

Euro Currency Note Identification

Using AWS Sage Maker

Cloud Computing SS2022

Submitted by:

Moeez Ur Rehman

Muhammad Hasseb Anwar

Sharish Kanwal

Harmain Haider

Under the guidance of:

Prof. Dr. Christian Baun

2

Table of Content

1. INTRODUCTION 3

2. Technologies 4

2.1 AWS SageMaker 4

2.2 SageMaker End Point 4

2.3 AWS lambda Functions 4

2.4 AWS API Gatway 4

2.5 AWS Amplify 4

2.6 Flow Diagram 5

3. Training Model On SageMaker 6

 3.1.1 Creating S3 bucket 6

 3.1.2 Uploading training images on S3 8

 3.1.3 Creating Notebook Instance on Sagemaker 9

 3.1.4 Image Classification on Sagemaker 13

 3.1.5 Deploying endpoint on Sagemaker 21

 3.1. Testing the model from notebook 22

 3.1.7 Cleanup Sagemaker 24

4. Web Application 25

5. Predicting Currency note from webapp 28

3

1. Introduction

The goal of the project is to implement machine learning model on the cloud service, we have used AWS cloud

platform for this project, The problem statement was to identify different currency notes, our training data is

stored on AWS S3 from where is being pulled by AWS’s Sagemaker service to train our model.

After the training the endpoint is being deployed on sagemaker which then be used by our webapp to predict out

currency notes. For the sake of simplicity, we have trained our model for only Euro 5,10,20 and 50 notes.

To train our model we have used Sagemaker’s built in Image classification Algorithm which is based on

Supervised Learning that supports multi-class classification. It uses Conventional Neural Networks (CNN).

More info on the image classification model of sagemaker can be access using this link

https://docs.AWS.amazon.com/sagemaker/latest/dg/image-classification.html

https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

4

2. Technologies

 2.1 AWS SageMaker

It is fully managed machine learning services. Machine learning models easily train, build and deployed directly

into a production ready hosted environment with Sage Maker. It provides Jupyter notebook instance for easy

access to your data sources for exploration and analysis, so you don't have to manage servers. It also provides

common machine learning algorithms that we can run efficiently against extremely large data in a distributed

environment. With native support we can also bring-our-own-algorithms and frameworks, SageMaker offers

flexible distributed training options that adjust to your specific systems. Deploy a model into a secure and scalable

environment by launching it with a few clicks from SageMaker Studio or the SageMaker console. Training and

hosting are billed by minutes of usage, with no minimum fees and no upfront commitments.

 2.2 SageMaker End point

An Amazon SageMaker endpoint is a fully managed service that allows you to make real-time inferences via a

REST API. Taking the pain away from running your own EC2 instances, loading artefacts from S3, wrapping the

model in some lightweight REST application, attaching GPUs and much more. This is great as it means with a

single click or command you have a fully working solution.

 2.3 AWS Lambda functions

When we write our code, we are responsible for our code only. Lambda manages network, memory, CPU and

other resources to run code. Lambda manages resources because we cannot log in to the compute instances or

customize the operating system on provided runtimes. On our behave lambda perform administrative and

operational activities such as monitoring, managing capacity etc. By using Lambda API we invoke our lambda

function.

We can use Lambda to:

Create our own backend that operates at AWS scales, performance and security.

Build data processing triggers for AWS services such as Amazon Simple Storage Services (Amazon S3)

 2.4 AWS API Gateway

It is a service for creating, maintaining, publishing and securing REST, HTTP, and WebSocket APIs at any scale.

API developers can create APIs that access AWS or other web services, as well as data stored in the AWS Cloud.

As an API Gateway API developer, you can create APIs for use in your own client applications.

API endpoint

API endpoints are the specific digital location to retrieve the digital resource that exists there when request for

information are sent by one program. To guarantee the proper functioning of the incorporated software, Endpoint

specify where APIs can access resources.

 2.5 AWS Amplify

AWS Amplify include ready to use components, code lines and built-in command line interface designed to help

developers easily create and launch apps. It also allows you to securely and quickly integrate a wild range of

functions ranging from API to AI. It is a full stack application platform with both client side and server-side code.

