Once we are in the terraform directory, we need to get the main.tf, terraform.tfvars, variables.tf files

from the git repository.

foreach ($file in @('main.tf','terraform.tfvars','variables.tf'))

{

$uri = "https://raw.githubusercontent.com/Shubham-Girdhar/Infrastructure-

As-Code/main/terraform/$file"

Invoke-WebRequest -Uri $uri -OutFile $file

}

The syntax above will download all the files from the git repository to the terraform directory which was

created in step 2.

5. Now, we have all the required files, and we will initialize Terraform using the command:

terraform init

6. After the initialization of Terraform we will bring up the plan using the command:

terraform plan

7. We require the IP address (public) of Azure session. We need to pass this IP in Terraform apply

command (In step 9).

curl http://ifconfig.me

8. Find the IP address (public) of your machine. We need this because, a port is created and opened in

NSG by Terraform and it is used to deploy the ASP.NET application later. Run the following command

in PowerShell to know the IP address.

curl http://ifconfig.me or we can directly type ‘amazon whats my ip’ in web browser.

9. Run the terraform apply command to spin up the infrastructure.

http://ifconfig.me/
http://ifconfig.me/

Infrastructure as Code using Terraform and Ansible

19

terraform apply -var="location=<Enter the location>" -

var="resource_group=cloudRG" -var="cloud_shell_source=<cloud shell IP>" -

var="domain_name_prefix=<application name>" -var="management_ip=<local ip>"

Be sure to fill in the appropriate variable values in the above syntax.

• location: This will be selected automatically depending on the location of Azure (It can be eastus,

westeurope or any other location chosen by the user).

• resource_group: The name of resource group which we have mentioned in main.tf file. This variable

is automatically selected to CloudRG as we have mentioned the resource group name as CloudRG in

main.tf file.

• cloud_shell_source: Pass the IP address which is obtained in step 7.

• domain_name_prefix: The Domain Name that will be applied (The name for the application to be

accessed from the browser).

• management_ip: The public IP address of the local machine which is obtained in step 8.

.

10. When terraform apply is executed it will return the IP addresses of load balancer and the VMs. In

the backend the necessary resources are produced.

11. The below image (Figure 21) shows all the resources that are created along with the IP addresses of

load balancer and the VMs.

Figure 21: Resources and IPs

12. By the end of step 11, the Infrastructure is successfully built.

Infrastructure as Code using Terraform and Ansible

20

4. Running IIS using Ansible

In this section, we will use an Ansible playbook to configure our Windows VMs. After configuration,

we will be able to publish .NET CORE web applications to Azure VMs directly using Visual Studio.

WebDeploy (a client server tool) is used by the VMs to deploy the ASP.NET web applications [10].

4.1 Understanding the Ansible Code

There are two important parts of the Ansible architecture required for configuration management.

1. Ansible playbook: This is the main script with the set of instructions that need to be implemented on

multiple hosts.

2. Inventory: This is the part that maintains the structure of the network environment. We create different

nodes and pass these nodes to the playbook, so that it knows which action needs to be implemented on

which resource.

The various parts of the Ansible playbook (iis.yml) for our deployment are explained below:

1. Specify the hosts as azurevms (Figure 22). This node consists of the list of IP address of our VMs.

Figure 22: hosts

2. Install the basic windows features of IIS (Figure 23) [11].

a) win_feature: installs or uninstalls features or roles on windows server.

 b) include_management_tools: adds corresponding management tools to specified features

Figure 23: Install Features

Infrastructure as Code using Terraform and Ansible

21

3. Regedit (registry) values are entered for remotely managing the Web-Mgmt service (Figure 24).

a) win_regedit: add, modify or remove registry keys and values.

Figure 24: Regedit values

4. The Windows package of Web Deploy is downloaded and installed (Figure 25).

a) win_package: installs or uninstalls software packages for Windows.

Figure 25: Install Web Deploy

5. We are changing the configurations from manual to auto and starting the below service (Figure 26):

a) win_service: manage and query Windows services.

Figure 26: Start service

Infrastructure as Code using Terraform and Ansible

22

6. Install .net core IIS hosting module with no frameworks (Figure 27) [12].

a) win_chocolatey: manage packages using chocolatey. If chocolatey is missing, the module will

install it.

Figure 27: Install .net hosting module

7. Create logging directory (Figure 28).

a) win_file: create or remove files or directories.

Figure 28: Create Directory

8. Restart IIS after installing .net core IIS hosting with the help of handlers (Figure 29) [12].

Figure 29: Restart IIS

Infrastructure as Code using Terraform and Ansible

23

The inventory (hosts) for our ansible includes the following (Figure 30):

1. [azurevms]: This is a node that contains the list of Windows VMs on Azure that we want to configure.

