
INFRASTRUCTURE AS CODE

Using Terraform and Ansible

Cloud Computing Project

By (Group 9):

Faiz Usmani 1323197

Parag Tambalkar 1322596

Pranay Raman 1321759

Shubham Girdhar 1323003 Supervised by: Prof. Dr. Christian Baun

+

What is IaC ?

F I G U R E 1

▪ IaC enables us to provision and configure the
virtual servers on cloud and onsite physical servers
easily in minutes just by executing a script written
in a user-friendly language.

▪ Allows us to deal with servers, networks, security
groups, databases, etc. as if they are a part of the
software.

▪ The leading solutions in the market nowadays for
IaC are provided by Terraform, Ansible, Chef,
Puppet.

▪ Some Advantages:
- Code Once, Iterate Multiple times
- Immune to Human error
- Scaling is as easy as it gets

Understanding the tools (1)

TERRAFORM

▪ A tool for building, changing, and versioning
infrastructures safely and efficiently.

▪ A starting project mainly has three kind of files –
main.tf, variables.tf, terraform.tfvars.

▪ The configuration files are written in HashiCorp
Configuration Language (HCL). Terraform then
goes ahead and produce an execution plan
describing the steps to reach the desired state,
and then executes it.

▪ Also, the main difference between Terraform and
the other IaC tools is that it does not re-provision
resources that are successfully provisioned.

FIGURE 2

Understanding the tools (2)

ANSIBLE

▪ The Configuration expert although Ansible is a
tool that can do a lot more than configuring
existing infrastructures. It is primarily known
for the configuration tasks as it is very easy to
do it using Ansible.

▪ The primary architecture of Ansible is shown in
Figure 3 which consists of two kinds of nodes –
Control and Managed nodes.

▪ The Control node has the list of IP addresses of
the managed nodes and sends out Ansible
modules to them to configure the managed
nodes to reach a desired state.

FIGURE 3

Understanding the tools (3)

AZURE AND CLOUD SHELL

▪ The cloud computing service provider by
Microsoft supporting multitudes of services.

▪ Cloud shell is a browser integrated shell that is
used to manage resources on Azure. As Azure
has built in support for Terraform and Ansible,
we leveraged this to run terraform and Ansible
scripts.

VISUAL STUDIO

▪ Being a Microsoft product, used this powerful
IDE because of the ease it offers to directly
deploy apps to the VM’s hosted on Azure.

Deployment Plan
▪ The user will login into the Azure portal and use

Azure Cloud Shell to run Terraform and Ansible
scripts.

▪ Terraform scripts are run and a resource group with
two Windows VMs having proper network
configurations are created.

▪ After the successful creation of VMs, IIS (Internet
Information Services – a web server software
package specifically designed for windows) and
some other modules are configured on both VMs
using their IP’s. They are required to run an
ASP.NET web app on a Windows server.

▪ A self-created web app or app cloned from the
provided GitHub link is published on both VMs
using Visual Studio 2019 and accessed through the
public IP of the load balancer.

Provisioning
Infrastructure with
Terraform

Major Components of Terraform are:

▪ Terraform Infrastructure Configuration coded in
below files,

- Main.tf
- terraform.tfvars
- variables.tf

▪ Process of Building Cloud Infrastructure using
Terraform configuration code for which we need
below three important commands,

- terraform init
- terraform plan
- terraform apply

Running IIS
using Ansible

Main Components of Ansible:

▪ Ansible playbook: Main script with the set of
instructions that need to be implemented on
multiple hosts

▪ Inventory: Part that maintains the structure of the
network environment.

Invoking Ansible Playbook:

▪ Making a new directory and get the ansible
playbook and inventory file from GitHub.

▪ Update the inventory with IP addresses of the VMs
provisioned by Terraform.

▪ Execute the ansible-playbook command to do the
configuration.

Deploying the
Web Application

▪ By this point, we have the Infrastructure built using
Terraform and configured with Ansible. The next
step is to deploy the application.

Prerequisites:

▪ Visual Studio installed with the workloads- ASP.NET
Core cross-platform development, ASP.NET web
development, Azure development.

Wrap Up

Concluding Remarks:

▪ We were able to provision infrastructure using Terraform, configure
the infrastructure using Ansible and finally deploy a .net core web
application on our infrastructure.

Next Steps…

▪ Further automation into a CI/CD (Continuous Integration/Continuous
Deployment) pipeline.

▪ Replace manual execution of Terraform and Ansible scripts with
triggering build and release pipelines.

▪ While the process of configuring these steps into pipelines could be a
little tricky, once achieved, this could make the life of the DevOps or
cloud engineer much easier.

References :

▪ Figure 1: https://www.suntechnologies.com/wp-
content/uploads/2020/04/image-1-2-scaled.jpg

▪ Figure 2: https://www.terraform.io/_next/static/images/how-
terraform-works-33c33a9c82bf5aef0bf9f75eb5f5f9b2.svg

▪ Figure 3: : Ansible_ov.png (904×602) (s81c.com)

Thank You

