
Containerisation of Web Application &
Deploying in Hybrid Cloud

HIS - Cloud Computing, Summer Semester 2022

Prepared By
Mohammad Sayedur Rahman

Saiful islam
Shrabanti Saha Rimi,

Ashis Banik
Ta-Seen Junaid

Under the guidance of
Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences

Table of content

Cloud Computing 4
Types of Cloud 4

Deployment Models 4
Service Models 5

Advantages of Cloud Computing 6

Hybrid Cloud 6
Why Hybrid Cloud 7

The Perfect World 7
Taking the Best from both World 7
More Control over Costs 7
Separating Critical Workloads from Less Sensitive Workloads 7
Modernization and Migration at your own pace 7
Maintain Regulatory Compliance 8
Flexibility for the Future 8

Containerization 8
Benefits of Containerization 9

Container Orchestration 9
Benefits of Container Orchestration 9

Technology Used 10
Docker 10

Docker File 10
Docker Hub 11
Cloud-based Development 11

Kubernetes 11
AWS 12
AWS EKS 12
Helm 13
NATS 13

System Architecture 14

Installation Guide 14
Prerequisites 14

Docker Engine Installation 14
Docker Compose Installation 16
Kubectl Installation 16
Go Installation 17
Kind Installation 18

AWS Account Creation 18
AWS CLI Setup 19
Eksctl Installation 19

Operations Guides 20
Docker Build & Push Image to Docker Hub 20
Prepare Remote Cluster (AWS EKS) 20
Prepare Local Cluster 22
Delete Clusters 23

Demo 23

Conclusion 25

References 26

Cloud Computing
The concept of “Cloud” came from the metaphor for the Internet. Cloud Computing is the
transmission of different computing services such as servers, networking, databases,
applications, and programs etc. over the internet.

Types of Cloud
Cloud computing has two types of models. Deployment models and Service models.
Deployment model consists of Public Cloud, Private Cloud, Multi Cloud and Hybrid Cloud. And
there are three types of service models, Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS). Different deployment models and service models are
explained below.

Deployment Models
Public Cloud: The cloud infrastructure of a public cloud is accessible to the general public via
the internet. Public cloud owned and operated by different 3rd party cloud providers like
Microsoft Azure, Google Cloud etc. who distribute different computer services like storage and
servers over the internet [1].

Private Cloud: In a private cloud, the cloud infrastructure is owned and operated by an
organization, though it can be managed by the organization or a third party. A company’s onsite
data center is an example of a private cloud [1].

Multi-cloud: In multi-cloud, multiple cloud computing and storage services from different service
providers can be integrated into a single architecture. It reduces dependency on a single service
provider and uses any service as desired.

Hybrid Cloud: Hybrid cloud is the combination of public and private cloud that shares data and
applications between them. Hybrid cloud architecture consists of Infrastructure-as-a-Service
(IaaS) platform. The common IaaS platforms are Amazon Web Services, Microsoft Azure and
Google Cloud platform. In hybrid cloud, resources can be stored on premises or off premises. A
wide area network (WAN) is needed for hybrid cloud administration to connect public cloud and
private cloud [2]. As data can be moved between private and public cloud it brings flexibility,
portability, optimization, and security in the organization.

Figure: Types of Cloud Computing

Service Models
Infrastructure-as-a-Service (IaaS): IaaS is a cloud service model where users can access
basic computing infrastructure. It is commonly used by IT administrators. An organization rents
IT infrastructure such as servers, virtual machines, storage, networks etc. from the cloud
providers on a pay-as-you-go basis. Shifting an organization to an IaaS system reduces
maintenance of on-premise data centers, reduces hardware costs [1]. Amazon Web Services
(AWS), Google Compute Engine (GCE), IBM Cloud, and Microsoft Azure are some examples of
IaaS.

