| | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

HicH INTEGRITY SYSTEMS

CLouD COMPUTING

Machine Learning Model Computation in AWS
and Azure

Melisa Xhepa (1378689)
Navya Sree Kanakala (1381948)

UNDER THE GUIDANCE OF

Prof. Dr. Christian Baun

July 8, 2022

1.5

Contents

(1_Introduction|

|2 Machine Learning in the Cloud|

|4 Technologies Used|

4.1 Amazon SageMaker|

4.7 Azure Blob Storage|.

4.8 Azure File Storage|

4.9 Azure Machine Learning Workspace| L

4.10 Azure Compute]

5 Architecturel
h.1 AWS

6 Implementation|

6.1 Generate Examp

le Data for The Implementation|

6.2 AWS Implementation|

[6.2.3 Create an Amazon S3 Bucketl

6.3 Azure Implementation|o

6.3.2 Create Workspacel

6.3.3 Create Compute Instance| oo

6.3.4 Create Compute Cluster|

635 Create Datasetl

B3.00 Deploy Modell . « . o o o oo e e e

[6.3.11 Endpoint|

[t Conclusion|
[References

10
10
11
12
13
14
15
17
17
17
19
20
21
24
24
25
26
26
27

29

29

1 Introduction

Machine learning (ML) is the study and development of algorithms that get better at a particular task as
they learn more about it. Through the use of machine learning, systems can learn from their past perfor-
mance and become better at what they do [1]. Machine learning, like the human brain, relies on input, such
as training data or knowledge graphs, to understand entities, domains, and the relationships between them.
Deep learning can begin once entities have been defined.

Most machine learning models start with training data, such as an enormous folder of images, which the
machine processes and starts to ”understand” statistically. Since there is no active human programming
involved in machine learning, the machine algorithm itself develops and changes as it interacts with the
training data [1]. The algorithm eventually becomes prepared for "real” data. As it processes fresh data, it
keeps changing and eventually comes up with a response or fix on its own. The fact that not all problems are
composed of a closed set of variables and procedures makes machine learning crucial. Traditional algorithms
deal with bounded, highly specific problems. By using machine learning, we can teach a model to solve
problems that we may not have known how to initially.

The distinction between algorithms and training must also be kept in mind. Depending on the use case,
one may look for a model using the technique and supply new data to train it, or one may look for a model
that has already been trained to handle the problem you’re attempting to solve.

We may utilize machine learning techniques, which are quite varied and have a large variety of models, to
handle problems like result prediction, estimate (when a value changes due to many natural causes), and
element classification.

The following are some examples of machine learning algorithms:

e Anomaly detection: This can reveal uncommon occurrences, events, or observations that stand out
significantly from the bulk of the data.

e Classification: The data points provided can be classified effectively using this. It can be used, for
example, to locate tumors or find spam.

e Clustering: The objects in the same group are more similar to one another than to those in other
groups thanks to this method of grouping a collection of objects. Pattern recognition, image analysis,
data compression, biological classification, and insurance are a few examples where it is helpful.

e Regression: With the help of a set of data points, this is used to determine the quantity that can
be expected as an input. The best coefficients of this mathematical relationship can be inferred under
the assumption that inputs and outputs are related mathematically via a linear, polinomic, logistic,
or other relationship. This kind of analysis is used to demonstrate a mathematical relationship or
correlation in any type of experiment that collects data.

e Computer vision: It is possible to read text from handwritten notes or images, identify people or
familiar landmarks, and analyze videos in real time.

All of these machine learning techniques are linked by the fact that they all rely on automatically learning
from a large amount of data. The algorithm architecture and a few initial parameters can be defined by the
programmer, and after that, the program learns by analyzing the data.

2 Machine Learning in the Cloud

Each day, more and more applications for artificial intelligence and machine learning are being developed.
Also probable is the fact that a sizeable portion of it will take place in the cloud. Over the years, major
reorganizations that strategically integrated Al into their organizational structures were carried out by lead-
ing cloud computing platforms like Amazon, Google, and Microsoft.

How do you choose the best platform for your machine learning projects if the cloud is where they will be
deployed? In this project, we will examine the machine learning image classification service as an example,
provided by both Microsoft Azure, and Amazon Web Services [2]. To create a machine learning solution,
you are not required to use a cloud service provider. After all, businesses can run a variety of open source
machine learning frameworks on their own hardware.

There are many advantages to moving some or all of your machine learning projects to the cloud. The
pay-per-use cloud model is ideal for bursting AI or machine learning workloads, and you can use the speed
and power of GPUs for training without having to make a hardware investment. Additionally, the cloud
enables companies to rapidly scale up their machine learning experiments as projects go into production and
demand for those features increases. What’s perhaps more significant is that the cloud enables intelligent
capabilities without the requirement for highly specialized knowledge in data science or artificial intelligence,
which are both uncommon and in short supply [2].

There are numerous ways to integrate intelligent features into enterprise applications using AWS, Microsoft
Azure, and Google Cloud Platform that don’t necessitate a team of data scientists or deep knowledge of Al
or machine learning theory.

While providing superior features from scalability to security, the hypercloud providers (AWS, Azure, and
GCP) are able to offer a lower total cost of ownership. Given that there are a lot of cloud-based models
available, using pre-made models actually is more beneficial. Because of the ever-increasing number of
algorithm optimizations for supporting parallel computing, utilizing less memory, and quickly starting up,
running, and shutting down, there is frequently no need to reinvent the wheel in machine learning. There
will always be a quicker execution time if we use pre-written models and run an experiment in the cloud.
This is because the models have already been optimized and refined with the best training available for their
task by experts, and the computing power a cloud provider can deliver produces better performance than
what we can achieve with on-premises computing.

3 Use Case and Motivation

The air sacs in one or both lungs become inflamed when a person has pneumonia, or a lung infection.
Symptoms and a physical exam are frequently used to make a diagnosis. To confirm the diagnosis, chest
X-rays may be required.

Our goal was to create a transfer learning algorithm that would efficiently process medical images and
quickly and accurately diagnose any key pathology present in each image. In this project, we establish a
diagnostic tool based on a deep-learning framework for the screening and diagnosing pediatric pneumonia.
Our framework makes use of transfer learning, which requires a lot less data to train a neural network than
traditional methods. In the long run, this tool might help hasten the diagnosis and referral of these treatable
conditions, enabling earlier treatment and better clinical outcomes.

3.1 Content

There are 5,856 validated chest X-ray images in this dataset. Two sets of independent patients’ images are
used for the training and testing. Before training, Each image imported into the database started with a
label matching the most recent diagnosis of the patient. The following labels are placed on images:

(disease: NORMAL/BACTERIA/VIRUS) - (randomized patient ID) - (image number of a patient).

4 Technologies Used

4.1 Amazon SageMaker

Machine learning models can be quickly and easily built, trained, and deployed at any scale using Amazon
SageMaker, a fully-managed service for data scientists and developers. For the development, improvement,
and deployment of machine learning models, Amazon SageMaker includes modules that can be used jointly
or separately.

Amazon SageMaker makes it simple to build ML models by providing everything you need to quickly connect
to your training data, choose and optimize the best algorithm and framework for your application, and create
ML models that are ready for training [3]. Using hosted Jupyter notebooks, a feature of Amazon SageMaker,
you can easily explore and visualize your training data.

4.2 S3 Bucket

The Amazon Simple Storage Service for object storage has scalability, data accessibility, security, and
performance (Amazon S3). Customers from all sizes and industries can use Amazon S3 to store and safeguard
any amount of data for a variety of use cases, such as data lakes, websites, mobile applications, backup and
restore, archives, enterprise applications, IoT devices, and big data analytics. You can optimize, arrange,
and set up the access to your data using its management features [4]. We are not using an S3 bucket in this
project because we are implementing our model in Jupyter Notebook and the data is being read directly
there. The bucket is created as a result of the IAM role and Sagemaker Notebook Instance creation.

4.3 Amazon EC2

Elastic Compute Cloud (EC2) is an on-demand computing service on the AWS cloud platform. Computing
encompasses all of the services that a computing device can provide, as well as the flexibility of a virtual
environment. It also allows users to configure their instances according to their needs, such as allocating
RAM, ROM, and storage based on the needs of the current task. Rather than buying your own hardware
and connecting it to a network, Amazon provides you with nearly limitless virtual machines to run your
applications while they manage the hardware. Auto-Scaling Groups are a unique feature of EC2 instances
that is essential to cloud computing. This enables EC2 instances to dynamically add additional computing
power as demand exceeds certain thresholds, such as CPU utilization.

4.4 TIAM

The TAM service manages who can access resources after being authenticated (signed in) and authorized
(having permissions). You start off with a single sign-in identity when you first create an AWS account,
and this identity has full access [5] to all of the account’s resources and AWS services. But if you're not the
root user (for instance, in a company’s AWS account), the admin user might have placed some restrictions
on what services you can use.

4.5 Jupyter Notebook

Data scientists can create and share documents with live code, equations, computational output, visualiza-
tions, and other multimedia resources as well as illustrative text using the free and open-source web appli-
cation known as Jupyter Notebook. Data cleaning and transformation, numerical simulation, exploratory
data analysis, data visualization, statistical modeling, machine learning, deep learning, and many other data
science tasks can all be performed [6] using Jupyter Notebooks.