2. [azurevms:vars]: These are the variables that are needed to make the WinRM connection to work.

a) ansible_user= Select a username to connect to the VM

b) ansible_password= Select a password

c) ansible_connection=winrm (this connection is set to SSH by default, so to make the connection to

Windows VM to work, this needs to be set as winrm)

d) ansible_winrm_transport=basic

e) ansible_winrm_server_cert_validation=ignore (set to ignore as the certificates are generated

locally to virtual machines are self-signed)

f) ansible_port=5986 (ansible port)

Figure 30: Inventory

4.2 Invoking Ansible Playbook

1. Open Azure portal and click on the Azure cloud CLI icon adjacent to the search bar and select

PowerShell as shell type.

2. Make a new directory for Ansible files and change to this directory using the following commands:

mkdir ansibleConfigs
cd ansibleConfigs

3. Get the hosts (inventory) and iis.yml (playbook) files from the git repo using the following command:

foreach ($file in @('hosts','iis.yml')) {
$uri = " https://raw.githubusercontent.com/Shubham-Girdhar/Infrastructure-
As-Code/main/ansibleConfigs/$file"
Invoke-WebRequest -Uri $uri -OutFile $file }

4. Now, we update the hosts inventory and add the IP address of the VMs created using Terraform. This

is done so that the inventory points the playbook to the correct VMs.

Infrastructure as Code using Terraform and Ansible

24

5. To Edit the inventory, type code . This will open VS Code editor. Now update the IP addresses (Figure

31) under the [azurevms] node and add the IPs of the two VMs we got as the output of the terraform

apply step (Figure 32).

Figure 31: Replace IP

5. Use Ctrl + s to save and Ctrl + q to exit the editor.

Figure 32: Update IP

Infrastructure as Code using Terraform and Ansible

25

7. Finally, it is time to execute the Ansible playbook. This is done using the ansible-playbook command

which takes the following two parameters:

a) name of the playbook (iis.yml)

b) - i name of host (- i hosts)

8. So, the final command looks like:

ansible-playbook iis.yml -i hosts

9. This should configure the VMs by installing IIS features, enabling IIS remote management, installing

WebDeploy, starting and setting management service to auto, installing .net core iis hosting module and

creating a logging directory. The output of this steps looks like the below (Figure 33):

Figure 33: Configure VMs

Infrastructure as Code using Terraform and Ansible

26

5. Deploying the Web Application

By this point of time, we have the Infrastructure provisioned by Terraform and configured by Ansible.

Now it is time to develop and deploy the web application on the VMs. In order to deploy the web

application, follow the below steps:

1. Download Visual-Studio Community Edition 2019.

2. Login to the Visual Studio using university email id (or with the same email id that is used for logging

to Azure portal).

3. In order to deploy the application using Visual Studio we need the following three workloads .Net

Core cross-platform development, ASP.NET and web development, Azure development. We need to

download these three workloads (Figure 34) while installing Visual Studio.

Figure 34: Required Workloads

4. Once the required workloads are downloaded, we are ready to deploy an application to the cloud.

5. Create a simple app or clone a sample application in a folder on the local machine. Use the

command below to clone the application [13]:

 git clone https://github.com/Shubham-Girdhar/Infrastructure-As-Code.git

6. Open Visual Studio and open an existing project as shown below (Figure 35).

https://github.com/Shubham-Girdhar/Infrastructure-As-Code.git

Infrastructure as Code using Terraform and Ansible

27

Figure 35: Open project

7. Navigate to the folder where the application is cloned. Open the web application1 folder and select

.sln file (It is a file created by Visual Studio which ties up all the assemblies required by the ASP .Net

project).

Once the project is opened in Visual Studio, right-click on the project and select Publish option as shown

below (Figure 36).

Figure 36: Publish

8. This will open the publish window (Figure 37). Click on Azure and then on Specific target select

Azure Virtual Machine.

Figure 37: Publish Window

Infrastructure as Code using Terraform and Ansible

28

9. Once we select Azure Virtual Machine it will automatically fetch the details from our Azure account

(Figure 38) such as subscription type, resource group and the available VMs.

Figure 38: Azure account

10. Select the first VM (i.e., cloudvm-0), if everything goes well, there will be no error messages (i.e.,

we can see the Finish option enabled). Click on Finish.

Note: As we have cloned a project from GitHub and trying to deploy it, we might face an error in the

above step. The error says, “Web deploy cannot be succeeded”. This might be because of permission

issues. This error occurs if we have used different accounts for Visual Studio and the local machine. For

example, if the local machine is logged in with the account xyz@gmail.com and Visual Studio is logged

in with xyz@stud.fra-uas.de then this error might occur. In order to overcome this error, we need to

enable permissions for that folder on the local machine.

a) Select the folder which contains the application and right-click on it. Click on properties. Move to the

security tab. Click on the Edit option, this will open the permissions of that folder. Click on Add, under

Enter the object names to select type “Everyone” and select Check Names. Then click on OK and Apply

(Figure 39). By performing the above process, we will enable the permissions to everyone, and the error

will be fixed.

Figure 39: Enable Permissions

Infrastructure as Code using Terraform and Ansible

29

11. Now, the next step is to connect to the VM. In order to do that we should provide the credentials

and authenticate the self-signed certificate. To make these changes select the Edit option. Refer the

below Figure 40.