Platform as a Service (PaaS): PaaS provides platforms and runtime environments for
developing, managing and testing applications. The goal of PaaS is to free developers from
having to set up or manage the servers, storage, networks, and databases required for
development in order to swiftly create online or mobile apps. A web application for scheduling
appointments operated via Google App Engine could be an example of PaaS.

Software as a Service (SaaS): SaaS uses cloud services to host and administer software
programs. Vendors provide the needs for both software and hardware, so the company doesn't
have to consider any of these solutions. The SaaS approach suits a firm that doesn't want to be

burdened by any IT infrastructure. SaaS cloud service providers handle all of the organization's
requirements for solutions. Google Workspace (formerly GSuite), Dropbox, Salesforce, Cisco
WebEx, SAP Concur are some of the examples of SaaS.

Advantages of Cloud Computing
Cost Effective: As cloud computing services run by pay per you go method, the organization
that uses the cloud services only pays as much as they use, such as data storage use. This
exclusive feature has a positive outcome in increasing revenue for the organization.

Security: Although most firms prefer not to discuss the prospect of internal data theft out loud,
the reality is that an astonishingly high percentage of data thefts are carried out inside by
employees. When this happens, keeping critical information offsite can actually be much safer.
According to RapidScale, 94 percent of firms reported improved security as a result of moving to
the cloud, and 91 percent said the cloud made it simpler to comply with regulatory requirements.
The encryption of data being communicated over networks and kept in databases is the key to
this increased security. As with the majority of cloud-based services, various security settings
can be adjusted based on the user as an additional security protection [3].

Flexibility: In general, using the cloud gives businesses more flexibility than hosting on a local
server. Additionally, a cloud-based solution may rapidly match an organization's demand for
additional bandwidth rather than requiring a complicated (and costly) update to its IT
infrastructure. The overall effectiveness of business could be significantly boosted by this
increased freedom and flexibility [3].

Insight: For a bird's-eye perspective of data, several cloud-based storage options provide
integrated cloud analysis. Cloud Service users can quickly deploy tracking systems and create
custom reports to examine information across the entire organization when the data is stored in
the cloud. Users can develop strategies to accomplish organization objectives and boost
efficiencies as a result of those findings. For instance, Sunny Delight, a beverage firm, used
cloud-based business analytics to boost earnings by around $2 million annually while reducing
employee costs by $195,000 [3].

Hybrid Cloud
Hybrid cloud is the combination of private and public cloud which refers to a mixed computing,
storage, and services environment made up of on-premises infrastructure, private cloud
services, and public cloud services.

Figure: Hybrid cloud

Why Hybrid Cloud

The Perfect World
In hybrid cloud model, if one cloud platform is unavailable to provide services still all our
services will be run properly due to the fact that all the services are still available through
the other cloud platform.

Taking the Best from both World
Choosing the hybrid cloud approach we can take the advantages of public cloud, private cloud,
on-premises infrastructure and multi cloud where we also can avoid the disadvantages of each
world.

More Control over Costs
With hybrid cloud computing, you are not totally dependent on another company and it will give
you the opportunity about how much control you want in your hand and how much control you
want to give the cloud provider.

Separating Critical Workloads from Less Sensitive Workloads
You might run critical services like store sensitive financial or customer information on your
private cloud while using a public cloud to run the rest of your enterprise applications.

Modernization and Migration at your own pace
With a hybrid cloud you can modernize and migrate applications to the different clouds or
on-premises at the pace which will be most effective and efficient for your business and
transform your technical infrastructure over time.

Maintain Regulatory Compliance
Many industries and organizations have rules surrounding where and how your app can
operate. Hybrid systems can help us with the consistent adoption wherever workloads are
deployed and managed.

Flexibility for the Future
The future is uncertain and dynamic and to match the needs of the future hybrid system can
ensure flexibility which will be most effective and efficient for your business.

Containerization
Containerization is the encapsulation of software code with its run time environment that
packages application code as a single, portable, lightweight executable package together with
related operating system (OS), libraries, configuration files, dependencies etc.