5

Various AWS services used in our project, to train the model we have used S3 to store our data and Sagemaker

to train our model

2.6 Flow Diagram

6

3. Training model on Sagemake

3.1.1 Creating S3 bucket

The very first task is to create a S3 bucket, we have to provide a name of the bucket, choose the region,

in our case we have chosen eu-central-1 location which is in Frankfurt.

Here we need to implement the object ownership, if we want the object of this bucket to be owned by

multiple accounts then we should choose ACLs Enabled, Although the recommended property is ACLs

disabled.

7

Here we can implement the security of our bucket, it is always recommended to block all public access

of the bucket.

Just click on create bucket and our bucket will be created.

8

3.1.2 Uploading training images on s3

Next step is to create folders within the S3 bucket. We have created our main folder with the name ‘CC_Dataset’

Now, we need to gather our training data, for this model we have taken around 150 sample images of each 5,10,20

and 50 Euro currency notes.

Create folder for each label as shown in picture below.

9

Now upload sample images in respective folders.

3.1.3 Creating notebook instance on sagemker

Now as we have setup our S3 bucket and folders as we need to train our model, now we are moving towards our

AWS service called Sagemaker.

This is the landing page of our Sagemaker.

10

We need to create Notebook instance within sagemaker, choose your desired region, we have chosen eu-central-

Click on create notebook instance

Give name of your notebook instance, and choose your instance type. Further information on sage maker instance

types is provided here https://AWS.amazon.com/sagemaker/pricing/ .

https://aws.amazon.com/sagemaker/pricing/

11

If you are using Sagemaker for the first time, then take advantage of the free tier, Free tier information is also

provided in the above link.

In this step we can create a new IAM role or use already created IAM role. IAM role is nothing but a set of

permissions, as you need to access to different other services of AWS within this notebook, make sure that the

role which you select here has the necessary permissions to access those web services. Further information of

IAM roles are provided here https://docs.AWS.amazon.com/IAM/latest/UserGuide/id_roles.html

Root access: you really don’t need to give root access to the sagemaker notebook here if you are working on

production environment, root access means administrative privileges, which means by using this notebook you

can edit, remove any files on the system.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

12

After our notebook instance is created, we need to start this notebook instance after that we are going to write

our model.

13

3.1.4 Image classification on Sagemaker

Sagemaker Model:

We have used Sagemaker’s built in Image classification Algorithm which is based on Supervised Learning

that supports multi-class classification. It uses Conventional Neural Networks (CNN). More info on the image

classification model of sagemaker can be access using this link

https://docs.AWS.amazon.com/sagemaker/latest/dg/image-classification.html

There are different type of algorithms are offered by sagemaker, which can be used according to the need.

Information of different type of algorithms Sagemaker can be accessed here.

https://docs.AWS.amazon.com/sagemaker/latest/dg/algos.html

Writing our model:

First we are saving our S3 bucket and main folder name into variables to access again time to time.

https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

14

Here we are importing the sagemaker library and setting up environment.

Get_execution_role() method gives us the role which we are using to run the sagemaker notebook.

session() method is used to get a sagemaker session.

Image_uris.retrieve() method is used for generating ECR image URIs for pre-built SageMaker Docker image,

the arguments of the methods can be studied extensively using below link.

https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html#sagemaker.image_uris.retrieve

As we are using prebuilt image classification model of sagemaker we have passed this algorithm name in the

perimeter.

https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html#sagemaker.image_uris.retrieve

15

There are multiple ways to feed images to the model for training. The SageMaker Image Classification algorithm

supports both RecordIO and conventional image formats like JPG and JPEG. In this project we are going to use

the RecordIO format for training.

What is Record IO format?

Data loading is a critical component of any machine learning system. With smaller number of training images, it

might not be a problem to used them as they are, but with larger datasets, data loading into training model can

become performance critical.

In simple words, Record IO format converts images into binary data exchange formats, RecordIO is efficient data

format developed by Apache MXnet it resizes the image into 256 * 256, then compress into JPEG format. After

that, it saves a header that indicates the index and label for that image to be used when constructing the Data field

for that record. It then pack several images together into a file.

More information of RecordIO file can be read here:

https://mxnet.apache.org/versions/1.9.1/api/architecture/note_data_loading

Sagemaker recommend storing images as records and packing them together, the major benefit is Storing images

in RecordIO format greatly reduces the size of the dataset on the disk.

