| | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

Euro Currency Note Identification
Using AWS Sage Maker

Cloud Computing SS2022

Submitted by:

Moeez Ur Rehman
Muhammad Hasseb Anwar
Sharish Kanwal
Harmain Haider

Under the guidance of:
Prof. Dr. Christian Baun

Table of Content

1.

2.

3.

4.

5.

INTRODUCTION

Technologies

2.1
2.2
2.3
2.4
2.5
2.6

AWS SageMaker
SageMaker End Point
AWS lambda Functions
AWS API Gatway
AWS Amplify

Flow Diagram

Training Model On SageMaker

3.11

3.1.2

3.1.3

3.14

3.15

3.1.

3.1.7

Creating S3 bucket

Uploading training images on S3

Creating Notebook Instance on Sagemaker
Image Classification on Sagemaker
Deploying endpoint on Sagemaker
Testing the model from notebook

Cleanup Sagemaker

Web Application

Predicting Currency note from webapp

13

21

22

24

25

28

1. Introduction

The goal of the project is to implement machine learning model on the cloud service, we have used AWS cloud
platform for this project, The problem statement was to identify different currency notes, our training data is
stored on AWS S3 from where is being pulled by AWS’s Sagemaker service to train our model.

After the training the endpoint is being deployed on sagemaker which then be used by our webapp to predict out
currency notes. For the sake of simplicity, we have trained our model for only Euro 5,10,20 and 50 notes.

To train our model we have used Sagemaker’s built in Image classification Algorithm which is based on
Supervised Learning that supports multi-class classification. It uses Conventional Neural Networks (CNN).
More info on the image classification model of sagemaker can be access using this link
https://docs.AWS.amazon.com/sagemaker/latest/dg/image-classification.html

C @ localhost:3000 "2 % O @ 3 R

Clear Images

EURO-5 EURO-10 EURO-20

0.9995836615562439 0.9951698184013367 883262038

EURO-50

070068

» Show Score Details » Show Score Details » Show Score Details » Show Score Details » Show Score Details » Show Score Details

EURO-5 EURO-5

0.997331142425537

EURO-5 EURO-5 EURO-5 EURO-5

7356873 0.994642972946167).86 41855812073 0.9968541264533997

50454306602478

*» Show Score Details » Show Score Details » Show Score Details » Show Score Details » Show Score Details » Show Score Details

https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html

2. Technologies
2.1 AWS SageMaker

It is fully managed machine learning services. Machine learning models easily train, build and deployed directly
into a production ready hosted environment with Sage Maker. It provides Jupyter notebook instance for easy
access to your data sources for exploration and analysis, so you don't have to manage servers. It also provides
common machine learning algorithms that we can run efficiently against extremely large data in a distributed
environment. With native support we can also bring-our-own-algorithms and frameworks, SageMaker offers
flexible distributed training options that adjust to your specific systems. Deploy a model into a secure and scalable
environment by launching it with a few clicks from SageMaker Studio or the SageMaker console. Training and
hosting are billed by minutes of usage, with no minimum fees and no upfront commitments.

2.2 SageMaker End point

An Amazon SageMaker endpoint is a fully managed service that allows you to make real-time inferences via a
REST API. Taking the pain away from running your own EC2 instances, loading artefacts from S3, wrapping the
model in some lightweight REST application, attaching GPUs and much more. This is great as it means with a
single click or command you have a fully working solution.

2.3 AWS Lambda functions

When we write our code, we are responsible for our code only. Lambda manages network, memory, CPU and
other resources to run code. Lambda manages resources because we cannot log in to the compute instances or
customize the operating system on provided runtimes. On our behave lambda perform administrative and
operational activities such as monitoring, managing capacity etc. By using Lambda API we invoke our lambda
function.

We can use Lambda to:
Create our own backend that operates at AWS scales, performance and security.
Build data processing triggers for AWS services such as Amazon Simple Storage Services (Amazon S3)

2.4 AWS API Gateway

It is a service for creating, maintaining, publishing and securing REST, HTTP, and WebSocket APIs at any scale.
API developers can create APIs that access AWS or other web services, as well as data stored in the AWS Cloud.
As an API Gateway API developer, you can create APIs for use in your own client applications.

API endpoint

API endpoints are the specific digital location to retrieve the digital resource that exists there when request for
information are sent by one program. To guarantee the proper functioning of the incorporated software, Endpoint
specify where APIs can access resources.

2.5 AWS Amplify

AWS Amplify include ready to use components, code lines and built-in command line interface designed to help
developers easily create and launch apps. It also allows you to securely and quickly integrate a wild range of
functions ranging from API to Al. It is a full stack application platform with both client side and server-side code.

Various AWS services used in our project, to train the model we have used S3 to store our data and Sagemaker
to train our model

2.6 Flow Diagram

Cloud Watch

Logging

S3

EC2
Training - Identification

sageMaker \
ally,

User 3)

_,v SageMaker Inference EndPoint

Web React Application APl Gateway LAMBDA

User

3. Training model on Sagemake

paN (0] Stockholm ¥ MuhammadHaseebAnwar ¥

®
Console Home i

Actions ¥

Recently visited into H Welcome to AWS

VPC
.
Amazon SageMaker

Getting started with AWS [3

Learn the fundar

nd f 3luable

Resource Groups & Tag Editor gy
st out of AWS.

Amazon Augmented Al

BEEBE A

EC2 Training and certification [4

Learn fr
CloudWatch skills and knowledge
AWS Cost Explorer

v with AWS? [4

AWS services, features, and

B =

AWS Health info : Cost and usage info

Open issues
7\ N rnct and teana data ta chaw

3.1.1 Creating S3 bucket

The very first task is to create a S3 bucket, we have to provide a name of the bucket, choose the region,
in our case we have chosen eu-central-1 location which is in Frankfurt.

« C @ s3.consoleawsamazon.com/s3/bucket/create?region=eu-central-1 2 % O @@ x»0O@ :

L (0] Global ¥ MuhammadHaseebAnwar ¥

Create bucket i

Buckets are containers for data stored in $3. Learn more [

General configuration

Bucket name
cloud-computing-dataset
See rules for bucket naming [
AWS Region

EU (Frankfurt) eu-central-1 v
Copy settings from existing bucket - optional

Choose bucket

Here we need to implement the object ownership, if we want the object of this bucket to be owned by

multiple accounts then we should choose ACLs Enabled, Although the recommended property is ACLs
disabled.