Figure: Containerization techniques

The single executable file created by containers runs upon container runtime which is installed
on the host operating system. Though virtual machines also have resource isolation and
allocation benefits, they need hardware level and OS kernel level virtualization where containers

virtualize the operating system only. That is why containers are called lightweight as they share
the machine's OS kernel for different containers. Moreover, common container layers can be
shared among each other. All of those make containers smaller in size with a faster start up
and less overhead.

Benefits of Containerization
● Portability
● Agility
● Speed
● Scalability
● Dev and Ops separation of concerns
● Developer-Friendly
● Continuity
● Environmental consistency across development, testing, and production
● Ease of Management
● Plug and play
● Security
● Continuous development, integration, and deployment
● Fault Isolation
● Loosely coupled, distributed, elastic, liberated micro-services
● Efficiency
● Resource utilization
● Lightweight
● Resource isolation

Container Orchestration
Container orchestration is the automation of managing and coordinating the life cycles of
containers in dynamic environments.

A containerized based microservices application might translate into operating hundreds or
thousands of containers which can introduce significant complexity if managed manually.
Container orchestration automates the provisioning, coordinating, deployment, scheduling,
networking, configuring, scaling, availability, and lifecycle management of containers.

Benefits of Container Orchestration
● Load balancing
● Traffic routing
● Service discovery of containers
● Storage orchestration
● Automated rollouts and rollbacks

● Automatic bin packing
● Disaster recovery or backup and restore
● Keeping interactions between containers secure
● Self-healing
● High availability or no downtime
● Provisioning of containers
● Deployments of containers
● Secret management
● Configuration management
● Scalability or high performance
● Monitoring container health
● Resource allocation
● Configuring and scheduling of containers

Technology Used

Docker
Docker is a compartment virtualization innovation. Docker and Docker holders consider
packaging an application with its circumstances and execution environment into a standardized,
deployable unit, ensuring that the application performs constantly and dependably on the
different enrolling stages [4].Thus, it resembles an exceptionally lightweight virtual machine
[VM]. Docker's natural framework contains various parts, including a docker client to allow the
client to interface with a running docker daemon. As well as building holders, we give what we
call a designer work process, which is truly about assisting individuals with building
compartments and applications inside compartments and afterward dividing those between their
colleagues [5]. The docker daemon runs a holder from a close-by image or pulls an image
clearly from the vault.

Docker File
A Docker document is a text report that contains all of the orders (rules) a client could move
toward the request line to assemble an image. Docker Instructions are determined inside a
Docker file and are utilized by Docker for consequently fabricating an image. Using Docker
gather, clients can make a motorized structure that executes a couple of request line rules in
movement [4]. Typically, they demonstrate how a given venture is based on a base image.
Docker records normally contain bits of knowledge concerning the base image, biological
factors, comments, and orders to execute shell orders, present circumstances, present
programming like orchestrating and interfacing, open/uncover ports for outside access, and start
the association [4]. A Docker file can contain every one of the orders a client could approach the

order line to gather an image. For example, RUN direction to execute any requests or COPY
direction to copy records or lists to the compartment's filesystem at the way true region [4].

Docker Hub
A Docker Hub is a Docker vault for putting away docker images. Docker image makes a docker
holder. Compartments hold the entire pack expected for an application, so the application can
be run in a disengaged manner [1]. The images are put away in Docker Hub in storehouses,
each containing various renditions of a comparative image. The image shows are put away as a
JSON record, while the layers are put away in a packed organization. For instance, assume
there is an image of Ubuntu OS with SQL SERVER, when this image is run with the docker run
order, then, at that point, a compartment will be made and SQL SERVER will be running on
Ubuntu OS [6]. Clients can transfer, search or download images. The images given by Docker
Inc or accomplices are called official images and have the sole name of the structure, while the
client transferred images are contained in the store in the arrangement.

