### Exercise Sheet 1

# Exercise 1 (Different Client-Server Scenarios)

Company X runs 8,000 computer workplaces.

- Scenario 1: Fat clients (PC)
  - Electrical power rating per desktop: 400 watts
  - Electrical power rating per screen: 100 watts
- Scenario 2: Thin clients
  - Electrical power rating per thin client: 30 watts
  - Electrical power rating per screen: 100 watts
  - Electrical power rating per server blade: 400 watts
  - Each server blade has enough resources to run 40 virtual desktops

What are the electricity costs per year for 24/7 operation when the electricity price is  $0.24 \in \text{/kWh}$ ?

### Exercise 2 (Types of Clients)

Four types of clients exist in the client-server model. Describe the four types. Focus the differences.

# Exercise 3 (Storing and transmitting Data)

Common assumptions about data are:

- It is easy to store data today.
- It is easy to transport or transmit data today.

In this exercise, we verify the correctness of these statements.

- 1. A scientific experiment produces 15 PB of data per year, which need to be stored. What is the height of a stack of storage media, if for storing the data...
  - CDs (capacity:  $600 \text{ MB} = 600 * 10^6 \text{ Byte}$ , thickness: 1.2 mm) are used?
  - DVDs (capacity:  $4.3 \text{ GB} = 4.3 * 10^9 \text{ Byte}$ , thickness: 1.2 mm) are used?

Content: Topics of slide set 1 Page 1 of 2

- Blu-rays (capacity:  $25 \text{ GB} = 25 * 10^9 \text{ Byte}$ , thickness: 1.2 mm) are used?
- HDDs (capacity:  $2 \text{ TB} = 2 * 10^{12} \text{ Byte}$ , thickness: 2.5 cm) are used?

#### Attention: Calculate the solutions for both options:

- 15 PB =  $15*10^{15}$  Byte  $\Leftarrow$  this way, the hardware manufacturer calculate
- 15 PB =  $15 * 2^{50}$  Byte  $\Leftarrow$  this way, the operating systems calculate

The data of the scientific experiment is transmitted via networks that use fiber-optic cables and provide a bandwidth of  $40\,\mathrm{Gbit/s}$ .

- How long does it take to transfer the 15 PB via a 40 Gbit/s network?
- How long does it take to transfer the 15 PB via a 100 Mbps Ethernet?

#### Attention: Calculate the solutions for both options:

- $15 \text{ PB} = 15 * 10^{15} \text{ Byte}$
- $15 \text{ PB} = 15 * 2^{50} \text{ Byte}$

# Exercise 4 (Laws and Limitations)

- 1. What is the central statement of Moore's law?
- 2. What is the Von Neumann bottleneck?
- 3. How can the Von Neumann bottleneck be weakened?
- 4. What is the central statement of Amdahl's law?
- 5. Which important factor is ignored by Amdahl's law?
- 6. What is the central statement of Gustafson's law (highlight the difference against Amdahl's law)?

### Exercise 5 (Parallel Computers)

- 1. Describe the shared memory architecture in just a few words.
- 2. Name two challenges of shared memory architectures.
- 3. What is the difference between asymmetric and symmetric multiprocessing (SMP)?
- 4. Give an example for a system in practice which implements the asymmetric multiprocessing architecture.
- 5. Give an example for a system which implements the symmetric multiprocessing (SMP) architecture.
- 6. Describe the distributed memory architecture in just a few words.
- 7. Name a drawback of distributed memory architectures.

Content: Topics of slide set 1 Page 2 of 2