Object Ownership info

Control ownership of objects written to this bucket from other AWS accounts and the use of access control lists (ACLs). Object ownership
determines who can specify access to objects.

© ACLs disabled (recommended) () ACLs enabled
All objects in this bucket are owned by this account. Objects in this bucket can be owned by other AWS
Access to this bucket and its objects is specified using accounts. Access to this bucket and its objects can be
only policies. specified using ACLs.

Object Ownership

Bucket owner enforced

Here we can implement the security of our bucket, it is always recommended to block all public access
of the bucket.

Block Public Access settings for this bucket

Public access is granted to buckets and objects through access control lists (ACLs), bucket policies, access point policies, or all. In order to
ensure that public access to this bucket and its objects is blocked, turn on Block all public access. These settings apply only to this bucket
and its access points. AWS recommends that you turn on Block all public access, but before applying any of these settings, ensure that your
applications will work correctly without public access. If you require some level of public access to this bucket or objects within, you can
customize the individual settings below to suit your specific storage use cases. Learn more E

Block all public access
Turning this setting on is the same as turning on all four settings below. Each of the following settings are independent of one another.

= Block public access to buckets and objects granted through new access control lists (ACLs)
S3 will block public access pe
ACLs for existing buckets and o
using ACLs.

ons applied to newly added buckets or objects, and prevent the creation of new public acces
ts. This setting doesn’t change any existing permissions that allow public access to S3 1

= Block public access to buckets and objects granted through any access control lists (ACLs)

S3 will ignore all ACLs that grant public access to buckets and objects,

- Block public access to buckets and objects granted through new public bucket or access point policies
S3 will block new bucket and access point policies that grant public access to buckets and objects. This setting doesn't change any

existing policies that allow public access to S3 reso

- Block public and cross-account access to buckets and objects through any public bucket or access point
policies

S3 will ignore public and cross-account access for buckets or access points with policies that grant public access to buckets and

Just click on create bucket and our bucket will be created.

» Advanced settings

@ After creating the bucket you can upload files and folders to the bucket, and configure additional bucket settings.

Cancel Create bucket

3.1.2 Uploading training images on s3

Next step is to create folders within the S3 bucket. We have created our main folder with the name ‘CC_Dataset’

Amazon S3 Buckets cloud-computing-dataset
cloud-computing-dataset

Objects Properties Permissions Metrics Management Access Points

Objects (1)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly

grant them permissions. Learn more L",

Actions v H Create folder ‘

1 @

Q

Name Y Type v Last modified v Size v Storage class v

[CC-Dataset/ Folder

Now, we need to gather our training data, for this model we have taken around 150 sample images of each 5,10,20
and 50 Euro currency notes.

Create folder for each label as shown in picture below.

V\mazon S3 Buckets cloud-computing-dataset CC-Dataset/

CC-Dataset/

Objects Properties

Objects (8)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory]3 to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant

Actions ¥ H Create folder ‘ [Upload

them permissions. Learn more [}

Q L @
Name A Type v Last modified v Size v Storage class v
3 EURO-10/ Folder - - -
3 EURO-20/ Folder - - -
3 EURO-5/ Folder - = -
O EURO-50/ Folder - - -

Now upload sample images in respective folders.

2N ® Global v MuhammadHaseebAnwar ¥

Amazon S3 X Amazon S3 Buckets cloud-computing-dataset CC-Dataset/ EURO-10/

EURO-10/ Copy S3URI |

Buckets

Access Points
Objects i
Object Lambda Access Points Dpnc Froperie
Multi-Region Access Points

Batch Operations

Objects (144)

Access analyzer for S3
e fundamental entities stored in Am

sions. Leam more [

Block Public Access settings for [c] Actions ¥ Create folder

this account

3. You can use Amazon S3 inventory [to get a list of all obj

ts in your bucket. For others to access your objects, you'll need to explicitly grant

Q 1 @
¥ Storage Lens
Dashboards Name a Type @ Last modified v Size v Storage class v
AWS Organizations settings
@ IMG_20220618_140650.jpg ipg June 18, 2022, 19:01:47 (UTC+02:00) 8.9KB Standard
[IMG_20220618_140652.jpg ipg June 18, 2022, 19:01:47 (UTC+02:00) 85KB Standard
Feature spotlight o [IMG_20220618_140653.jpg iPg June 18, 2022, 19:01:47 (UTC+02:00) 8.9KB Standard
@ IMG_20220618_140654.jpg ipg June 18, 2022, 19:02:22 (UTC+02:00) 96 KB Standard
< AR [I1MG_20220618_140655.jpg ipg June 18, 2022, 19:02:22 (UTC+02:00) 9.6 KB Standard
[IMG_20220618_140656.jpg ipg June 18, 2022, 19:02:23 (UTC+02:00) 80KB Standard
[1MG_20220618_140657.jpg ipg June 18, 2022, 19:02:23 (UTC+02:00) 83KB Standard
[IMG_20220618_140659.jpg irg June 18, 2022, 19:02:23 (UTC+02:00) 83KB Standard

3.1.3 Creating notebook instance on sagemker

Now as we have setup our S3 bucket and folders as we need to train our model, now we are moving towards our
AWS service called Sagemaker.

This is the landing page of our Sagemaker.

aws Services | Q L @ stockholm v MuhammadHaseebAnwar ¥

Amazon SageMaker X
MACHINE LEARNING

Getting started

Amazon SageMaker New to SageMaker?

Control panel BUII.d, tra | n, and deploy Get started with Amazon SageMaker by completing the

Studio quick start guide.

— g machine learning models at

SageMaker dashboard
way to get ML models from idea to production.