Cloud-based Development
Cloud-based Development class is connected to using Docker to motorize the most well-known
approach to setting the item improvement environment on the server-side related to the cloud-
based structure and various organizations like an informational index [7]. The parts outlining an
application are usually conveyed on cloud stages by relying upon virtualization developments
[4].
Compartment-based virtualization is getting progressively more energy in this present
circumstance, as it gives an isolated and lightweight virtual runtime environment. Even more
expressly Docker is used in the setting up of the workspace that is ready to code where all of
the circumstances expected by the source code are collected, running from gadgets and
robotized testing, and live to the portion code [7]. Docker contains the genuine standard for
compartment based virtualization, and it awards packaging programming parts in Docker
images, which are then exploited as examined only designs to make and run Docker holders.
Compartment orchestrators are then used to robotize the association and the leading group of
containerized applications at an immense extension.

Kubernetes
Kubernetes is an open-source container orchestration system for automating software
deployment, scaling, and management which was originally designed and developed by Google
and is maintained by Cloud Native Computing. Kubernetes describes a lot of building blocks
that overall give parts that send, stay aware of, and scale applications considering CPU,
memory, or custom estimations. Kubernetes are estimated coupled and extensible to meet
different obligations. The Kubernetes configuration coordinates the possibility of a case, a
consideration that adds up to a lot of compartments for specific normal resources at a
comparative host machine [8]. It plays a basic figure in the overall show of Kubernetes. Cloud
systems enable computational resources to be obtained on demand and according to
application essentials. The inward parts, as well as expansions and holders that unexpected

spike sought after for Kubernetes, rely upon the Kubernetes API. Clients can rent computational
resources of different sorts: virtual machines (VMs), holders, master gear, or
uncovered metal resources, each having its own characteristics and cost. The stage applies its
control over the cycle and limits resources by portraying resources as Objects, which can then
be directed in this manner [9]. Thusly, understanding the presentation related to sending,
finishing, and keeping a holder that has that ability is basic, as it impacts the limit of a provider
to offer better-grained blaming decisions for clients of stream assessment or taking care of use
essentials.

AWS
AWS (Amazon Web Services) is an extensive, evolving cloud computing platform which is
offered by Amazon. It combines infrastructure as a service (IaaS), platform as a service (PaaS),
and packaged software as a service (SaaS) . An enterprise may benefit from AWS services by
receiving tools like computing power, database storage, and content delivery services.

Amazon.com developed AWS in 2006 from the internal infrastructure to manage its online retail
activities. Pay-as-you-go cloud computing model that scales to provide users with compute,
storage or throughput as required was built by AWS which was one of the first companies to
offer it.

AWS is divided into various services, each of which can be customized based on the
requirements of the user. An AWS service's configuration options and individual server
mappings should be visible to users.
The portfolio of Amazon Web Services includes more than 100 services, such as those for
computation, databases, managing infrastructure, developing applications, and security. these
services consist of:

● Compute
● Storage databases
● Data management
● Hybrid cloud
● Networking
● Analytics
● AI
● Messages and notifications
● Security

AWS EKS
Anyone can easily operate Kubernetes on AWS and on-premises with the help of Amazon
Elastic Kubernetes Service (Amazon EKS), a managed Kubernetes service. An open-source
platform called Kubernetes automates the administration, scalability, and management of
containerized applications. Applications running on upstream Kubernetes are compatible with
Amazon EKS because it has been recognized as Kubernetes-conformant.

The availability and scalability of the Kubernetes control plane nodes responsible for scheduling
containers, monitoring application availability, storing cluster data, and other crucial functions is
automatically managed by Amazon EKS.

You can use Amazon EKS to execute your Kubernetes apps on both AWS Fargate and Amazon
Elastic Compute Cloud (Amazon EC2). With Amazon EKS, you can benefit from all the
performance, scale, reliability, and availability of AWS infrastructure in addition to integrations
with AWS networking and security services such as role-based access control (RBAC)
integration with AWS Identity and Access Management (IAM) and support for pod networking in
AWS Virtual Private Cloud (VPC), application load balancers (ALBs) for load distribution, and so
forth.