A Jupyter notebook is composed of two parts: a front-end web page and a back-end kernel. Data scientists
can enter programming code or text into rectangular ”cells” on the front-end web page. The code is then
passed to the back-end kernel, which executes it and returns the results.

4.6 AzureML

AzureML is an Azure cloud-based machine learning service used for the development, training, and deploy-
ment of Machine Learning models and solutions. AzureML provides a variety of features for processing large
amounts of data [7] in the cloud, developing machine learning models and training, and finally deploying
models as web services. It can manage datasets, training statistics, and multiple trained models, which can
then be tested.

4.7 Azure Blob Storage

Azure Blob Storage is the cloud’s object storage service. Unstructured data, such as objects, don’t need a
particular data model. In order to store files, Azure Blob Storage saves the objects using the flat namespace.
The name of the stored item is the key, and its data is the value, of the key-value pair [7] in which objects
are saved.

4.8 Azure File Storage

Azure File Storage is the cloud file storage solution. Before configuring it, it should be mounted or deployed
on any operating system. Furthermore, because it is similar to a regular file system in Windows operating
systems, users are familiar with this type of storage. The only distinction is that Azure File Storage is
remotely mounted and has an unlimited storage capacity [7].

4.9 Azure Machine Learning Workspace

The Azure Machine Learning workspace provides a centralized location for working with all of the artifacts
generated by Azure Machine Learning. The workspace archives all training runs, including logs, metrics,
output, and a snapshot of your scripts. This data is used to determine which training run yields the best
model. You can use an Azure Machine Learning workspace to manage data, resources, and other aspects of
your machine learning workloads if you add it to your Azure subscription.

4.10 Azure Compute

A compute instance is a cloud-based workstation that is completely managed and tailored for your machine
learning development environment. The Azure Machine Learning compute instance allows you to write,
train, and deploy models in your workspace using a fully integrated notebook experience. Jupyter notebooks
may be executed in VS Code utilizing a compute instance as the remote server without the requirement
for SSH. You may also integrate VS Code through a remote SSH plugin. You may add kernels and install
software to your compute instance.

5 Architecture

5.1 AWS

Figure [I|depicts the architecture that can be produced by following the document’s deployment instructions.
To build a machine learning model on AWS SageMaker, one TAM Role and one instance are used. The
instance is Amazon EC2, and the EC2 instance will operate within AWS SageMaker. The model will be
trained using Jupyter Notebook, an AWS SageMaker built-in function. The trained model will be saved on
the Jupyter Notebook’s home page. The deployed machine learning model is adaptable and can run on any
cloud or local system.

AWS Cloud

Launch Instances

Instance Type

B

SageMaker Processing/Training |

Amazon EC2

2 Authenticate
System Admin
1AM Role

SageMaker Studio

. 1
AWS Sage Maker E] . > H

- 4 H] 1

| i i Jupyter '

AWS Console Single Sign-On BB S ' ! 1
-) ¢ : ;

! Jupyter Notebook 1

! :

Figure 1: AWS Architecture

AWS Flowchart

Open Amazon SageMaker

|

Create IAM Role

l

Generate Notebook Instance

|

Train the model/an
application to learn from the
data

|

Predict the model

i

Evaluate the model
performance

Figure 2: AWS Flowchart

5.2 Azure

Figure [3|depicts the architecture that can be produced by following the document’s deployment instructions.
This project makes use of chest X-ray pictures, but the data can be of any kind, such as a data lake or blob
storage, as long as it is supported by Azure. The input photographs are uploaded to Azure Blob storage as

the data asset, and an abstract representation of the data is constructed in Azure ML Dataset. In a Python
Jupyter Notebook, we employ the Azure Machine Learning training and deployment workflow. Then, using
your data, notebook is used to build our own machine learning model. A Compute VM Instance is generated
in the Model Training, which also serves as a training module for the image classification algorithm. This
module may track all experiments, as well as their associated runs, output, metrics, logs, and model registry.
Following deployment, a REST endpoint is built, which can be used to carry out the classification job. The
machine learning model that has been deployed is adaptable and can be accessed by any web application.

Managed Environment

Microsoft Azure Cloud SRR e e
Azure Machine Learning Service] I ;
1 i G
—— 01 4 Q ! e
: : : T : End Point —
Alithenticate & % . ;ea?ﬁ I:;ata i Azure ML Processing/Training
= —_— é = = i] :
: : Web Application
System-Admin Machine Learning Machine Learning § | 4ot L) H
Services Workspace Corpue tidier. | ZUEMESIIIG

Jupyter
N

[)

Sign-in to studio

Jupyter Notebook

Figure 3: Azure Architecture

Azure Flowchart

Create Workspace Service

|

Create Compute Cluster

l

Generate Notebook Instance

l

Train the model/an
application to learn from the
data

l

Predict the model

L

Deploy the application on
web server

Figure 4: Azure Flowchart

6 Implementation
This section will give a closer look to the image classification implementation on Azure and AWS.

6.1 Generate Example Data for The Implementation

Training a model requires example data. The problem we are trying to solve with the model will determine
the kind of data needed. In our case we want to create a model that can diagnose pneumonia using a chest
X-Ray as the input. To train such a model, we’ll need examples of chest X-Rays that show this.

Both the input values and the output response that you want the model to learn must be included in the
training set of data. It is critical to divide the dataset into training, and test sets when you are working

with it .

': Jupyter ChestXRay_ AWS Last Checkpoint 06/18/2022 (autosaved) [l Logout
File Edit View Inset Cell Kemel Help Not Trusted conda_amazonei_tensorflow2_p36 O
+ 5@ B 4 ¥ MHRn E|C » wm v || 2| © nbdi

Detection of Pneumonia through Image classification

Problem statement: Perform image classification of Chest Xray images to detect
Pneumonia

Downloading the Chest X-Ray Images Data

In [1]: # For Kaggle
!/home/ec2-user/anaconda3/envs/python3/bin/python -m pip install --upgrade pip
Ipip install gitshttps://github.con/Kaggle/kaggle-api.git --upgrade

credentials = {"username”:“navyasree”, key":"fefff382b27d8a76a192b7ee80c1d288" }
05.environ["KAGGLE_USERNAME']=credentials[“username”]
os.environ["KAGGLE_KEY']=credentials["key"]

/simple, https://pip.repos.neuron.amazonaws.com
pip in /home/ec2-user/anaconda3/envs/python3/1ib/python3.8/site-packages (22.1.2)
rg/simple, https://pip.repos.neuron.amazonaws.com

le/kaggle-api.git
e-api.git to /tmp/pip-req-build-xohul7so

b:none -q https://github.com/Kaggle/kaggle-api.git /tmp/pip-req-build-xohul7so
/kaggle-api.git to commit 49857db362983d158b1e71a43d888b981dd27159

. done

>=1.18 in /home/ec2-user/anaconda3/envs/amazonei_tensorflou2_p36/1ib/python3.6/site-packages

Looking in indexes: https

Reguirement already satis

Looking in indexes: https:/

collecting git+https://githu
Cloning https://github.com/
Running command git clone
Resolved https://github. com
Preparing metadsta (setup.py

Requirement already satisfied: s

(from kaggle==1.5.12) (1.15.8)

Regquirement already satisfied: certifi in /home/ec2-user/anacondas/envs/amazonei_tensorflow2_p3e/lib/python3.s/site-packages (f

rom kaggle--1.5.12) (2021.5.3@)

Requirement already satisfied: python-dateutil in /home/ec2-user/anaconda3/envs/amazonei_tensorflou2_p36/1ib/python3.s/site-pac

kages (from kaggle==1.5.12) (2.8.1)

Requirement already satisfied: requests in /home/ec2-user/anaconda3/envs/amazonei_tensorflou2_p36/1ib/python3.6/site-packages

(from kaggle==1.5.12) (2.27.1)

Requirement already satisfied: tqdm in /home/ec2-user/anaconda3/envs/amazonei_tensorflow2_p36/1ib/python3.6/site-packages (from

kaggle==1.5.12) (4.53.8)

Reguirement already satisfied: python-slugify in /home/ec2-user/anaconda3/envs/amazonei_tensorflow2_p36/1ib/python3.6/site-pack

ages (from kaggle--1.5.12) (6.1.2

Requirement already satisfied: urllib3 in /home/ec2-user/anaconda3/envs/amazonei_tensorflow2_p36/1ib/python3.s/site-packages (f

rom kaggle==1.5.12) (1.26.8)

Requirement already satisfied: text-unidecode>=1.3 in /home/ec2-user/anaconda3/envs/amazonei tensorflow2 p36/lib/python3.6/site

N

Figure 5: Image Processing on AWS

Unzip the dataset

In [2]: | # For Kaggle
tkaggle datasets download -d paultimothymooney/chest-xray-pneunonia
lunzip chest-xray-pneunonia.zip > /dev/null; echo " done.”

Dounloading chest-xray-pneunonia.zip to /home/ec2-user/Sagetiaker

100%| | 2.29G/2.29G [00:36<00:80, 86.4MB/s]
100%| | 2.296/2.296 [@0:36¢00:80, 67.6MB/s]
done.