Images

h Documentation

Searct

» Notebook @
. Getting started
How it works :

» Processing

Tutorials
» Training : >
What is Amazon SageMaker? Documentation (2
T Amazon SageMaker provides machine learning (ML) capabilities for data scientists and
developers to prepare, build, train, and deploy high-quality ML models efficiently. Developer Resources [4

» AWS Marketplace
AWS Developer Forum [2

—— New user onboarding guide m

o—, Contact us [
Take survey [3 - &=L Get started with Amazon SageMaker by completing the quick start

We need to create Notebook instance within sagemaker, choose your desired reglon we have chosen eu-central-

@ LaunchMe x | & Cloud-Con X | B Report X @ AmazonS: x i@ doud-com: X | [CloudCom x | [l Cloud Com x | [B Cloud Co | & Thinkport X | & NewTab x 37 o X
« C & eunorth-1.console.aws.amazon.com/sagemaker/home?region=eu-north-1#/notebook-instance 2 % O @@ » 0@
aws Services Q L !] L O MuhammadHaseebAnwar ¥
Tudio -
Studio Lab (2 QD) Amazon SageMaker > Notebook instances US East (N. Virginia)
RStudio 2 1
@ Notebook instances 95 East(Chio) 5 tebook instance
Q search notebook instar US West (N. California) 1 ®
SageMaker dashboard
US West (Oregon)
Images Name v Instance Creation time jons
Search Africa (Cape Town)
There are currently no resources
¥ Notebook
s . Asia Pacific (Hong Kong)
Notebook instances
cle configurations
Git repositories Asia Pacific (Mumbai)
» Processing Asia Pacific (Osaka) ag
» Training Asia Pacific (Seoul) ap-r
» Inference Asia Pacific (Singapore) af
» AWS Marketplace
Asia Pacific (Tokyo)
Take survey [3
Canada (Central)
Tutorials
Documentation [4 Europe (Frankfurt)
https://ap-southeast-2.console.aws amazon. com/sagemaker/homeZregion: 022, Amazon Web Service Privacy Terms Cookie preferences

L Type here to search

Click on create notebook instance

ammadHaseebAnwar ¥

Amazon SageMaker Notebook instances
Notebook instances C Create notebook instance
Q_ Search notebook instances 1 ©

Give name of your notebook instance, and choose your instance type. Further information on sage maker instance
types is provided here https://AWS.amazon.com/sagemaker/pricing/ .

10

https://aws.amazon.com/sagemaker/pricing/

If you are using Sagemaker for the first time, then take advantage of the free tier, Free tier information is also
provided in the above link.

sem = | = ¢ - .
a2 Services Q. Search for services, features, blogs, docs, and more

Amazon SageMaker Notebook instances Create notebook instance

Create notebook instance

Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances
include example code for common model training and hosting exercises. Learn more [4

Notebook instance settings

Notebook instance name

Cloud-Computing-Project-Image-Recognition-NB-Instance

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your account in an AWS Region.
Notebook instance type

ml.t3.medium v
Platform identifier Learn more [

Amazon Linux 2, Jupyter Lab 1 v

» Additional configuration

In this step we can create a new 1AM role or use already created 1AM role. IAM role is nothing but a set of
permissions, as you need to access to different other services of AWS within this notebook, make sure that the
role which you select here has the necessary permissions to access those web services. Further information of
IAM roles are provided here https://docs.AWS.amazon.com/IAM/latest/UserGuide/id_roles.html

Root access: you really don’t need to give root access to the sagemaker notebook here if you are working on
production environment, root access means administrative privileges, which means by using this notebook you
can edit, remove any files on the system.

11

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Permissions and encryption

IAM role

Notebook instances require permissions to call other services including SageMaker and S3. Choose a role or let us create a role with the
AmazonSageMakerFullAccess IAM policy attached.

AmazonSageMakerServiceCatalogProductsUseRole v

Root access - optional
© Enable - Give users root access to the notebook

Disable - Don't give users root access to the notebook
Lifecycle configurations always have root access

Encryption key - optional
Encrypt your notebook data. Choose an existing KMS key or enter a key's ARN.

No Custom Encryption v

» Network - optional

» Git repositories - optional

» Tags - optional

Cancel Create notebook instance

After our notebook instance is created, we need to start this notebook instance after that we are going to write
our model.

@ Q ® Frankfurt v MuhammadHaseebAnwar ¥
I Amazon SageMaker Notebook instances
Notebook instances
Q Search notebook instances 1 @
Name v Instance Creation time v Status v Actions
Cloud-Computing-Project-Image-Recognition-NB-Instance ml.t2.medium May 29, 2022 13:35 UTC © Stopped Start

12

Amazon SageMaker Notebook instances

Notebook instances

Q, Search notebook instances

Name

v

Instance

2] PN [©) Frankfurt v MuhammadHaseebAnw:

0o Cloud-Computing-Project-Image-Recognition-NB-Instance

ml.t2.medium

C ‘ Actions & Create notebook instance
1 @
Creation time atus v Actions
Start
May 29, 2022 1 Stopped Start

Update settings

3.1.4 Image classification on Sagemaker

Sagemaker Model:

Add/Edit tags

Delete

We have used Sagemaker’s built in Image classification Algorithm which is based on Supervised Learning
that supports multi-class classification. It uses Conventional Neural Networks (CNN). More info on the image
classification model of sagemaker can be access using this link

https://docs.AWS.amazon.com/sagemaker/latest/dg/image-classification.html

There are different type of algorithms are offered by sagemaker, which can be used according to the need.

Information of different type of algorithms Sagemaker can be accessed here.
https://docs. AWS.amazon.com/sagemaker/latest/dg/algos.html

Writing our model:

First we are saving our S3 bucket and main folder name into variables to access again time to time.

13

https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

BEABBBRERRBEREERBBEBEE |l OUD COMPUTING PROJECT BRASHEEHBRBEEENARBREREHRBRBEE
#aRAREEHR Training machine Learning models in the AWS Sagemaker ####EAR##ERE
#aR#REH#R Supervised by: Prof. Dr. Christian Baun ####HHBEREHHRARRHRARERENE

BRRERBEER Team Members:
ERBRBEEHRE Muhammad Haseeb Anwar
ERRABIHER Moeez Ur Rehman
BARERBEER Sehrish Kanwal
BRERERERHR Harmain Haidar

S3 Bucket Name
bucket_name='cloud-computing-dataset’

Our Main Folder inside the S3 bucket Which has subfolders of our classes
One Sub-Folder will be considered as One Class
dataset_name = 'CC-Dataset’

print('Name of the bucket is: '+dataset_name)
print('Name of dataset folder is: '+bucket_name)

Name of the bucket is: CC-Dataset
Name of dataset folder is: cloud-computing-dataset

Here we are importing the sagemaker library and setting up environment.
Get_execution_role() method gives us the role which we are using to run the sagemaker notebook.
session() method is used to get a sagemaker session.