Helm
Helm is a package manager for Kubernetes. The set of Kubernetes materials that together
specify an application is packaged as charts. These charts can describe a single resource, such
as a Redis pod, or a full stack of a web application: HTTP servers, databases and caches. By
default, Helm is attached with a repository of organized Kubernetes applications that are
brought up in the official charts repository. It’s also easy to establish a private chart repository
for intestinal usage.

NATS

NATS is an open-source messaging system. It is a single technology that enables applications
to safely communicate across any combination of cloud vendors, on-premise, edge, web and
mobile, and devices. It confirms publisher-subscriber, request-reply and messaging queue
models. The publisher-subscriber system of NATS consists of publishers publishing messages
to NATS subjects. Subscribers constructively listening onto these subjects receive the
messages. NATS server called as gnatsd provides for scalability by cutting off subscriptions if
there is a timeout in connection to the server. Other features of NATS include clustered mode of
servers and an always on dial tone for publisher-subscriber system. NATS streaming is a data
streaming service for NATS servers. The distinguishing feature between NATS and NATS
streaming is that a NATS streaming server embeds a NATS server. NATS streaming API is used
to communicate with the NATS server. Channels are the subjects in NATS Streaming in which
clients receive data and producers send data to be put in message logs. NATS Streaming
provides additional features such as at least once delivery of message, enhanced message
protocol using Google protocol buffers, message persistence that’s useful for message replay
and durable subscriptions. Unfortunately, it does not support wildcard matching. Durable
subscriptions essentially means that if a client were to restart, then the server will start delivery
with the earliest message that’s unacknowledged by that subscriber.

System Architecture
Our Hybrid cloud system consist of:

● Remote cluster
○ AWS EKS

● Local cluster
○ On-premises cluster with Kubernetes

● Tunnel connection between remote and local cluster via NATS
● Bi-directional conversation in between two systems running in local and Remote cluster

Figure: System Architecture

Installation Guide

Prerequisites
Here we are using Ubuntu 20.04.4 LTS (Focal Fossa) OS for operating our system.

Docker Engine Installation
- Removing the old versions of Docker if they have previously been installed

sudo apt-get remove docker docker-engine docker.io containerd runc

- Install packages that allow APT to use HTTPS

sudo apt-get update

sudo apt-get install -y \

apt-transport-https \

ca-certificates \

curl \

gnupg-agent \

software-properties-common

- Add Docker's GPG key

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add

-

- Add the Docker repository

sudo add-apt-repository \

"deb [arch=amd64] https://download.docker.com/linux/ubuntu \

$(lsb_release -cs) \

stable"

- Install the Docker engine

sudo apt-get update

sudo apt-get install -y docker-ce docker-ce-cli containerd.io

- Add your login to the Docker group

sudo usermod -aG docker $USER

- Logout of your SSH session and log back in for the changes to take effect.
- Verify that the engine is installed correctly

docker run hello-world

Output

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)

3. The Docker daemon created a new container from that image which runs

the

executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent

it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

https://hub.docker.com/

For more examples and ideas, visit:

https://docs.docker.com/get-started/

Docker Compose Installation
Docker compose is a tool to run multi-container Docker applications with the help of YAML files.

- Download a copy of Docker Compose

sudo curl -L

"https://github.com/docker/compose/releases/download/1.28.4/docker-compose-

$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

- Make the app executable

sudo chmod +x /usr/local/bin/docker-compose

- Test the installation

docker-compose --version

Output

docker-compose version 1.28.4, build unknown

Kubectl Installation
Kubectl is the Kubernetes command-line tool which helps us to deploy and manage Kubernetes
clusters [10].