In [3]: | !rm chest-xray-pneumonia.zip

In [4]: !sudo 1s -R | grep ":3" | sed -e 's/:$//° -e "s/[*-1["\/1*\//--/g' -e 's/*/ /' -e 's/-/|/’

-chest_xray
---chest_xray

RMAL
EUHONIA
n

Figure 6: Image Processing

The learning process uses only the first one as the model’s training data source. In order to confirm that the
model is capable of making meaningful predictions, you then use the validation set, which the model has not

seen. In order to compare the output that the validation data must produce with what the model inferred
from it, you process the validation data using the trained model. The output should be very accurate if the

model training process went well.

[*ChestxRay_Azure-co X [ChestXRay_ImageClas X
= » 00 & - >q Editin VS Code (pr.. @ Compute instance: ‘Chesthay—Compute - Running V‘ .

Rl ChestxRay-Compute - Kernel idle CPU 0% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML

= Batch Processing the Images
a
m Qe iy
> 1 import matplotlib.pyplot as plt

2 import numpy as np
3 import glob
4 import tensorflow as tf
5
6
7 batch_size=s
8 train_datagen = tf.keras.preprocessing. inage. InageDataGenerator(rescale = 1/255,vertical flip=True,
9 horizontal_flip=True,
10 rotation_range=0.4)
11 test_datagen=tf.keras.preprocessing.image. ImageDataGenerator(rescale=1./255.)

[2] v

-+ Code + Markdown

1 train_generator = train_datagen.flow_from_directory(
2 " /mnt/batch/tasks/shared/Ls_root/mounts/clusters/chestxray-compute/code/Users/navyasreesirio9s/chestxRay/chest_xray/train’,
3 target_size=(128, 128),
2 hatch sizeshatch size. -

Figure 7: Image Processing on Azure

[*ChestxRay_Azure-co X [ChestXRay_ImageClas X
= » 00 >4 Edit in VS Code (pr. @ Compute instance: lChesthay—Compute - Running v‘ @ | Python 3.8 - AzureML ~

RAl ChestxRay-Compute - Kernel idle CPU 20% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML

1 train_generator = train_datagen. Flow_from_directory(
2 * /mnt/batch/tasks/shared/Ls_root/mounts/clusters/chestxray -compute/code/Users/navyasreesiriooo/chestxRay/chest_xray/train’,
3 target_size=(128, 128),
4 batch_size=batch_size,

sa|l4

5 #color_mode="grayscale’,
6 classes = ['NORMAL', 'PNEUMONIA'],

7 class_mode="categorical)

8

9 test_generator = test_datagen.flow_from_directory(

10 * /nt/batch/tasks/shared/LS_root/mounts/clusters/chestxray-compute/code/Users/navyasreesiriooo/ChestxRay/chest_xray/test’,
1 target_size=(128, 128),

12 batch_size=batch_size,

13 #color_mode="grayscale’

14 classes = ['NORMAL', 'PNEUMONIA'],

15 class_mode="categorical)

17 train_label = train_generator.class_indices.keys()
18 print(train_label)

(3] v

Found 5232 images belonging to 2 classes.
Found 624 images belonging to 2 classes.
dict_keys(['NORMAL', 'PNEUMONTA'])

Figure 8: Image Processing on Azure

The following is done to get data ready for analysis:

1. Fetch the data — One may use publicly accessible datasets or internal sample data repositories. The

datasets are typically combined into a single repository.
2. Clean the data — Examine the data and clean it as necessary for more effective model training.

3. Prepare or transform the data—We may need to execute extra data transformations to increase per-
formance. We may, for example, opt to mix qualities. Instead of utilizing temperature and humidity
variables separately, we may combine them into a single attribute to achieve a better model if the
model anticipates circumstances that necessitate deicing an airplane.

4. Data preparation or transformation — To improve performance, we might need to carry out additional

data transformations.
We pre-process sample data in our notebook instance’s notebook. The dataset is retrieved, explored, and
ready for model training using the notebook. This applies to both of our implementations.

6.2 AWS Implementation
This section demonstrates how to use Amazon Sagemaker Image classification algorithm to train a dataset.

6.2.1 Create an account

On the AWS Free tier website, users should register for a free tier account. When you register for Amazon
Web Services (AWS), all of the AWS services, including Amazon SageMaker, are immediately added to your
AWS account.

SageMaker dashboard MACHINE LEARNING

Images

Search Am azon SageMa ker New to SageMaker?
B u I ld-' tra I n ! a n d d e p Loy Get started with Amazon SageMaker by

v

Ground Truth

completing the quick start guide.

4

Notebook

Lifecycle configurations

models at scale

» Processing The quickest and easiest way to get ML models from idea to production.

» Training Documentation
» Inference

— How It WOFkS Getting started [§

o Tutorials

Figure 9: Account Creation

6.2.2 Create an AWS Identity and Access Management (IAM)
Choose create a new role for IAM role.

1. Select Create a new role.
2. Select a specific S3 bucket on the Create an IAM role page.

3. Select Create role next.

Using the name AmazonSageMakerExecutionRole, Amazon SageMaker creates an TAM role.

Create an |IAM role X

Passing an 1AM role gi
grant permissions described

azon SageMaker permission to perform actions in other / ces on your behalf. Creating a role here will
; the AmazonSageMakerFullAccess E 1AM policy to the role you create

The 1AM role you create will provide access to:

(© 53 buckets you specify - optional
Any S3 bucket

Allow users that have access to your notebook instance access to any bucket and its contents in
your account

© Specific 53 buckets

chestxray-project
Comma delimited. ARMs, **" and "/" are not supported.

None

® Any 53 bucket with "sagemaker" in the name

(© Any 53 object with "sagemaker" in the name

— - . T i -

Figure 10: TAM Creation

10

Permissions and encryption

1AM role
Notebook instances require permissions to call other services including SageMaker and 53. Choose a role or let us create a role with the
AmazonSageMakerFullAccess |AM policy attached

AmazonSageMaker-ExecutionRole-20220613T170759 v

@ Success! You created an IAM role. X
AmazonSageMaker-ExecutionRole-20220613T170759 [4

Root access - optional
© Enable - Give users root access to the notebook

Disable - Don't give users root access to the notebook
Lifecycle configurations always have root access

Encryption key - optional
Encrypt your notebook data. Choose an existing KMS key or enter a key's ARN.

No Custom Encryption v

Figure 11: TAM Creation Confirmation

6.2.3 Create an Amazon S3 Bucket
Open the Amazon S3 console at https://console.aws.amazon.com/s3/ after logging into the AWS Manage-
ment Console. To create a S3 bucket follow the steps:

e Select Create bucket.
e Name the bucket.

e Select the AWS Region where the bucket should be located under Region.

Create bucket i

Buckets are containers for data stored in 53. Learn more [

General configuration

Bucket name

chestxray

Bucket name must be unique and must not contain spaces or uppercase letters, See rules for bucket naming E

AWS Region

EU (Frankfurt) eu-central-1 v

Copy settings from existing bucket - optional
Only the bucket settings in the following configuration are copied.

Choose bucket

Figure 12: S3 Bucket Creation

e Select one of the following settings under Object Ownership to enable or disable ACLs and manage
ownership of objects uploaded to your bucket .

e Select the Block Public Access settings that you want to apply to the bucket under Bucket settings
for Block Public Access.

11

e Select Create bucket.

(© Successfully created bucket "chestxray-project” X Buckets X
To upload files and folders, or to configure additional bucket settings

choose View details.

Buckets are containers for objects
stored in Amazon S3. You can

(@ Follow security best practices for S3. b4 kiota any nomber of pblactera

bucket and can have up to 100

buckets in your account. To

Amazon 53 Buckets
request an increase, visit the
Service Quotas Console [4. You
can create, configure, empty, and
» Account snap5h°t delete buckets. However, you can
Storage lens provides visibility into storage usage and activity trends. Learn more Z only delete an empty bucket.
‘ View Storage Lens dashboard Manage access

Buckets are private and can only
be accessed if you explicitly grant
permissions. Use bucket policies,

Buckets (1) info 1AM policies, access control lists
(ACLs), and 53 Access Points to
manage access.

C Create bucket Configure your bucket

Q 3 1 o You can configure your bucket to

Buckets are containers for data stored in 53. Learn mare [

Figure 13: S3 Bucket Creation Confirmation

Amazon S3 Buckets chestxray-notebook Upload Uplﬂad X

U pload I Upload one or more abjects (files
and folders) to the destination

X . Amazon 53 bucket. To upload
Add the files and folders you want to upload to $3. To upload a file larger than 160GB, use the AWS CLI, AWS SDK or Amazon
obijects larger than 160 GB, use

S3 REST API. Learn more [the AWS Command Line
Interface (AWS CLI), AWS SDKs,

Drag and drop files and folders you want to upload here, or choose Add files, or Add folders. SRRETAR!