Image_uris.retrieve() method is used for generating ECR image URIs for pre-built SageMaker Docker image,
the arguments of the methods can be studied extensively using below link.
https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html#sagemaker.image_uris.retrieve

As we are using prebuilt image classification model of sagemaker we have passed this algorithm name in the
perimeter.

#Setting Up Our Environment

Importing Sagemaker

getting execution role of notebook

defining algorithm type in Image Uri method

import sagemaker

from sagemaker import get_execution_role

from sagemaker.amazon.amazon_estimator import get_image uri

role = get_execution_role()

session = sagemaker.Session()

#sagemaker.image_uris.retrieve

#get image_uri

image_uris = sagemaker.image_uris.retrieve(region=session.boto_region_name, framework ='image-classification')

print(‘'Region name: '+session.boto_region_name)
print(‘'Algorithm Used: image-classification)

Region name: eu-central-1
Algorithm Used: image-classification

14

https://sagemaker.readthedocs.io/en/stable/api/utility/image_uris.html#sagemaker.image_uris.retrieve

There are multiple ways to feed images to the model for training. The SageMaker Image Classification algorithm
supports both RecordlO and conventional image formats like JPG and JPEG. In this project we are going to use
the RecordlO format for training.

What is Record 10 format?

Data loading is a critical component of any machine learning system. With smaller number of training images, it
might not be a problem to used them as they are, but with larger datasets, data loading into training model can
become performance critical.

In simple words, Record 10 format converts images into binary data exchange formats, RecordlO is efficient data
format developed by Apache MXnet it resizes the image into 256 * 256, then compress into JPEG format. After
that, it saves a header that indicates the index and label for that image to be used when constructing the Data field
for that record. It then pack several images together into a file.

More information of RecordlO file can be read here:
https://mxnet.apache.org/versions/1.9.1/api/architecture/note data loading

Sagemaker recommend storing images as records and packing them together, the major benefit is Storing images
in RecordlO format greatly reduces the size of the dataset on the disk.

In below code we specify the path of the script which converts images into RecordlO files

BASE_DIRECTORY="/tmp'

%env BASE_DIRECTORY=$BASE_DIRECTORY
¥env S3_BUCKET_NAME = $bucket_name
¥env DATASET_NAME = $dataset_name
import sys,os
suffix="/mxnet/tools/im2rec.py"

im2rec = list(filter((lambda x: os.path.isfile(x + suffix)), sys.path))[@] + suffix
¥env IM2REC=$im2rec

env: BASE_DIR=/tmp

env: S3_DATA_BUCKET_NAME=cloud-computing-dataset
env: DATASET_NAME=CC-Dataset
env: IM2REC=/home/ec2-user/anaconda3/envs/mxnet_p36/1ib/python3.6/site-packages/mxnet/tools/im2rec.py

As we have specified the script which transforms our images into Record 10 file, we now pull all S3 images.

SRR S e bol nar Pridc o e s L e bt
The script below Pulls our images from S3 bucket

'aws s3 sync s3://$53_BUCKET_NAME/SDATASET_NAME $BASE_DIRECTORY/$DATASET_ NAME --quiet

print('Images have been Pulled!!! ')

Images have been Pulled!!!

Now we transform our fetched images into Record 10 file, we have kept the training ratio to 70%, while Testing
ratio to 30%. The Record 10O files will be created in this step with the above ratio.

15

https://mxnet.apache.org/versions/1.9.1/api/architecture/note_data_loading

%%bash
Now here we use the IM2REC script to convert our images which we fetched from 53 bucket into Recordl0 files

Delete if there are already created Recio files in our working directory

cd $BASE_DIR
rm *.rec
rm *.1st

We want to create 2 LST files first, One for training and One for testing, along with saving the class of each image
The output of the LST files command includes a List of all of our label classes
We are specifying here the training and testing ration, 76% Training Ratio and 36% Testing Ratio

echo "Creating LST files”
python $IM2REC --1list --recursive --pass-through --test-ratio=0.3 --train-ratio=€.7 $DATASET_NAME $DATASET_NAME > ${DATASET_NAME} classes

echo "Label classes:”
cat ${DATASET_NAME} classes

Then we create Recordl0 files from the LST files

echo "Creating Recordl0 files"

python $IM2REC --num-thread=4 ${DATASET_NAME} train.lst SOATASET_NAME
python $IM2REC --num-thread=4 ${OATASET_NAME} test.lst $DATASET_NAME
1s -1h *irec

Creating LST files

Label classes:

EURO-18 @

EURO-20 1

EURO-5 2

EURO-5@ 3

Creating RecordIO files

Creating .rec file from /tmp/CC-Dataset_train.lst in /tmp

time: ©.39785265922546387 count: @

Creating .rec file from /tmp/CC-Dataset_test.lst in /tmp

time: 9.0041053295135498¢5 count: @

-rW-rW-r-- 1 ec2-user ec2-user 3.7M Jun 3@ 22:14 (C-Dataset_test.rec
-PW-rW-r-- 1 ecZ-user ec2-user 8.6M Jun 3@ 22:14 CC-Dataset_train.rec

Now we upload our created RecordlO files back into our S3 bucket, which then be used as an input for training
of our model.