In below code we specify the path of the script which converts images into RecordIO files

As we have specified the script which transforms our images into Record IO file, we now pull all S3 images.

Now we transform our fetched images into Record IO file, we have kept the training ratio to 70%, while Testing

ratio to 30%. The Record IO files will be created in this step with the above ratio.

https://mxnet.apache.org/versions/1.9.1/api/architecture/note_data_loading

16

Now we upload our created RecordIO files back into our S3 bucket, which then be used as an input for training

of our model.

17

The uploaded RecordIO files in our S3 bucket will look like this.

We have now done our preprocessing; the data is ready to be trained. Now are going towards the process of

training our model using the created Record IO files.

We are here defining the Record IO paths to the training and validation functions. For information of the inputs.

Training Input() method can be found here:

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.TrainingInput

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.TrainingInput

18

Defining the output location of out model, as well as initializing the estimator function. Sagemaker handles end-

to-end Amazon Sagemaker training and deployment tasks. More documentation can be read

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

Image classification Hyperparameters,

we have defined the

image shape as 3,244,244 which is same as the image shape of our RecordIO files.

number of classes which in our case are 4,

Augmentation type here is important as we are taking the color into account, so we have chosen ‘crop color’.

Epoch: We have not provided any value for epochs so it will take the default value 30.

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

19

Learning rates: The learning rate controls how quickly the model is adapted to the problem. Smaller learning

rates require more training epochs given the smaller changes made to the weights each update, whereas larger

learning rates result in rapid changes and require fewer training epochs. The valid values are between 0 and 1.

more documentation can be found here https://docs.AWS.amazon.com/sagemaker/latest/dg/IC-

Hyperparameter.html

Now starting our training job, we have given all our parameters as an input to our training job.

The training job is started and will provide the path of the model where it will be stored.

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

20

We can also see our S3 bucket where the model is saved.

21

3.1.5 Deploying endpoint on sagemaker

As our model is trained, we now have to deploy our endpoint, which then will be used for our predictions.

The deployed endpoint is available and in service now.

Now there are many ways to call this endpoint, we can predict our images from this notebook or we can create a

webapp which will call our endpoint using Api Gateway and Lambda functions and will show our predictions,

first we are showing how this can be done using notebook instance.

Create a function which invokes the endpoint and returns the result of prediction.

22

3.1.6 Testing the model from notebook

Now upload a sample image into S3 Bucket, We have used a 50 euro image and uploaded in into the folder

test_images on S3.

23

In this step we are getting our image from S3 and saving them into a variable called Euro50.

Now we are calling our classify_deployed function to predict our image, and the result is shown in below

image.

24

As we can see the EURO-50 image has the highest prediction value, our model is 99.9% confident that the

provided image in of 50 Euro note.

3.1.7 Cleanup Sagemaker

Important: Important is to stop the notebook after you have done creating the model, otherwise AWS will

keep charging you for the time the notebook is in service.

25

4. Web Application:

The web application is created for demo purposes of the model deployed on AWS Sagemaker. It is created using

React libraries in addition to using amplify library which streamlines the connection of the web application with

the AWS cloud setup.

For setting up amplify in the project we need to install amplify and with in the project directory execute the

command:

amplify init

Now we need to setup an API endpoint on the AWS API Gateway. We use the command:

amplify add api

We further follow the steps in the process executed by the command to make a POST Rest api. When the api

end point is created locally we push the setup on the AWS using:

amplify push

The web application consists of 2 main components:

Image Capture:

This component uses the camera of the device to capture the image to be identified.

26

Classified Image:

This component displays the result in a format of a card with header, information and details.

App

Class:

The main class of the web app is the App.js class where everything is put together.

27

First we make a form t take the inputs where we want to send the POST request to. The input includes name of

the AWS Inference endpoint of Sagemaker, its region and the labels or categories we want to identify or find

results of.

Secondly after capturing image and issuing a POST request to AWS API Gateway endpoint, we receive the

response and we display it to the user via a Card Group with our component of ClassifiedImage.

A

snapshot of the request that is sent is attached here:

28

5. Predicting currency note from webapp

Results:

The webpage needs 3 inputs, Sagemaker endpoint name, Region Name and all the classes names with ‘space’

29

We capture images by pressing the classify button, and then prediction score will be shown below.

We tried to predict the notes with different angles, to see how our prediction is working.

c