You can configure additional

permissions and properties for

Add files Add folder the uploaded objects, including
bucket versioning, access control

Files and folders (5856 Total, 1.2 GB)

Al files and folders in this table will be uploaded. list (ACL) settings, the storage
class, server-side encryption
Q 1 2 3 4 5 6 7 . 58 > settings, tags, and metadata.
Storage class
Name ry Folder v Type v Size v
Storage classes are designed for
BACTERIA-1008087- chest_xray/train/PNEUM = Ji e — different data access levels at
0001.jpeg ONIA/S gl : corresponding rates for the
BACTERIA-1025587- chest_xray/train/PNEUM ’ 7 number o Availability Zones
imace/inea 67.1 KB minimum ctarans duratinn and i

Figure 14: Store the Dataset in the S3 Bucket

e Store the dataset used for the data training and the model artifacts that a Amazon SageMaker training
job outputs.

To access these buckets, Amazon SageMaker needs authorization. An IAM role, which you create in the
following step when you create an Amazon SageMaker notebook instance, is how you grant permission. Any
bucket with the name Sagemaker automatically grants access to this TAM role . These rights are granted
to it by the role’s attachment of the AmazonSageMakerFullAccess policy by Amazon SageMaker.

6.2.4 Create the Sagemaker Notebook Instance
1. Start Amazon Sagemaker by clicking on Find Services in the AWS Management Console.

2. Select Create notebook instance from the Notebook instances tab.
3. Give your notebook instance a name.

4. To grant the notebook instance access to your S3 bucket, choose the IAM role created in the previous
step [3] [5]. Continually use the other default settings.

12

5. To start and create a new instance, click Create notebook instance in step. The instance’s initialization

may take several minutes.
6. For your Jupyter notebook to launch, click Open Jupyter.

In the newly created instance, we can now run the python code for training a model by launching the Jupyter

notebook.

Create notebook instance

Amazon SageMaker provides pre-built fully managed notebook instances that run Jupyter notebooks. The notebook instances
include example code for common model training and hosting exercises. Learn more [

Notebook instance settings

Motebook instance name

ChestXRay

Maximum of 63 alphanumeric characters. Can include hyphens (-), but not spaces. Must be unique within your account in an AWS Region.
Notebook instance type
mlt2.large v
Elastic Inference Learn more [4
none v
Platform identifier Learn more [

Amazon Linux 2, Jupyter Lab 1 v

Figure 15: Notebook Instance Creation

Success! Your notebook instance is being created. View details X
g

Open the notebook instance when status is InService and open a template notebook to get started.

Amazon SageMaker Notebook instances
Notebook instances ‘ C Create notebook instance
Q, Search notebook instances 1 (O]
Name v Instance Creation time v Status v Actions
ChestXRay ml.t2.large Jun 17,2022 11:06 UTC @ InService Open Jupyter | Open JupyterLab

Figure 16: Notebook Instance Creation Confirmation

6.2.5 Build the model

TensorFlow combines several different techniques and models, allowing users to build deep neural networks
for applications such as image recognition/classification and natural language processing. Using the In-
ceptionV3 Imagenet model, created an image classification machine learning model. We implemented the
pre-trained saved model in our model because it has been trained on numerous images and has a robust
neural network. Imagenet includes around 1 million images of common general things divided into 20,000
categories such as human faces, animals, toys, balloons, and so on, and it is not trained on X-rays or other

medical images.

13

In [12]:

In [13]:

In [14]:

Out[14]:

In [15]:

In [16]:

Out[16]:

In [17]:

In [18]:

Building the model

clear the current tensorflow graph and create new one
tf.keras.backend.clear_session()

call the inception imagenet pretrained model
model_imagenet = tf.keras.applications.InceptionV3(weights='imagenet',include_top=False, input_shape=(128,128,3))
last_layer = model imagenet.output

freeze the weights of the model
for layer in model_imagenet.layers:
layer.trainable = False

last_layer
<tf.Tensor 'mixed18/concat:0' shape=(None, 2, 2, 2048) dtype=float32>
Flatten the last Layer

x = tf.keras.layers.Flatten()(last_layer)

#x = x(last_Layer)
x = tf.keras.layers.Dropout(8.1)(x)

£

add fully-connected & dropout Layers
x = tf.keras.layers.Dense(128, activationz'relu')(x) ##try with larger number of neurons
x = tf.keras.layers.Dense(64, activation='relu')(x) ##try with larger number of neurons
x = tf.keras.layers.Dropout(8.3)(x)

n_classesztrain_generator.num_classes

a softmax Layer for 2 classes

out_layer = tf.keras.layers.Dense(n_classes, activation='softmax’)(x)

this is the model we will train
model = tf.keras.Model(inputs=model_imagenet.input, outputszout_layer)

Figure 17: Build the model in Jupyter Notebook

len(model.layers)

317

from tensorflow. keras.optimizers import Adam
model.compile(loss="categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

model . sunmary ()

Model: "functional 1"

Layer (type) Output Shape Param # Connected to

input_1 (InputLayer) [(None, 128, 128, 3) @

conv2d (ConvaD) (None, 63, 63, 32) 864 input_1[@][@]

batch_normalization (BatchNorma (None, 63, 63, 32) 96 conv2d[@][@]

activation (Activation) (None, 63, 63, 32) © batch_normalization[0][0]

conv2d_1 (Conv2D) (None, 61, 61, 32) 9216 activation[@][@]

batch_normalization_1 (BatchNor (None, 61, 61, 32) 96 conv2d_1[@][e]

activation_1 (Activation) (None, 61, 61, 32) @ batch_normalization_1[8][0]

conv2d_2 (ConvaD) (None, 61, 61, 64) 18432 activation 1[9][0] -

Figure 18: Build the model in Jupyter Notebook

6.2.6 Train the Model

Adam was chosen as our optimizer since it uses the gradient descent approach. For our compute instance,
we’ve set the batch size to 32 and the epochs to 3, which indicates how many training steps our model will
go through. We used a Jupyter notebook in our SageMaker notebook instance to train and test our model.

14

Training the model

In [13]: from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping

batch_size = 32

es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=zl, patience=3)

fitted model = model.fit(
train_generator,
steps_per_epoch= int(train_generator.samples) // batch_size,
epochs=308,
validation_data=test_generator,
validation_steps= int(test_generator.samples) // batch_size,
callbacks=[es])

Epoch 1/30@

163/163 [] - 36s 228ms/step - loss: B.8271 - accuracy: ©.8459 - val_loss: 8.9438 - val_accuracy:
0.7303

Epoch 2/308

163/163 [] - 34s 2@86ms/step - loss: B©.3587 - accuracy: ©.8811 - val loss: 8.72085 - val_accuracy:
0.7368

Epoch 3/300

163/163 [] - 34s 2@86ms/step - loss: ©.2131 - accuracy: ©.9233 - val_loss: 1.1227 - val_accuracy:
0.7171

Epoch 4/300

163/163 [] - 34s 2088ms/step - loss: ©.2020 - accuracy: ©.9164 - val loss: 8.7315 - val_accuracy:
0.7171

Epoch 5/300

163/163 [] - 34s 2@6ms/step - loss: ©.1937 - accuracy: 0.9202 - val_loss: 8.51408 - val_accuracy:
0.7368

Epoch @0805: early stopping

Figure 19: Train the Model in Jupyter Notebook

6.2.7 Predict and Evaluate the Model
This step enables the assessment of the effectiveness and accuracy of the machine learning models. Users can
run the code below in their Jupyter notebook. We provided test photos to predict and utilize for evaluation.

Model Prediction

In [21]: def predict_image(model,image_file_name):
classifier=model

img = tf.keras.preprocessing.image.load_img(image_file_name,target_size=(128, 128))
img_arr = tf.keras.preprocessing.image.img_to_array(img)/255

x=img_arr.reshape(1, 128, 128, 3)
plt.imshow(img)

result = classifier.predict(x)
print(list(train_generator.class_indices.keys())[list(train_generator.class_indices.values()).index(np.argmax(result))])

In [22]: predict_image(model, ' /home/ec2-user/SageMaker/chest_xray/test/NORMAL/IM-8816-0001.jpeg’)

PNEUMONIA

Figure 20: Predict the Model

15

In [23]: | predict_image(model, ' /home/ec2-user/SageMaker/chest_xray/test/PNEUMONIA/personl0l bacteria_484.53peg’)

PNEUMONIA

80 120

In [24]: | predict_image(model, ' /home/ec2-user/SageMaker/chest_xray/test/NORMAL/IM-0043-6001.jpeg')

NORMAL

Figure 21: Predict the Model

In [25]: predict_image(model, ' /home/ec2-user/SageMaker/chest_xray/test/PNEUMONIA/person136_bacteria_658.jpeg')

PNEUMONIA

Figure 22: Predict the Model

This code compares the actual and predicted values in a table known as the confusion matrix. Based on the
prediction, the user can determine whether or not a predicted chest X-ray shows pneumonia.