[15]:

We are now Uploading our train and test RecordIO files to S3 bucket
bucket = bucket_name
print (bucket)

training_path_s3 = 's3://{}/{}/train/’.format(bucket, dataset_name)
validation_path_S3 = ‘s3://{}/{}/validation/'.format(bucket, dataset_name)
print(training_path_s3)

print(validation_path_S3)

Delete any existing data
Yaws s3 rm s3://{bucket}/{dataset_name}/train --recursive
taws s3 rm s3://{bucket}/{dataset_name}/validation --recursive

Upload the rec files to the train and validation fbtderﬂ
'aws s3 cp /tmp/{dataset_name}_train.rec $training_path_s3
taws 53 cp /tmp/{dataset_name}_test.rec $validation_path_S3

cloud-computing-dataset

53://cloud-computing-dataset/CC-Dataset/train/

s3://cloud-computing-dataset/CC-Dataset/validation/

upload: ../../../tmp/CC-Dataset_train.rec to s3://cloud-computing-dataset/CC-Dataset/train/CC-Dataset_train.rec
upload: ../../../tmp/CC-Dataset_test.rec to s3://cloud-computing-dataset/CC-Dataset/validation/CC-Dataset_test.rec

16

The uploaded RecordIO files in our S3 bucket will look like this.

Amazon S3 Buckets cloud-computing-dataset CC-Dataset/ train/

train/

Objects Properties

Objects (1)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory Z to get a list of all objects in your bucket. For others to access

your objects, you'll need to explicitly grant them permissions. Learn more Z

.
Create folder m
Q

1 &
Name A Type ¥ Last modified v Size ¥ Storageclass V¥
B CC-Dataset_train.rec rec July 1, 2022, 00:34:46 (UTC+02:00) 8.5 MB Standard

Amazon S3 Buckets cloud-computing-dataset CC-Dataset/ validation/

validation/

Objects Properties

Objects (1)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory Z to get a list of all objects in your bucket. For others to access

your objects, you'll need to explicitly grant them permissions. Learn more |2',

Create folder [f Upload

Q 1 ©
Name A Type ¥ Last modified v Size ¥ Storageclass V¥
B CC-Dataset_test.rec rec July 1, 2022, 00:34:47 (UTC+02:00) 3.6 MB Standard

We have now done our preprocessing; the data is ready to be trained. Now are going towards the process of
training our model using the created Record 10 files.

We are here defining the Record 10 paths to the training and validation functions. For information of the inputs.
Training Input() method can be found here:
https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs. TrainingInput

17

https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.TrainingInput

Documentation of the function sagemaker.inputs.TrainingInput is available here
https://sagemaker.readthedocs.io/en/stable/api/utility/inputs.html#sagemaker.inputs.TrainingInput
Create a definition for input data used by an Sagetaker training job.
train_data = sagemaker.inputs.TrainingInput(
training_path_s3,
distribution="'FullyReplicated’,
content_type="application/x-recordio’,
s3_data_type="'5S3Prefix’

)

validation_data = sagemaker.inputs.TrainingInput(
validation_path_S3,
distribution='FullyReplicated’,
content_type="application/x-recordio’,
s3_data_type="53Prefix’

)
data_channels = {'train’: train_data, 'validation': validation_data}

print(train_data)
print(validation_data)

<sagemaker.inputs.TrainingInput object at @x7f813d49e2e8>
<sagemaker.inputs.TrainingInput object at @x7f813d49e320>

Defining the output location of out model, as well as initializing the estimator function. Sagemaker handles end-
to-end Amazon Sagemaker training and deployment tasks. More documentation can be read
https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

[43]: | # The are defining the output Location for model
s3_output_location = 's3://{}/{}/output’.format(bucket, dataset_name)

we have used ml.p3.2xlarge isntance for traning

image_classifier = sagemaker.estimator.Estimator(
role=role,
image_uri=image_uris,
instance_count=1,
instance_type="ml.p3.2xlarge’,
output_path=s3_output_location,
sagemaker_session=session

)

/

print{'done")

| done

Image classification Hyperparameters,

we have defined the

image shape as 3,244,244 which is same as the image shape of our RecordlO files.

number of classes which in our case are 4,

Augmentation type here is important as we are taking the color into account, so we have chosen ‘crop color’.

Epoch: We have not provided any value for epochs so it will take the default value 30.

18

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

Learning rates: The learning rate controls how quickly the model is adapted to the problem. Smaller learning
rates require more training epochs given the smaller changes made to the weights each update, whereas larger
learning rates result in rapid changes and require fewer training epochs. The valid values are between 0 and 1.

more documentation can be found here https://docs.AWS.amazon.com/sagemaker/latest/dg/IC-
Hyperparameter.html

[58]: num_classes=! 1ls -1 {base_dir}/{dataset_name} | wc -1
num_classes=int{num_classes[8]) - 3
num_training_samples=! cat {base_dir}/{dataset_name}_train.lst | wc -1
num_training_samples = int{num_training_samples[@])

Details on Sagemaker built-in Image Classifier hyperparameters
avoilable here: https://docs.aws.amazon.com/sagemaker/Latest/dg/IC-Hyperparameter. html

base_hyperparameters=dict(
use_pretrained_model=1,
image_shape='3,224,224",
num_classes=num_classes,
augmentation_type="crop_color', #taking corresponding Hue-Saturation-Lightness into accoun
num_training_samples=num_training_samples,

+

\
/

These are hyperparameters are important which can affect the model training success:
hyperparameters={
**pase_hyperparameters,
*#*dict(
learning_rate=0.001,
mini_batch_size=5,

1

J
image_classifier.set_hyperparameters(**hyperparameters)
hyperparameters

print('No of tranining Samples: ‘+str(num_training_samples))
print ('No of Classes: '+str(num_classes))

No of tranining Samples: 464
No of Classes: 4

Now starting our training job, we have given all our parameters as an input to our training job.

The training job is started and will provide the path of the model where it will be stored.

19

https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

1 X%time

)
%

import time
now = str(int(time.time()))
training_job_name = 'IC-' + dataset_name.replace('_', '-') + '-' + now

image_classifier.fit(inputs=data_channels, job_name=training_job_name, logs=True)

job = image_classifier.latest_training_job
model_path = f"{BASE_DIR}/{job.name}"

print{(f"\n\n Finished training! The model is available for download at: {image_classifier.output_path}/{job.name}/output/model.tar.gz")

2@22-86-30 23:08:48 Starting - Starting the training job...ProfilerReport-165663@528: InProgress
2822-86-30 23:09:40@ Starting - Preparing the instances for training......
2022-86-39 23:10:43 Downloading - Downloading input data..