- Download kubectl

sudo curl -L

"https://storage.googleapis.com/kubernetes-release/release/`curl -s

https://storage.googleapis.com/kubernetes-release/release/stable.txt`/bin/l

inux/amd64/kubectl" -o /usr/local/bin/kubectl

- Make the app executable

sudo chmod +x /usr/local/bin/kubectl

- Test the installation

kubectl version --short --client

Output

Client Version: v1.20.2

Go Installation
Go is a programming language which is designed at Google [11].

- Download the latest GoLang archive

curl -OL https://golang.org/dl/go1.18.3.linux-amd64.tar.gz

- Check SHA256 Checksum just in case

sha256sum go1.17.3.linux-amd64.tar.gz

- Extract everything to the usr/local directory

sudo tar -C /usr/local -xvf go1.17.3.linux-amd64.tar.gz

- Update PATH variable in ~/.profile file

sudo nano ~/.profile

- Add new row with export at the end of the ~/.profile file

export PATH=$PATH:/usr/local/go/bin

- Save the changes and exit the nano editor. Now we have to refresh your profile. Run this
command

source ~/.profile

- Check the version

go version

Output

go version go1.18.3 linux/amd64

Kind Installation
Kind stands for Kubernetes in Docker which is a tool for running local Kubernetes clusters using
Docker.

- Download Kind

sudo curl -L "https://kind.sigs.k8s.io/dl/v0.14.0/kind-$(uname)-amd64" -o

/usr/local/bin/kind

- Make the app executable

sudo chmod +x /usr/local/bin/kind

- Test the installation

kind version

Output

kind v0.14.0 go1.18.2 linux/amd64

AWS Account Creation
The AWS account creation process is given below [12]:

● Open the Amazon Web Services home page
● Choose create an AWS account
● Enter your account information, and then choose Continue
● Choose personal or professional
● Enter your company or personal information
● Read and accept the AWS customer agreement
● Choose create account and continue
● Enter the payment information
● Verify your phone number
● Enter the code displayed in the CAPTCHA, and then submit
● When the automated system contacts you, enter the PIN you receive and then choose

continue
● Select a support plan
● Finally, wait for your new account to be activated

To get your access key ID and secret access key [13]:
● Open the IAM console at https://console.aws.amazon.com/iam/

https://console.aws.amazon.com/iam/

● On the navigation menu, choose Users
● Choose your IAM user name (not the check box)
● Open the Security credentials tab, and then choose Create access key
● To see the new access key, choose Show
● To download the key pair, choose Download .csv file. Store the .csv file with keys in a

secure location

AWS CLI Setup
We will install AWS CLI using APT which is available in the default repository of Ubuntu 20.04
[14].

- Update system packages and repository index to latest

sudo apt-get update

- Install AWS CLI

sudo apt-get install awscli -y

- Run the following command to verify the installation

aws --version

Output

aws-cli/1.25.5 Python/3.8.10 Linux/5.4.0-121-generic botocore/1.27.5

- Run the following command to configure access to aws account

aws configure

Enter the following details accordingly:
● AWS Access Key ID [IAM user's Access key]
● AWS Secret Access Key [IAM user's secret key]
● Default region name [Aws region]
● Default output format [JSON format is fine]

Eksctl Installation
‘eksctl’ is the official CLI for Amazon EKS [15].

- Download and extract the latest release of eksctl with the following command

curl --silent --location

"https://github.com/weaveworks/eksctl/releases/latest/download/eksctl_$(una

me -s)_amd64.tar.gz" | tar xz -C /tmp

- Move the extracted binary to /usr/local/bin

sudo mv /tmp/eksctl /usr/local/bin

- Run the following command to verify the installation

eksctl version

Output

0.95.0

Operations Guides

Docker Build & Push Image to Docker Hub

Below command is used to build docker image & push it to Docker Hub. Here you have to give
your docker registry name. This step is avoidable if you want to use the docker image that
is provided by us.

cd chat-app

docker build -t DOCKER_REGISTRY/chat-app .