Evaluate the model performance

In [26]: #!pip3 install -U scikit-learn
from sklearn.metrics import classification_report
from sklearn.metrics import confusion matrix

In [27]: def assess_model(model)
predicted_vals = np.argmax(model.predict(test_generator, steps = len(test_generator)),axis=1)

accuracy = tf.keras.metrics.binary_accuracy(test_generator.labels, predicted_vals)
print('Accuracy: %f' % accuracy)
print(classification_report(test_generator.labels, predicted_vals))
print('Confusion matrix')

cm = confusion_matrix(y_truestest_generator.labels, y_pred=predicted_vals)
print(cm)

In [28]: # assess the model performance
assess_model (model)

Accuracy: 0.584936

precision recall fl-score support

° 0.40 0.22 8.29 234

1 0.63 .80 8.71 390

accuracy 5.58 524
macro avg 8.52 0.51 .50 624
weighted avg 8.55 0.58 .55 624

Confusion matrix
[[52 182]
[77 313]]

Figure 23: Evaluate the Model

16

6.3 Azure Implementation

This section demonstrates how to construct the entire AzureML workflow using Python AzureML tools,
from creating datasets to deriving final models using a web service . Azure has created a number of
python packages that allow users to access and authenticate AzureML services.

6.3.1 Azure Authentication

In order to use Azure’s services, we must authenticate with it. Azure provides a variety of methods for logging
into your account and authenticating yourself. We can either use Azure Service Principal authentication or
Azure Interactive Login authentication, which is our choice.

6.3.2 Create Workspace

A workspace needs a variety of resources, such as keyvaults, or storage. We must pass a few arguments
containing these values to the method when creating the workspace.

1. Name the workspace.

2. The Subscription ID can be found in our subscription ID on the Azure portal.
3. We list the name of the group of resources we are using.

4. Details of the authentication that we completed in a previous step.

5. Put the location on the cloud that we’ll be using.

Home > Azure Machine Learning >

Azure Machine Learning

Create a machine learning workspace

Subscription * (1) ‘ Azure for Students AV |
Resource group * © ‘ (New) chestXRay_RG A\ |
Create new

Workspace details

Configure your basic workspace settings like its storage connection, authentication, container, and more. Learn more '

Workspace name * (D ‘ chestXRay_Classification \/|

Region * ‘ Germany West Central g |

Storage account * (D ‘ (new) chestxrayclass4654751240 ~ |
Create new

Key vault * @ ‘ (new) chestxrayclass5200143298 A |
Create new

Application insights * @ ‘ (new) chestxrayclass6763171728 ~ |
Create new

Container registry * © ‘ (new) chestXRayCR hd |

Create new

Figure 24: Workspace Creation

17

Home > Azure Machine Learning >

Azure Machine Learning

Create a machine learning workspace

o Validation passed

Basics

Basics

Subscription
Resource group
Region

Workspace name
Storage account
Key vault
Application insights
Container registry

Networking

Connectivity method

Advanced

T TR

Home >

Networking

Advanced Tags Review + create

Azure for Students

(New) chestXRay_RG

Germany West Central
chestXRay_Classification

(new) chestxrayclass4654751240
(new) chestxrayclass5200143298
(new) chestxrayclass6769171728
(new) chestXRayCR

Enable public access from all networks

PR S |

< Previous l ‘ MNext > |

Figure 25: Workspace Creation

o Microsoft.MachineLearningServices | Overview =

O earch (Ctri+/) «

B
3

[y

Deployment

Overview
Inputs
Outputs

Template

li] Delete & Cancel |1y Redeploy () Refresh

€ We'd love your feedback! 3

@ Your deployment is complete

2y Deployment name: MicrosoftMachinel eamingSenvices
Subscription: Azure for Students
Resource group: chestXRay_RG

Start time: 6/19/2022, 6:08:40 PM

' Deployment details (Downloac)

A Next steps

Go to resource

Figure 26: Workspace Creation

18

Download a template for automation

Correlation ID: 12560657-2618-492¢-bedb-82426d5b9b46 E

Home > MicrosoftMachineLearningServices >
! chestXRay_Classification X
Azure Machine Learning

A Search (Ctrl+/) « L Download configjson [ii] Delete
A Overview “ A Essentials JSON View
& Acivitylog Resource group : chestXRay RG Studio web URL ot
8 Access control (IAM) Location Germany West Central Registry

Subscription = Azure for Students Key Vault
@ Togs P Y

Subscription D B1f112fe-5607-4117-bf75-579470a05221 Application Insights
& Diagnose and solve problems

Storage : chestxrayclass4654751240 MLflow tracking URI : v 12fe-56d7-

Events
Settings
s Networking
Il Properties
B tods AR
Monitoring N N . . .
Work with your models in Azure Machine Learning Studio
o Aerts
The Azure Machine Leaming Studio is a web app where you can build, train, test, and deploy ML models. Launch it now to

G Metics start exploring, or learn more about the Azure Machine Leaming Studio &'
& Diagnostic settings
@ Logs
Automation
& Tesks (preview)
Z Bxport template

Figure 27: Workspace Creation

6.3.3 Create Compute Instance
An Azure Machine Learning compute instance is a managed cloud-based workstation for data scientists.

1. Select the New link next to the Compute name dropdown in the Create New Experiment dialog.
2. Enter the Compute name in the text box of the Create New Compute dialog.

3. From the drop-down menu for Compute size, select Standard DS12_v2. The compute types used by
Model Builder are CPU-optimized.

4. Choose Create. The provisioning of the compute resources could take a few minutes.

Microsoft Azure Machine Learning Studio A o P @®|FEEEmEE o
= t
Create compute instance X
Compute

Compute instance chestXRayCompute ‘
@ Required Settings.

Location ©
germanywestcentral

Advanced Settings
Virtual machine type O

@cu Qcru
Virtual machine size O

(®) Select from recommended options () Select from all options

Name 1 Category Workioad types Available quota O Cost O
QO Standard Ds11.v2 Memory optimized Development on Notebooks (or other IDE) and light 6 cores $017/hr

& 2 cores, 14GB RAM, 28GB storage weight testing
QO standard DS3.v2 General purpose Classical ML model training on small datasets 6 cores $0.27/hr

4 cores, 14GB RAM, 28G storage

© Standard DS12.v2 Memory optimized Data manipulation and training on medium-sized datasets 6 cores $033/hr
4 cores, 28GB RAM, 56GB storage (1-10GB)
QO stand Compute optimized Data manipulation and training on large datasets (>10 GB) 16 cores $0.19/hr

[e [T e —— e

Figure 28: Compute Instance Creation

19

Microsoft Azure Machine Learning Studio o s ? O :hlure forscmde_mm o

= Default Directory > chestXRay_Classification > Compute
o Compute
Compute instances Compute clusters Inference clusters Attached computes

@ + New () Refresh Start Stop Restart Delete Schedule [Editcolumns) Reset view 8= View quota
g] 0 search Showallinstances ' State 7 Allfilters Clear all
%

Name State. Applications (D Size Created on | Assigned to
&

chestXRayCompute © Running Jupyterlab Jupyter VS Code RStudio Terminal STANDARD_DS12.V2 Jun 19,2022 6:12 PM Melisa Xhepa
=)
S
;4
¥
&
/)
@
=]
g
&
@

Figure 29: Compute Instance Creation Confirmation

5. Choose your newly created workspace from the Compute name dropdown in the Create New Experi-
ment dialog after the provisioning process is finished.

6. To load the data, select the Next step button.

6.3.4 Create Compute Cluster

Azure provides different specification CPU and GPU VM clusters that can be built to meet our computing
needs []g[] Regarding its compute class, each virtual machine is given a name, and its pricing varies. From
Azure, we can get complete information on current pricing and compute VM availability.

1 Azure for Students
?
o B © | faet

 Classification ‘

Create compute cluster @ X

Select virtual macnine
1 Select the virtual machine size you would like to use for your compute cluster.

@ Virtual Machine
Location *

| Germany West Central ~

Advanced Settings

Virtual machine tier ©

(®) Dedicated () Low priority
Virtual machine type @
@®cu Oocru

Virtual machine size O

(®) Select from recommended options () Select from all options

Name 1 Category Workload types Available quota D Cost
(O standard DS11.v2 Memory optimized Development on Notebooks (or other IDE) and light 2 cores 50.17/hr
2 cores, 14GB RAM, 28GB storage weight testing
@ Standard D4s 3 General purpose Classical ML model training on small datasets 6 cores 50.23/hr

4 cores, 1668 RAM, 32GB storage

O Memory optimized Data manipulation and training on medium-sized datasets 6 cores S0.30/hr
(1-10GB)
QO standard Fas.v2 Compute optimized Data manipulation and training on large datasets (~10G8) 12 cores $0.19/hr

4 cores, 8GB RAM, 32GB storage

Figure 30: Compute Cluster Creation

20

Create compute cluster @
@ Virtual Machine Configure Settings
Configure compute cluster settings for your selected virtual machine size
Name Category Cores Available quota RAM Storage Cost/Node

@& Advanced Settings

Standard_D4s v3 General purpose 4 6 cores 16 GB 32GB $0.23/hr

Compute name * (O

‘ chestXRayCluster

Minimum number of nodes *
. Jo

Maximum number of nodes * @

o

Idle seconds before scale down * (O

‘ 2400

(@) Enable SSHaccess D

> Advanced settings

Figure 31: Compute Cluster Creation

Due to the fact that we will be building a straightforward image classification model, we build a CPU cluster
for this project. If a cluster has already been created, we can retrieve it using the cluster’s name and use it
to train the model.