2022-86-30 23:13:84 Training - Training image download completed. Training in progress.[23:13:11] /opt/brazil-pkg-cache/packages/AIAlgorithm
sMXNet/ATAlgorithmsMXNet-1.3.x_ecl_Cuda_10.1.x.11282.8/AL2_x86_64/generic-flavor/src/src/operator/nn/./cudnn/./cudnn_algoreg-inl.h:97: Runni
ng performance tests to find the best convolution algorithm, this can take a while... (setting env variable MXMET_CUDNN_AUTOTUNE_DEFAULT to
8 to disable)

[26/36/2022 23:13:15 INFO 140493106341696] Epoch[@] Batch [20]4811Speed: 23.524 samples/sec#@llaccuracy=0.428571

[06/30/2022 b INFO 148493106341696] Epoch[@] Batch [48]#011Speed: 32.955 samples/sec#@llaccuracy=8.629756

[06/36/2022 :18 INFO 148493106341696] Epoch[@] Batch [6@]%¥@11Speed: 38.872 samples/sec#dllaccuracy=0.708197

[@6/3@/2022 23:13:2@ INFO 140493186341696] Epoch[@] Batch [8@]#211Speed: 41.102 samples/sec#@llaccuracy=0.767901

[@6/30/2022 23:13:21 INFO 149493106341696] Epoch[@] Train-accuracy=8.784783

[@6/3@/2022 23:13:21 INFO 148493106341696] Epoch[8] Time cost=18.725

[@6/30/2022 23:13:22 INFO 148493106341696] Epoch[@] Validation-accuracy=8.995002

[@6/32/2022 23:13:23 INFO 140493106341696] Storing the best model with validation accuracy: ©.995002

[@6/30/2022 INFO 148493106341696] Saved checkpoint to "/opt/ml/model/image-classification-8@91.params"
[@6/38/2022 INFO 140493106341696] Epoch[1] Batch [28]#811Speed: 55.178 samples/sec#@llaccuracy=8.895238
[@6/3e/2022 INFO 149493106341696] Epoch[1] Batch [48]#811Speed: 55.481 samples/sec#@llaccuracy=8.9282439
[26/38/2022 INFO 148493106341696] Epoch[1] Batch [6@8]#011Speed: 55.671 samples/sec#@llaccuracy=08.927869
[@6/30/2022 INFO 148493106341696] Epoch[1] Batch [88]#011Speed: 55.449 samples/sec#@llaccuracy=0.938272
[96/3@/2022 INFO 149493106341696] Epoch[1] Train-accuracy=8.936957

[@6/38/2022 INFO 148493106341696] Epoch[1] Time cost=8.19%

[06/30/2022 INFO 140493106341696] Epoch[1] Validation-accuracy=1.000000

[@6/30/2022 INFO 148493106341696] Storing the best model with validation accuracy: 1.000002

[@6/3e/2622 INFO 148493106341696] Saved checkpoint to "/opt/ml/model/image-classification-0@82.params”
[@6/30@/2022 INFC 148493106341696] Epoch[2] Batch [20]#011Speed: 54.774 samples/sec#@llaccuracy=9.914286
[@6/30/2022 INFO 148493106341696] Epoch[2] Batch [48]#011Speed: 55.316 samples/sec#@llaccuracy=0.951229
[06/30/2022 INFO 148493106341696] Epoch[2] Batch [68]#011Speed: 55.483 samples/sec#@llaccuracy=08.963934

[@6/30/2022 23:13:40 INFO 148493106341696] Epoch[2] Batch [88]#811Speed: 55.151 samples/sec#@llaccuracy=8.967301
[06/30/2022 23:13:41 INFO 140493106341696] Epoch[2] Train-accuracy=0.971739

[@6/30/2022 23:13:41 INFO 1484931086341696] Epoch[2] Time cost=8.231

[@6/30/2022 z 140493106341696] Epoch[2] Validation-accuracy=1.808028

[@6/3@/2022 g 140493106341696] Epoch[3] Batch [28]#@11Speed: 53.828 samples/sec#@llaccuracy=08.999476
[06/30/2022 23:13:47 INFO 140493106341696] Epoch[3] Batch [40]#811Speed: 55.907 samples/sec#@llaccuracy=8.990244
[@6/30/2@22 23:13:48 INFO 140493106341696] Epoch[3] Batch [68]#811Speed: 55.255 samples/sec#@llaccuracy=8.977849
[06/30/2022 23:13:50 INFO 148493106341696] Epoch[3] Batch [88]#0@11Speed: 55.150 samples/sec#@lilaccuracy=8.982247
[@6/30/2022 23:13:51 INFO 148493106341696] Epoch[3] Train-accuracy=08.976@87

[@6/32/2022 23:13:51 INFO 149493186341696] Epoch[3] Time cost=8.235

print(f"\n\n Finished training! The model is available for download at: {image_classifier.output_path}/{job.name}/cutput/model.tar.gz")

Finished training! The model is available for download at: s3://cloud-computing-dataset/CC-Dataset/output/IC-CC-Dataset-16566309528/output/m
odel.tar.gq

We can also see our S3 bucket where the model is saved.

Amazon S3 Buckets cloud-computing-dataset CC-Dataset/ output/ IC-CC-Dataset-1656630528/ output/

output/

Objects Properties

Objects (1)
Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory E to get a list of all objects in your bucket. For others to access

your objects, you'll need to explicitly grant them permissions. Learn more [ﬂ

Create folder [t upload

Q 1 ©
Name A Type ¥ Last modified v Size v Storage class 'f
@ modeltargz gz July 1, 2022, 01:19:27 (UTC+02:00) 208.3 MB Standard

3.1.5 Deploying endpoint on sagemaker

As our model is trained, we now have to deploy our endpoint, which then will be used for our predictions.

E%time
Deploying our trained model to an endpoint which will then we used by our app to predict the currency
deployed_endpoint = image_classifier.deploy(

initial_instance_count = 1,
instance_type = 'ml.t2.medium’

--------- !CPU times: user 141 ms, sys: 16.2 ms, total: 157 ms
Wall time: 4min 31s
print(deployed_endpoint)

<sagemaker.predictor.Predictor object at @x7f813cabdd36>

The deployed endpoint is available and in service now.