Figure 40: Credentials and Validation

12. After providing the Password make sure to save it, so that the password will be saved for future

deployments. Now, we need to Validate the Connection (Figure 40). By performing the validation, the

certificate will be placed in the VMs. If we did not perform the validation, we will not be able to connect.

14. After Validating the Connection, an error will pop up (Figure 41) regarding the certificate. This is

an expected outcome. Check the Save Certificate checkbox and select Accept.

Figure 41: Certificate Error

Infrastructure as Code using Terraform and Ansible

30

14. We must repeat the steps from 6 to 13 for the second VM (i.e., for cloudvm-1). Select the web

application2 folder and run it on VM 2. Both the VMs have different web application deployed i.e., the

structure of the application is same, but the welcome message is different in each of the VMs. This is to

know that which VM is picked by the load balancer in case of traffic.

15. Select both the VMs (cloudvm-0 and cloudvm-1) and Publish them. By publishing, WebDeploy will

transfer the files from local machine to both the VMs.

16. Once the Publish button is clicked, a web browser will be opened with the deployed application.

17. Below Figures 42,43 are the images of the deployed web application in first and second VM,

respectively. For the same load balancer IP, we can see that same application is running in different

VMs.

Figure 42: Web Application on VM1

Figure 43: Web Application on VM2

Infrastructure as Code using Terraform and Ansible

31

6. Conclusion and Final Remarks

First things first. After deploying and playing around with the application, remember to remove all the

resources that you have created during this project. Otherwise, some fees might be charged to your

Azure account. To remove all the resources created using Terraform, navigate to the terraform folder:

cd ../terraform

Then use the following command to destroy all the resources:

terraform destroy

Infrastructure as Code tries to solve three different needs, which are:

1. Create/destroy infrastructure resources like network resources, virtual machines, load balancers

etc.

2. Manage configurations for the created resources.

3. Deploy applications to the infrastructure.

After successful implementation of this project, we were able to achieve the above-mentioned points in

the following manner:

1. Automating the infrastructure provisioning process through a reusable Terraform script.

2. Automating the configuration of the VMs using an Ansible playbook.

3. Publishing a .NET CORE web application to configured machines directly through Visual Studio

using Web Deploy.

The next steps from here could be automating this process further by configuring these steps into a CI/CD

(Continuous Integration/Continuous Deployment) pipeline. This would even automate the process of

manually executing the Terraform and Ansible scripts and replace it with just triggering build and release

pipelines. While the process of configuring these steps into pipelines could be a little tricky, once

achieved, this could make the life of the DevOps or cloud engineer much easier. This would mean that

new environments could now be spun in a matter of minutes and that too without the worry of

infrastructure deviations or configuration drifts.

Infrastructure as Code using Terraform and Ansible

32

7. References

[1]https://medium.com/cloudnativeinfra/when-to-use-which-infrastructure-as-code-tool-665af289fbde

[2]https://medium.com/@singhbhupesh261201

[3]https://github.com/ayyappa1/Terraform/blob/master/README.md

[4] End-to-End Application Provisioning with Ansible and Terraform | IBM

[5] For creating deployment diagram - Creately

[6] https://learn.hashicorp.com/collections/terraform/azure-get-started

[7] Step 1 - PowerShell | Distech Wiki (distech-controls.com)

[8] https://learn.hashicorp.com/tutorials/terraform/azure-build

[9] For generating code screenshots - Carbon | Create and share beautiful images of your source code

[10] https://docs.ansible.com/ansible/latest/collections/ansible/windows

[11] https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-

net-core-hosting-bundle

[12] https://cloudskills.io/blog/configure-ansible-windows

[13] https://dotnet.microsoft.com/learn/aspnet/hello-world-tutorial/intro

[14] https://github.com/NoBSDevOps/BookResources/blob/master/Part-II-Project/Virtual-

Machines/Terraform-VMs/VMs/main.tf

https://medium.com/cloudnativeinfra/when-to-use-which-infrastructure-as-code-tool-665af289fbde
https://medium.com/@singhbhupesh261201
https://github.com/ayyappa1/Terraform/blob/master/README.md
https://www.ibm.com/cloud/blog/end-to-end-application-provisioning-with-ansible-and-terraform
https://app.creately.com/diagram/
https://learn.hashicorp.com/collections/terraform/azure-get-started
https://wiki.distech-controls.com/Azure-IOT/Cloud-Relay/Step1-PowerShell
https://carbon.now.sh/
https://docs.ansible.com/ansible/latest/collections/ansible/windows
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/?view=aspnetcore-3.1#install-the-net-core-hosting-bundle
https://cloudskills.io/blog/configure-ansible-windows
https://dotnet.microsoft.com/learn/aspnet/hello-world-tutorial/intro
https://github.com/NoBSDevOps/BookResources/blob/master/Part-II-Project/Virtual-Machines/Terraform-VMs/VMs/main.tf
https://github.com/NoBSDevOps/BookResources/blob/master/Part-II-Project/Virtual-Machines/Terraform-VMs/VMs/main.tf