docker build -t taseenjunaid/chat-app .

docker push -t DOCKER_REGEISTRY/chat-app:latest .

docker push taseenjunaid/chat-app:latest

Update `deploy-local.yaml` and `deploy-remote.yaml` file with your image (such as
`taseenjunaid/chat-app:latest`)

Prepare Remote Cluster (AWS EKS)
- Create Cluster

eksctl create cluster --name remote-cluster

- Update cluster config with awscli

aws eks update-kubeconfig --region eu-central-1 --name remote-cluster

- Install NATS

helm repo add nats https://nats-io.github.io/k8s/helm/charts/

helm repo update

helm install my-nats nats/nats

- Go to K8s folder from project directory

cd K8s

- Expose NATS: Create load-balancer type service:

kubectl apply -f nats.yaml

- Get NATS public address: `LoadBalancer Ingress`

kubectl describe services nats-lb

Output

Name: nats-lb

Namespace: default

Labels: <none>

Annotations: <none>

Selector: app.kubernetes.io/name=nats

Type: LoadBalancer

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.100.202.198

IPs: 10.100.202.198

LoadBalancer Ingress:

a7d62f596d6eb4e5dbc5e6b87ac63192-1340131761.eu-central-1.elb.amazonaws.com

Port: nats 4222/TCP

TargetPort: 4222/TCP

NodePort: nats 31083/TCP

Endpoints: 192.168.77.234:4222

Port: leafnodes 7422/TCP

Here, it is
`a7d62f596d6eb4e5dbc5e6b87ac63192-1340131761.eu-central-1.elb.amazonaws.com`

- Update `deploy-remote.yaml`: Set `NAT_URL` env to the latest one which we get from
NATS public address, `LoadBalancer Ingress`.

- Deploy Chat-App to remote cluster

kubectl apply -f deploy-remote.yaml

- Describe the `chat-app-remote` service to get public address: `LoadBalancer Ingress`

kubectl describe services chat-app-remote

Output

Name: chat-app-remote

Namespace: default

Labels: <none>

Annotations: <none>

Selector: app=chat-app-remote

Type: LoadBalancer

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.100.133.76

IPs: 10.100.133.76

LoadBalancer Ingress:

a30ebc0f526294f889093f141841c3b6-1399523946.eu-central-1.elb.amazonaws.com

Port: <unset> 8000/TCP

TargetPort: 8000/TCP

- Go to the public address, `LoadBalancer Ingress` link with port. Here it is:
`a30ebc0f526294f889093f141841c3b6-1399523946.eu-central-1.elb.amazonaws.com:8
000` link. Make sure to mention the port `8000`.

- To get the pods, services and statefulsets

kubectl get all

Prepare Local Cluster
- Go to the K8s folder from the project directory if you are not there.

cd K8s

- Create kind cluster with given config file (i.e. `kind-config.yaml`).

kind create cluster --config=kind-config.yaml

- Update `deploy-local.yaml`, Set `NAT_URL` env to the latest one which we get from
NATS public address, `LoadBalancer Ingress`.

- Deploy the Chat-App to local cluster

kubectl apply -f deploy-local.yaml

- To get the pods, services and statefulsets

kubectl get all

- Now your app is accessible at localhost:30000 url.

Delete Clusters
- To get all contexts

kubectl config get-contexts

- To go to remote context, here you have to put your remote cluster context name.

kubectl config use-context <remote cluster context name>

- To delete remote cluster from remote context

eksctl delete cluster --name=remote-cluster

- To go to local context

kubectl config use-context <local cluster context name>

- To delete local cluster from local context

kind delete cluster

Demo
By following the operational guide, the setup of remote cluster and local cluster is successful.
The pods, services and statefulsets of local cluster and remote cluster are shown in the
following figures.