Now there are many ways to call this endpoint, we can predict our images from this notebook or we can create a
webapp which will call our endpoint using Api Gateway and Lambda functions and will show our predictions,

first we are showing how this can be done using notebook instance.

Create a function which invokes the endpoint and returns the result of prediction.

& c QO B = hitp entral-1.console.aws.amazon.com/sagemaker/home?region=eu-central-1#/endpoints b3 @ & =

Services | Q B £ @ Fonkuty MuhammadHaseebAnwar ¥

e ey 8

Git repositories

» Processing

Amazon SageMaker Endpoints
» Training R
Endpoints [&] ‘ Create endpoint
¥ Inference Q Search endpoints 1 ®
Compilation jobs
Marketplace model @
packages Name v ARN - v Status ¥ Last updated
Models
; . arm:aws:sagemaker:eu-central-
ourati age-classification Jun 30, 2022 Jun 30, 2022
Endpoint configurations Image-c .) . WS 3)
2022.06.30-23-23-26.838 1:540180785457:endpoint/image-classification: 2393 UTC @ InService 2327 UTC

Endpoints 2022-06-30-23-23-29-838

Batch transform jobs

¥ Edge Manager
Get started
Edge packaging jobs

Edge device fleets

3.1.6 Testing the model from notebook

% et T e et e s e s

If we want to check out model ' prediction through this notebook instance
we will create a function which will call our endpoint here and return the model prediction
we will have to upload some test images to our s3 bucket which this method will use

import json
import numpy as np
import os

def classify_deployed(file_name, classes):
payload = None
with open(file_name, 'rb') as f:
payload = f.read()
payload = bytearray(payload)

result = deployed_endpoint.predict(payload, initial args={'ContentType': 'image/jpeg'})

2]

t.predict(payload))
vayload)

3
4
m m

t = json.loads(deployed_endpo
t = deployed_endpoint.predict
prob_index = np.argmax(result)

return (classes{best_prob index], result[best prob_index])

1
{

#
g3
o

n

+

o)

E

resultarray = (result.decode('UTF-8')[1:1len{result)-13).split(",")
for i in range(len{(classes)):

print(classes[i] + ":" + str(resultarray[i]))
return result

print(“"Function created")

Function created

Now upload a sample image into S3 Bucket, We have used a 50 euro image and uploaded in into the folder
test_images on S3.

View tutorial

@ Store your archive datasets in the low-cost Amazon S3 Glacier storage classes.

Amazon 53 Buckets cloud-computing-dataset CC-Dataset/ Test_images/

Copy S3 URI

Test_images/

Objects Properties

Objects (1)
Objects are the fundamental entities stored in Amazon S3. You can use Amazen S3 inventory E to get a list of all objects in your bucket. For others to access your objects, you'll need to explicitly grant

‘them permissions. Learn more Z

Actions ¥ H Create folder ‘

1 @

Q

Name A Type v Last modified v Size v Storage class v

@ 50-euro.JPG PG July 1, 2022, 01:38:08 (UTC+02:00) 220KB standard

In this step we are getting our image from S3 and saving them into a variable called Euro50.

but for this we have to make our image public

!wget -0 test.jpg https://cloud-computing-dataset.s3.eu-central-1.amazonaws.com/CC-Dataset/Test_images/5@-eurc.IPG

Euro5@ = "test.jpg"
test image
from IPython.display import Image

Image(Euro5@)

--2822-96-3@ 23:39:43-- https://cloud-computing-dataset.s3.eu-central-1.amazonaws.com/CC-Dataset/Test_images/59-eurc.IPG
Resolving cloud-computing-dataset.s3.eu-central-1.amazonaws.com (cloud-computing-dataset.s3.eu-central-1.amazonaws.com)...
Connecting to cloud-computing-dataset.s3.eu-central-1.amazonaws.com (cloud-computing-dataset.s3.eu-central-1.amazonaws.com)|52.219.47.144|:4

52.219.47.144

43... connected.

HTTP reguest sent, awaiting response... 208 OK
Length: 22513 (22K) [image/jpeg]

Saving to: ‘test.jpg’

21.99K --.-KB/s in 2.001s

test.jpg

Lo ST

Now we are calling our classify_deployed function to predict our image, and the result is shown in below
image.

23

43... connectea.
HTTP request sent, awaiting response... 208 OK
Length: 22513 (22K) [image/jpeg]

Saving to: ‘test.jpg’

test.jpg leex[>] 21.99K --.-KB/s in 9.091s

2022-06-30 23:39:44 (21.8 MB/s) - ‘test.jpg’ saved [22513/22513]

!x
Zy
Z8
.’-’-!
=
3
§
¥
8
g

i50

[70]: object_categories = [
“EURO-10",
"EURO-5",
“EURC-20",
"EURO-5@"
]
output = classify_deployed(Euro5@,object_categories)

EURD-12:2.6408426464495249¢-25
EURD-5: 4.2157054849667475e-05
EURD-20: 9.781115659279749e-05
EURD-50@: ©.9998335838317871

As we can see the EURO-50 image has the highest prediction value, our model is 99.9% confident that the
provided image in of 50 Euro note.

3.1.7 Cleanup Sagemaker

Important: Important is to stop the notebook after you have done creating the model, otherwise AWS will
keep charging you for the time the notebook is in service.

Amazon SageMaker » Notebook instances

Notebook instances ’ C H Actions A]
' 7\ < 1D &

[Open Jupyter
Q Ssearch notebook instances P 24
= Open JupyterLab
Name v Instance Creation time Stop Actions
Cloud-Computing-Project-lmage- " May 29, 2022 o Open Jupyter | Open
° Recognition-NB-Instance mitzmedium 13:35 UTC /pdate settings JupyterLab
Add/Edit tags

24

4. Web Application:

The web application is created for demo purposes of the model deployed on AWS Sagemaker. It is created using
React libraries in addition to using amplify library which streamlines the connection of the web application with
the AWS cloud setup.