Compute

Compute instances Compute clusters Inference clusters Attached computes.

+ New () Refresh Delete T Edit columns ' Reset view % View quota
g O search State v Loation v 7 Alfiters X Cleara

Name state Size

nodes) STANDARD_D45 V3

ACH:E R

Figure 32: Compute Cluster Creation Confirmation

6.3.5 Create Dataset

Depending on the type of data and the location of the data, we can use datasets in AzureML in a variety
of ways when training models. Additionally, Azure provides a dataset feature in AzureML that makes it
simple and low-latency to fetch and provide data |7] to training scripts. Therefore, for this, we will store our
data in an Azure blob ﬂgﬂ and use it to train a model. Data must first be uploaded to Azure Blob Storage.
Following the upload of your image files to blob storage, you should create and register your dataset. To
create a dataset and register it so we can access it later in the training script, we first register a blob
datastore.

21

Create dataset from local files

® Basicinfo

Datastore and file selection

Confirm details

Create dataset from local files

@ Bascinto

® Datastore and file selection

Confirm details

Basic info

@ custor lude personal data or Cther sensitive information in fie
a

heze

e ——

Name *

——

I markedt with the because the content in

==

Dataset type * ©

‘ File

Description

Dataset description

Back

Figure 33: Dataset Creation

Datastore and file selection

Select or create a datastore *

werkspaesblobstore

> Create new datastore

Select files for your dataset *

These files will be uploaded to your selected datastore and made available in your workspace.

File name size Upioad % Status
oy tein PNEUMONIA/BACTERIA-1006 7seKs
ray/train/PNEUMONIA/BACTERIA-10: 67098
<t xay trin/PNEUMONIA/BACTERIA- 1027 194-0001 e 5058 k8
Chest_xray/trin/PNEUMONIA/BACTERIA-1033441-0001, 425K8
seay irain/PNEUMONIA/BACTERIA- 103798-0001 jo 416618
< Prev Next >
Upload path
ul Files wil be uploaded to ${Upload path)/06-19-2022_051121_UTC'

Figure 34: Dataset Creation

22

Create dataset from local files x

Datastore and file selection

Select or create a datastore

@ Datastore and file selection oigmil a1
> Create new datastore
Confirm details
Select files for your dataset *
These files will be uploaded to your selected datastars and made avallable in your workspace.
5356 s selected Total size 1,15 GB. 14/5656 fies uploaced
File name Size Upload 5 status
chest_xray/train/PNEUMON IA/BACTERIA -1008087-0001 jpeg 11758 k8 100 °
chest uray/train /PNEUMON A/BACTERIA-102: 098 o
chest_xray/train/PNEUMON A/BACTERIA-1027194-0 L]
chest_xray/train/PNEUMONIA/BACTERIA-1033441-0001 425k8 100 °
chest_xray/train/PNEUMON A/BACTERIA-103796-0001jpeg 4166 K8 100 L]
P Net >
Upload path *
u Files will be uplaaded to §(Upload path)/06-19-2022_051121_UTC'
Back o)
Create dataset from local files x
@ Basicinfo Confirm details
| Basic info Datastore and file selection
@ Datastore and file selection
Name Datastore
| chestXRay workspaceblobstore
@ Confirm details Dataset type Selected files (5856)
File BACTERIA-1008087-0001.jpeg, BACTERIA- 1025587-0001.jpeg, BACTERIA-1027194-0001 jpeg, .

BACTERIA-1033441-0001 jpeg, BACTERIA- 1037880001 jpeg, BACTERIA-103798-0002peg,

BACTERIA-1039608-0001peg, BACTERIA-1040886-0001.jpeg, BACTERIA-1041881-0001.jpeg,
BACTERIA-1041881-0002jpeg, BACTERIA- 104960-0001 jpeg, BACTERIA-1065620-0001 jpeg,
BACTERIA-1065620-0002jpeg, BACTERIA- 1069837-0001.jpeg, BACTERIA-1069837-0002,jpeg,
BACTERIA-1074715-0001,peg, BACTERIA-1076722-0001,jpeg, BACTERIA-1083680-0001 jpeg,

BACTERIA- jpeg, BACTERIA-1 jpeg, BACTERIA-1 jpeg,
BACTERIA- jpeg, BACTERIA-10: jpeg, BACTERIA-10: jpeg, -
4 »

UI/06-19-2022_051121_UTC/

Figure 36: Dataset Creation

Microsoft Azure Machine Learning Stud

Oeault i

ay Cassfication > Data

© DefauttDiectoy | pota

Registered data assets Dataset monitors (revien)

e}

+ Creste v O Refresn - Unregister T Edtcolumns) Resetuiew

B Notebooks

£ Automated ML

% Designer Showing 1-1 of 1 data assets Page size

Search Y Alfiters % Clearall

S oma Name Version Datasource. Crested on Modified on Datatype (rew) O Properties Created by Tags

Jobs

pacebionstore 1 19,2002736PM Jun

mitadle Fie Meisa Xnepa

® 02

Components

7 Fipeiines

2 Environments
© Models

< Endpoints

D Compute
B Datastores
off Linked Services.

@ Data Lsbeling

Figure 37: Dataset Creation Confirmation

23

6.3.6 Build Model

Self > ChestXRay_WS Notebooks

= »OdJ0 032 8 - Q) Edit in VS Code (pr. @ Compute instance: ‘ ChestXRay-Compute - Running v ‘ ® 8 + .
» stXRay-Compute - Kernel idle CPU 0% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML
- Building the model
2
1 import tensorflow as tf
2 n_classes=train_generator.num_classes
3 def create_tf model():
a model = tf.keras.models.Sequential(
50
6 tf.keras.layers.Conv2D(filters=10, kernel_size=5, input_shape=(128,128,3), activation='relu'),
7 tf.keras.layers.MaxPool2D(pool_size=(2,2)),
8 tf.keras.layers.Conv2D(filters=20, kernel_size=5, activation='relu'),
9 tf.keras.layers.Dropout(rate=0.3),
10 tf.keras.layers.MaxPool2D(pool_size=(2,2)),
11
12 tf.keras.layers.Flatten(),
13 tf.keras.layers.Dense(320, activation='relu'),
14 tf.keras.layers.Dense(5@, activation='relu'),
15 tf.keras.layers.Dropout(0.2),
16 tf.keras.layers.Dense(n_classes, activation='softmax')
17]
118)
19 return model
20
21 model = create_tf_model()
22 model.build()
[5] v

2022-07-02 19:04:26.155914: I tensorflow/stream executor/platform/default/dso loader.cc:441 Successfully opened dvnamic library libcuda.so.1

Figure 38: Building the Model

Self > ChestXRay WS > Notebooks

ChestXRay_Azure-co X [ChestxRay_ImageClas X

» 0O O <«

BB EOE® > Editin VS Code (pr.. @ Compute instance: IChes(XRaerompme - Running vl ® 3 + .

> v 1
O] v

model. summary ()

sall4

Model: "sequential"

Layer (type) Output Shape Param #
conv2d (ConvaD) (None, 124, 124, 10) 760
max_pooling2d (MaxPooling2D) (None, 62, 62, 10) [
conv2d_1 (Conv2D) (None, 58, 58, 20) 5020
dropout (Dropout) (None, 58, 58, 20) [
max_pooling2d_1 (MaxPooling2 (None, 29, 29, 20) [
flatten (Flatten) (Nlone, 16820) [

+ Code -+ Markdown

1 ## Taking Adam as our model optimizer since it implements gradient descent algorithm
model. compile(optimizer="adan", loss='categorical_crossentropy', metrics=["accuracy"])

~

Figure 39: Build the Model

6.3.7 Workspace Connection and ML Flow Configuration
To measure metrics and log model artifacts, we utilized MLflow autologging.

Self > ChestXRay WS > Notebooks

[*ChestXRay_Azure-co X ChestXRay_ImageCla:

= » 008 0

@l ChestXRay-Compute - Kemel idle CPU 0% RAM 3%

st saved a few seconds ago

Model and experiment creation, workspace connection, and ML flow configuration to track metrics

sa|l4

from azureml.core import Workspace, Experiment
import mlflow, mlflow.tensorflow

ws = Workspace. from_config()

mlflow. set_tracking_uri(ws.get_mlflow_tracking_uri())
nlflow.start_run(experinent_id=experinent.id)

1
2
3
2
5
6 experiment = Experiment(ws, "chestxray-image-training")
7
8
9
@ mlflow.tensorflow.autolog()

2022/07/62 19:08:21 WARNING mlflow.utils.autologging_utils: You are using an unsupported version of tensorflow. If you encounter errors during autologging, try upgrading /

downgrading tensorflow to a supported version, or try upgrading MLflow.

Figure 40: Workspace Connection and ML Flow Configuration

24

S == > Editin VS Code (pr.. @ Compute instance: |Che5tXRay—Compule - Running V| ® B + @] Python 38 - AzureML v

Python 3.8 - AzureML

6.3.8 Train Model
We must develop a deep learning model and a training script that can read images in order to train the
model.