Figure: Remote cluster

Figure: Local cluster

We developed a hybrid cloud chat application which is accessible from both remote cluster and
local cluster. The main purpose of this hybrid cloud chat is to visualize the bidirectional
connection between remote cluster and local cluster

Figure: User interface from remote cluster

Figure: User interface from local cluster

Conclusion
It is possible to build a perfect system or near perfect system with the help of a hybrid cloud
model. By choosing the hybrid cloud approach we can take the advantages of public cloud,

private cloud, on-premises infrastructure and multi cloud where we also can avoid the
disadvantages of each world. On the other hand, containerization technology gives our
application perfect agility where container orchestration automates the life cycles of containers
in dynamic environments.

References
[1] What is cloud computing? A beginner's guide: Microsoft azure. What Is Cloud Computing? A
Beginner's Guide | Microsoft Azure. (n.d.). Retrieved July 1, 2022, from
https://azure.microsoft.com/de-de/resources/cloud-computing-dictionary/what-is-cloud-computin
g/#use

[2] Hybrid cloud architecture: Selecting the best of Both worlds. Cloudian. (2021, February 15).
Retrieved July 1, 2022, from https://cloudian.com/guides/hybrid-it/hybrid-cloud-architecture/

[3] 12 benefits of cloud computing and its advantages. Salesforce.com. (n.d.). Retrieved July 1,
2022, from
https://www.salesforce.com/products/platform/best-practices/benefits-of-cloud-computing/

[4] Openja, M., Majidi, F., Khomh, F., Chembakottu, B. and Li, H., 2022. Studying the Practices
of Deploying Machine Learning Projects on Docker. arXiv preprint arXiv:2206.00699.

[5] Anderson, C., 2015. Docker [software engineering]. Ieee Software, 32(3), pp.102-c3.

[6] Rad, B.B., Bhatti, H.J. and Ahmadi, M., 2017. An introduction to docker and analysis of its
performance. International Journal of Computer Science and Network Security (IJCSNS), 17(3),
p.228.

[7] Bogo, M., Soldani, J., Neri, D. and Brogi, A., 2020. Component‐aware orchestration of
cloud‐
based enterprise applications, from TOSCA to Docker and Kubernetes. Software: Practice and
Experience, 50(9), pp.1793-1821.

[8] Wikimedia Foundation. (2022, June 28). Kubernetes. Wikipedia. Retrieved July 1, 2022, from
https://en.wikipedia.org/wiki/Kubernetes

[9] Medel, V., Tolosana-Calasanz, R., Bañares, J.Á., Arronategui, U. and Rana, O.F., 2018.
Characterising resource management performance in Kubernetes. Computers & Electrical
Engineering, 68, pp.286-297.

[10] How do I setup kind on ubuntu to run the kubernetes cass-operator? How do I setup KinD
on Ubuntu to run the Kubernetes cass-operator? - Datastax Community. (n.d.). Retrieved July 1,
2022, from

https://community.datastax.com/questions/5369/how-do-i-setup-kind-on-ubuntu-to-run-the-kuber
nete.html
[11] Yudina, M. (2021, November 6). How to install go on ubuntu 20.04. DEV Community.
Retrieved July 1, 2022, from https://dev.to/mariayudina/how-to-install-go-on-ubuntu-2004-2mn6

[12] Peterson, K. (2013). The accounts. Amazon. Retrieved July 1, 2022, from
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-creating.html

[13] Vanhoo, F. (2021). PowerShell. Amazon. Retrieved July 1, 2022, from
https://docs.aws.amazon.com/powershell/latest/userguide/pstools-appendix-sign-up.html

[14] Gautam, P. (2021, March 31). How to install AWS CLI on ubuntu 20.04. LinOxide. Retrieved
July 1, 2022, from https://linoxide.com/how-to-install-aws-cli-on-ubuntu-20-04/

[15] Hansen, N. A. Eks. Amazon. Retrieved July 1, 2022, from
https://docs.aws.amazon.com/eks/latest/userguide/eksctl.html