For setting up amplify in the project we need to install amplify and with in the project directory execute the
command:

amplify init

Now we need to setup an API endpoint on the AWS API Gateway. We use the command:

amplify add api

We further follow the steps in the process executed by the command to make a POST Rest api. When the api
end point is created locally we push the setup on the AWS using:

amplify push

The web application consists of 2 main components:

Image Capture:

This component uses the camera of the device to capture the image to be identified.

25

Imagecapturejs U x

SFC > COMpONENts > Js Imagecapturejs » 4 Imagecapture > 9 render

26
27
28
29
30
31
32
33

| 34
35
36
37
38
39
40
41
42
43
44
45
46

// Moeez comments: This component opens and captures or screenshots
// the image in the camera session which is then used for image recognition
return
=div=
=div=
<Webcam
audio={false}
height={IMAGE HEIGHT}
width={IMAGE WIDTH}
ref={this.setRef}
screenshotFormat="1image/jpeqg"
screenshotWidth={IMAGE WIDTH}
videoConstraints={videoConstraints}
/=
</div=

<Form.Button onClick={this.handleCapture}=Classify</Form.Button=>
</div=>

)i

}
}

Classified Image:

This component displays the result in a format of a card with header, information and details.

App

Class:

classifiedimage.js U

30
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56

57
RR

src » components » Js Classifiedimage.js » ...

// Moeez comments: This component creates a React UI Card which is consists of a
// Header, Meta and a Description element.
render(}) {
return (
<Card style={{width: '224px'}}=
<Image src={this.props.imageSrc} />
<Card.Content>
=Card.Header=
{ this.state.bestlLabel ? this.state.bestLabel : "Loading..." }
</Card.Header=
<Card.Meta>
{ this.state.bestlLabelScore ? this.state.bestlLabelScore : "" }
</Card.Meta>
=<Card.Description=>
=Accordion defaultActiveIndex={-1} panels={this.accordionPanels()} /=
=</Card.Description=
</Card.Content=
</Card=
)
}

The main class of the web app is the App.js class where everything is put together.

26

First we make a form t take the inputs where we want to send the POST request to. The input includes name of
the AWS Inference endpoint of Sagemaker, its region and the labels or categories we want to identify or find

render

ez comments: This is form to take inputs which are used to send the
quest to and the labels are used to present the result of specific
ies. */}

roup widths=‘equal'>

.Input label='SM Endpoint Name' placeholder='Please enter Sagemaker endpoint name'
‘endpointName’ onChange={this.changeHandler} value={this.state.endpointName} />

.Input label='SM Endpoint Region' placeholder='Please enter sagemaker endpoint region’
‘endpointRegion' onChange={this.changeHandler} wvalue={this.state.endpointRegion} />

.Input label='Labels' placeholder="'Please enter space delimited list of labels®
'labels' onChange={this.changeHandler} value={this.state.labels} /=
Group=

roup widths=‘equal'=
eCapture onCapture={this.classify}/=

</Form.Group>

results of.
Appijs M x

SKC App.js > Eg App > @
10
147 {/* Moe
148 post re
149 categor
150 <Form=
151 <Form.G
152 <Form
153 name=
154
155 <Form
156 name=
157
158 [gForm
159 name=
160 </Form.
161
162 <Form.G
163| <Imag
164
165 </Form=
T1RR

Secondly after capturing image and issuing a POST request to AWS APl Gateway endpoint, we receive the
response and we display it to the user via a Card Group with our component of ClassifiedImage.

Appjs M X
SIC 5 App.js > % App > & render
187
A 188 {/* Moeez comments: Finally the results are grouped together and displayed */}
189 <CardGroup>
190 { this.state.imageSources.map({src, index) ==
191 <ClassifiedImage key={"img"+index} imageSrc={src} classifier={this.classifier} /=) }
192 </CardGroup=

snapshot of the request that is sent is attached here:

27

Appjs M x

src > Js App.js > % App > @ render

83
84 // Moeez comments: This function calls the AWS API Gateway endpointName
85 // and returns the categories with their predictions as the result
86 classifier = async (imageSrc) == {
87 const baseb4Image = new BuFFer(imageSrc.replace(/"data:image\/\w+;base6d,/, ""), 'basedd')
a8 const { predictions } = await API.post{
I 89 aws_exports.aws cloud legic custom[@].name,
90 '/classify',
91 {
92 body: {
93 base64Image,
94 endpointName: this.state.endpointName,
95 endpointRegion: this.state.endpointRegion,
96 H
97 ¥
98);
99 const topProbIndex = argMax(predictions);
100 const labels = [].concat(this.state.labels.split{' *});
101 labels.sort();
102 return {
103| labels: labels, predictions, topProbIndex: topProbIndex
104 }
105 }
106

5. Predicting currency note from webapp
Results:

The webpage needs 3 inputs, Sagemaker endpoint name, Region Name and all the classes names with ‘space’
B Rreact App ® x + v - a ¥
C @ localhost:3000 =2 % O @a O :

Euro Currency Note Identification using Sagemaker

Cloud Computing Project Supervised by Prof. Dr. Christian Baun
Frankfurt University Of Applied Sciences

SM Endpoint Name SM Endpoint Region Labels

image-classification-2022-06-30-23-23-29-838 eu-central-1 EURO-5 EURO-10 EURO-20 EURO-50

i

Classify

‘ou can drag and drop images here or click to select images to upload.

Clear Images

ﬂ L Type here to search

We capture images by pressing the classify button, and then prediction score will be shown below.

Classify

'You can drag and drop images here or click to select images to upload.

Clear Images

EURO-5 EURO-10 EURO-20 EURO-50

» Show Score Details » Show Score Details *» Show Score Details » Show Score Details

R Type here to search

We tried to predict the notes with different angles, to see how our prediction is working.

C @ localhost:3000 "2 % O @ 3 N

Clear Images

EURO-20

0.88326203

*» Show Score Details » Show Score Details » Show Score Details » Show Score Details *» Show Score Details » Show Score Details

EURO-5 EURO-5
0.866104185 0.925045
*» Show Score Details *» Show Score Details » Show Score Details » Show Score Details » Show Score Details » Show Score Details

29