Self > ChestXRay_ WS Notebooks

L8 *ChestXRay_Azure-co X ChestXRay_ImageCl
w0 O & [} > Edit in VS Code (pr... @ Compute instance: |Chesthay-Compute - Running V| ©® B + @] Python 3.8 - AzureML v

AzureML

2

ompute - Kemel idle CPU 0% RAM 3% st saved a few seconds ago Python

Training the model

salld

b from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
f.random. set_seed(101)

batch_size=32

es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=1, patience=3)

model. fit(train_generator,
validation_data=test_generator,
callbacks=[es],
epochs=3)

Soavouswnr

11 mlflow.end_run()

2022-07-02 19:08:29.453207: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.

2022-07-02 19:08:33.249238: T tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.

2022-07-02 19:08:33.859847: T tensorflow/core/profiler/rpc/client/save_profile.cc:168] Creating directory: /tmp/tmpytjae_yj/train/plugins/profile/2022_07_62_19_68_33
2022-07-02 19:08:33.860496: T tensorflow/core/profiler/rpc/client/save_profile.cc:174] Dumped gzipped tool data for trace.json.gz to
/tmp/tmpytjae_yj/train/plugins/profile/2022_07_02_19_08_33/chestxray-compute.trace.json.gz

2022-07-02 19:08:33.861062: I tensorflow/core/profiler/utils/event_span.cc:288] Generation of step-events took 0.62 ms

2022-07-02 19:08:33.862266: I tensorflow/python/profiler/internal/profiler_wrapper.cc:87] Creating directory:
/tmp/tmpytjae_yj/train/plugins/profile/2022_07_02_19_08_33Dumped tool data for overview_page.pb to /tmp/tmpytjae_yj/train/plugins/profile/2022_07_02_19_08_33/chestxray-

Figure 41: Train the Model

[*ChestXRay_Azure-co X [ChestXRay_ImageCi
= » OO0 08 B P& >q Editin VS Code (pr.. @ Compute instance: | ChestXRay-Compute - Running v| ® B + @] Ppython 3.8 - AzureML v

ompute - Kemel idle CPU 0% RAM Last saved a few seconds ago
g SRy

2022-07-02 19:08:33.249238: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.
Q 2022-67-02 19:08:33.859847: 1 tensorflow/core/profiler/rpc/client/save_profile.cc:168] Creating directory: /tmp/tmpytjae_yj/train/plugins/profile/2022_07_02_19_08 33
2022-07-02 19:08:33.860496: I tensorflow/core/profiler/rpc/client/save_profile.cc:174] Dumped gzipped tool data for trace.json.gz to

/tmp/tmpytjae_yj/train/plugins/profile/2022_07_82_19_08_33/chestxray-compute.trace.json.gz
2022-67-02 19:08:33.861062: I tensorflow/core/profiler/utils/event_span.cc:288] Generation of step-events took .02 ms

2022-07-02 19:08:33.862266: I tensorflow/python/profiler/internal/profiler_wrapper.cc:87] Creating directory:
/tmp/tmpytiae_yj/train/plugins/profile/2022_07_02_19_08_33Dumped tool data for overview_page.pb to /tmp/tmpytjae_yj/train/plugins/profile/2022_07_62_19_08_33/chestxray-
compute.overview_page.pb

Dumped tool data for input_pipeline.pb to /tmp/tmpytjae_yj/train/plugins/profile/2022_07_62_19_08_33/chestxray-compute.input_pipeline.pb

Dumped tool data for tensorflow_stats.pb to /tmp/tmpytjae_yj/train/plugins/profile/2022_07_62_19_08_33/chestxray-compute. tensorflow_stats.pb

Dumped tool data for kernel_stats.pb to /tmp/tmpytjae_yj/train/plugins/profile/2022_07_02_19_08_33/chestxray-compute.kernel_stats.pb

Epoch 1/3 v
D 1 ## Checking the workspace
2
3 ws
[10] v
Workspace. create (name=' chestxray_us', iption_id="15 b-42dc-4d81-badd-1d: ', resource_group="rgl")

+ Code + Markdown

Figure 42: Train the Model

[*ChestXRay_Azure-co X [ChestxRay_ImageClasX
8B EBO= Q) Editin VS Code (pr.. @ Compute instance: |ChestXRay—Compute - Running v| @ B + .

AzureML

ompute - Kemel idle CPU 0% RAM 3% Last saved a few seconds ago Python

sl

Saving the created model

1 from azurenl.core.model import Model
2 model.save(' chestxray-model-pneu.hs')
3 registered_model = MHodel.register(

4 workspace=ws,

5 model_name='chestxray-model’,

6

7

8

model_path=' chestxray-model-pneu.hs',
model_framework=todel . Framework. TENSORFLOW,
model_framework_version=tf.__version__)

[11) v

Registering model chestxray-model

D>V 1 tf._version__
[12] v
‘2.2.0"

+ Code + Markdown

Figure 43: Save the Created Model

25

6.3.9 Create Environment and Container Service

Create Environment to Run the Model In and a container service to contain the model. An experiment is a
collection of multiple runs from a single script or piece of code. Under such experiment, information for the
run is saved. If the name does not exist when we submit an experiment, we will see numerous tabs including

metrics, logs, explanations, and so on.

[*ChestXRay_Azure-co X [ChestxRay_ImageClas X
=S » 0008 0BEEF® >Q Editin VS Code (pr.. @ Compute instance: ‘ChestXRay-Compute - Running v‘ ® 8 + 0

@l ChestXRay-Compute - Kemel idle CPU 0% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML

Make a customized environment in which to run your model

3|4

from azureml.core.conda_dependencies import CondaDependencies

myenv = CondaDependencies()
myenv.add_conda_package("scikit-learn")
myenv.add_conda_package("tensorflow")
myenv.add_tensorflow_pip_package(core_type='cpu’, version='2.2.0')

with open("myenv.yml","") as f:
f.urite(myenv. serialize_to_string())

QoaNoanswnhr

[13]

L 1 with open("myenv.ynl","r") as f:
2 print(f.read())

[14] v
Conda environment specification. The dependencies defined in this file will

be automatically provisioned for runs with userianagedDependencies=False.

Details about the Conda environment file format:
https://conda.io/docs/user-guide/tasks/manage-environments. htmlé#create-env-file-manuall,

Figure 44: Environment Creation

6.3.10 Deploy Model
Here, we deployed our model so that an application may consume (infer) the model over REST. The code

below creates a curated environment that includes all of the requirements needed to host the model (for
example, the packages like scikit-learn). We also generated a deployment configuration that defines how
much computation is necessary to host the model. In this scenario, the compute will have one CPU and

one gigabyte of RAM.

Self > ChestXRay WS Notebooks

[*ChestXRay_Azure-co X [ChestxRay_ImageClas X
= » 00 8 B O & >Q Editin VS Code (pr.. @ Compute instance: lCheleRaerOmpute - Running v‘ ® B + .

@l ChesiXRay-Compute - Kemel idle CPU 40% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML

Required packages for AzureML execution, history, and data preparation.

- azureml-defaults v

9|4

Create a Container service to contain your model

Create deployment configuration

D>V 1 from azureml.core.uebservice import Acillebservice, Webservice

2
3 aciconfig = Acikiebservice.deploy_configuration(cpu_cores = 1,
4 memory_gb = 1,
5 tags = {"data": "chest_xray", "type": "classification"},
6 description = 'Medical Image Classification for Pneumonia’)
7

[15] v

-+ Code - Markdown

1 Wuritefile score.py
import json
import numpy as np

Figure 45: Deployment Configuration Creation

26

[*ChestXRay_Azure-co % [*ChestXRay_ImageCle X
= » 00 R 08 8 A& > Editin VS Code (pr.. @ Compute instance: ‘ChestXRay—Compute - Running v‘ ® B + @ Python 38 - AzureML v

@l ChestXRay-Compute - Kemel idle CPU 40% RAM 3% Last saved a few seconds ago Pyt AzureML
2 import json -
- 3 import numpy as np m Qe e W
@ 4 import os
v 5 import tensorflow as tf
6
7 from azureml.core.model import Model
8
9
10 def init():
1 global model
12 # AZUREML_MODEL_DIR is an environment variable created during deployment.
13 # It is the path to the model folder (./azureml-models/$MODEL_NAME/$VERSION)
14 # For multiple models, it points to the folder containing all deployed models (./azureml-models)
15 #model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), “chestxray-model.hs")
16
17 model_path = Model.get_model_path(’ chestxray-model-pneu.h5')
18 model = tf.keras.models.load_model(model_path)
19
20
21 def run(raw_data):
22 data = np.array(json.loads(raw_data)['chest_xray'])
23 print(np.shape(data))
24 data = np.reshape(data, (1,128,128,3))
25 y_hat = model.predict(data)
26 print("Executed predictions...")
27 result = json.dumps(y_hat.tolist())
28 return {"result”: result}
[16] v
Writing score.py —
[*ChestXRay_Azure-co X [*ChestXRay_ImageC|
= » 00 08B B O >q Edit in VS Code (pr. @ Compute instance: | ChestXRay-Compute - Running ® B + @ Python 3.8 - AzureML v
k@l ChestxRay-Compute - Kemel idle CPU 20% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML
I D 1 from azureml.core.image import ContainerImage
2 2
2
3 image_config = ContainerImage.image_configuration(
a4 execution_script = "score.py”,
5 runtime = "python",
6 conda_file = "myenv.ynl",
7 description = "test"
8
1171 v
/tmp/ipykernel_10849/3913936463.py:3: Deprecati ing: C i ge class has been depi and will be removed in a future release. Please migrate to using

Environments. https://docs.microsoft.com/en-us/azure/machine-learning/how-to-use-environments

image_config = ContainerImage.image_configuration(

+ Code + Markdown

Figure 47: Container Image Creation

The code below deploys the model to Azure Container Instance.

Deploy the model for inference in real time

service _name = 'chestxray-classification’

service = Webservice.deploy(deployment_config = aciconfig,
image_config = image config,
model_paths = ['chestxray-model.h5"],
name = service name,
workspace = ws)

service.wait_for_deployment(show_output = True)
print(service.state)

Figure 48: Model Deployment

6.3.11 Endpoint
When the model has been successfully deployed, go to Endpoints in the left-hand menu of Azure Machine

Learning Studio to view the endpoint. You may view the endpoint’s status (healthy or unhealthy), logs,
and consumption (how applications can consume the model).

27

= »00¢ 8 ¢

=] > Editin VS Code (pr... @ Compute instance: | ChestXRay-Compute - Running v| ® B 4+ @ Python38 - AzureML ~

» ‘ompute - Kemel idle CPU 0% RAM 3% st saved a few seconds ago
- Creating image
2 T LT P
Succeeded
Image creation operation finished for image chestxray-classifier:1, operation "Succeeded"
Tips: You can try get_logs(): https://aka.m: i or local depl t: https://ak i locally to debug if deployment takes longer than 10
minutes.
Running
2022-07-02 20:16:07+00:00 Generating deployment configuration.
2022-07-82 20:16:07+00:00 Submitting deployment to compute.
2022-07-82 20:16:10+00:00 Checking the status of deployment chestxray-classifier..
2022-07-82 20:20:19+00:00 Checking the status of inference endpoint chestxray-classifier.
Succeeded
ACI service creation operation finished, operation "Succeeded" e
+ Code + Markdown
1 print(service.scoring_uri)
[19] v
http://cae8c3f9-e557-49dc-ab87-6c92ddb791 astu ure ntainer.io/score
View Fndnaint \2
Endpoints

Real-time endpoints Batch endpoints

+ Create (O Refresh Delete [E Edit columns) Reset view
Compute type 7 All filters Clear all
Showing 1-5 endpoints Page si
Name % Description Created on Created by Updated on | Compute type Compute target Tags
chestxray-classifier-dep2 Medical Image Classification... Jul 4, 2022 2:02 PM Navya Sree Kanakala Jul 4, 2022 2:02 PM Container instance data : chest_»
chestxray-classifier-dep Medical Image Classification... Jul 3, 2022 1:20 PM Navya Sree Kanakala Jul 3, 2022 1:20 PM Container instance data : chest_»
chestxray-image-classif... Medical Image Classification... Jul 2, 2022 11:40 PM Navya Sree Kanakala Jul 2, 2022 11:40 PM Container instance data : chest_»
chestxray-classifier Medical Image Classification. Jul 2, 2022 10:16 PM Navya Sree Kanakala Jul 2, 2022 10:16 PM Container instance data : chest_»
chestxray-classification Medical Image Classification. Jul 2, 2022 6:16 PM Navya Sree Kanakala Jul 2, 2022 6:16 PM Container instance data : chest_x

Figure 50: Endpoints

If we won’t be utilizing this model any longer, remove the Model service by using code below:

[*ChestXRay_Azure-co X *ChestXRay_ImageCle X

= » 00 08B EB O ® >4 Editin VS Code (pr... @ Compute instance: lCheleRay(ompule - Running v‘ ® E + @] Python 38 - AzureML
@l ChestXRay-Compute - Kemel idle CPU 0% RAM 3% Last saved a few seconds ago Python 3.8 - AzureML
o . .
a View Endpoint

When the model has been successfully deployed, go to Endpoints in the left-hand menu of Azure Machine Learning Studio to view the endpoint. You may view the endpoint's status (healthy or unhealthy),
logs, and consumption (how applications can consume the model).

Deleting the Endpoint

+ Code -+ Markdown

1 service.delete()
[69] v

Figure 51: Deleting Endpoint

Stop the compute instance by choosing the ”Stop compute” option next to the Compute dropdown if we
wish to further manage costs. Then, the next time you need it, restart the compute instance. Remove all
computational resources and your Azure Machine Learning workspace.

28

7 Conclusion

The resulting highly accurate model indicates that this AI system has the capability to efficiently learn
from increasingly complex images with a high degree of generalization using a relatively small repository of
data. This transfer learning framework offers a convincing system for further investigation and analysis in
biomedical imaging as well as more broadly applied use to an automated community-based Al system for
the diagnosis and triage of common human diseases by demonstrating effectiveness with multiple imaging
modalities and with a wide range of pathology.

This project clearly demonstrates how users can use Amazon SageMaker and AzureML to easily build, train,
and deploy machine learning models. This could make screening programs and referral systems in all of
medicine more effective, especially in remote or underdeveloped areas, with a consequent broad clinical and
public health impact.

To utilize AWS Al products, you must be proficient in coding and data science. When constructing ML
models, SageMaker gives you maximum control and freedom. Any concept may be realized, but to properly
exploit AWS features, you must be familiar with Jupyter Notebook and Python. Azure ML Studio, on the
other hand, is built on a codeless experience. You do not need to be an expert in complex data science
techniques or know how to write in Python. The service is intended for data analysts that prefer graphical
element display and a straightforward interface.

This document discussed two popular platforms for developing machine learning and artificial intelligence.
We examined their features, similarities, and differences. Both are excellent choices for developing and
deploying machine learning models, but each has advantages and disadvantages. AWS Sagemaker is an ex-
cellent platform for developing simple models and deploying them in the cloud with minimal configuration.
However, for predictive analytics, Azure ML may be a more versatile option.

To conclude, the approach we developed on AWS is independent of any cloud or local platform. It does not
utilize any pre-built sagemaker libraries or frameworks, but the code on Azure includes Azure ML libraries,
making it impossible to use the same code on other platforms. Our model detects Pnuemonia quite effec-
tively, but standard detection is not as successful. Because our purpose is to forecast pneumonia, which is
being accomplished over here. We can enhance the model by leveraging current models or by developing new
ones. We can also use the fast or flask APIs to expand our AWS model. With all of the hype surrounding
machine learning, it is clear that the future will be data-driven. Machine learning capabilities can be used
by organizations to solve current business challenges and prepare for future business opportunities.

References

[1] T.M. Mitchell, J.G. Carbonell, and R.S. Michalski. Machine Learning: A Guide to Current Research.
The Springer International Series in Engineering and Computer Science. Springer US, 2012. Accessed
on 09.07.2022.

[2] K. Hwang. Cloud Computing for Machine Learning and Cognitive Applications. The MIT Press. MIT
Press, 2017. Accessed on 09.07.2022.

[3] Amazon SageMaker Developer Guide. Accessed on 09.07.2022.
[4] Amazon Simple Storage Service User Guide. Accessed on 09.07.2022.

[5] AWS Identity and Access Management User Guide. Accessed on 09.07.2022.

29

https://books.google.de/books?id=BSbSBwAAQBAJ
https://books.google.de/books?id=q1YrDwAAQBAJ
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

[6] The Jupyter Notebook Documentation. Accessed on 09.07.2022.
[7] Azure Machine Learning,.

[8] Jafar Alzubi, Anand Nayyar, and Akshi Kumar. Machine Learning from Theory to Algorithms: An
Overview. 2018. Accessed on 09.07.2022.

[9] Image classification on Azure. Accessed on 09.07.2022.

30

https://jupyter-notebook.readthedocs.io/en/stable/
https://docs.microsoft.com/en-us/azure/architecture/solution-ideas/articles/azure-machine-learning-solution-architecture
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.1088/1742-6596/1142/1/012012
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/intelligent-apps-image-processing

	Introduction
	Machine Learning in the Cloud
	Use Case and Motivation
	Content

	Technologies Used
	Amazon SageMaker
	S3 Bucket
	Amazon EC2
	IAM
	Jupyter Notebook
	AzureML
	Azure Blob Storage
	Azure File Storage
	Azure Machine Learning Workspace
	Azure Compute

	Architecture
	AWS
	Azure

	Implementation
	Generate Example Data for The Implementation
	AWS Implementation
	Create an account
	Create an AWS Identity and Access Management (IAM)
	Create an Amazon S3 Bucket
	Create the Sagemaker Notebook Instance
	Build the model
	Train the Model
	Predict and Evaluate the Model

	Azure Implementation
	Azure Authentication
	Create Workspace
	Create Compute Instance
	Create Compute Cluster
	Create Dataset
	Build Model
	Workspace Connection and ML Flow Configuration
	Train Model
	Create Environment and Container Service
	Deploy Model
	Endpoint

	Conclusion
	References

