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MapReduce/Hadoop

Companies such as Google, Facebook and Twitter need to store and
process several TB and PB of data every day
Today, the processing of large amounts of data is often done via
distributed computing in Clusters
2 fundamental requirements exist:

1 Data must be stored as efficient as possible
2 Data must be processed as efficient as possible
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Data Storage and Processing

In order to efficiently store data, Google developed the distributed
Cluster file system Google File Sytem (GFS)

GFS operates according to the Master-Slave principle
Fault tolerance in case of hardware failures achieves GFS via replication

S. Ghemawat, H. Gobioff, S. Leung. The Google File System. Google. 2003
http://labs.google.com/papers/gfs-sosp2003.pdf

The standard procedure for distributed systems is typically: Data, which
needs to be processed, is transferred to the program

A program is executed on a computer and fetches the required input data
from a source (e.g. FTP server or database)
This procedure is not optimal for large amounts of data, because a
bottleneck occurs
Solution: The data processing must take place where the data is stored
=⇒ This is possible with the MapReduce programming model
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Two Meanings of MapReduce Image Source: http://www.pnexpert.com

MapReduce often means 2 things:
1 MapReduce programming model

For parallel data processing in Clusters

2 MapReduce frameworks (e.g. Hadoop)
Operate according to the MapReduce programming model
Differ in the programming language used and in implementation details

Since Hadoop 2 (released in 2013), developers that use the Hadoop Framework are not forced to use the MapReduce programming
model any more because Hadoop 2 has the YARN (Yet Another Resource Manager), which is also called MapReduce 2.0 (MRv2).
YARN took over the task of cluster management from MapReduce. The job tracker, resource management and job
scheduling/monitoring have been split into separate daemons. MRv2 maintains API compatibility with Hadoop 1. All MapReduce
jobs should still run unchanged on top of MRv2 with just a recompile.
Great Source: https://developer.ibm.com/tutorials/bd-yarn-intro/
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Basic information about MapReduce

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Google 2004
http://labs.google.com/papers/mapreduce-osdi04.pdf

The MapReduce programming model splits tasks into smaller parts and
distributes them for parallel processing to different compute nodes
The final result is created by merging the partial results

Oliver Fischer. Verarbeiten großer verteilter Datenmengen mit Hadoop. heise Developer. 2010
http://heise.de/-964755

Google presented MapReduce in 2003 and the Google File System in
2004

The implementations of Google were never published
This resulted in the emergence of free (open source) re-implementations
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Basic information about Hadoop

2005: Doug Cutting implements MapReduce for Nutch
Nutch is a free search engine, written in Java
http://nutch.apache.org

Cuttings implementation was the basis of the Hadoop project
Hadoop is a free implementation of GFS and MapReduce
http://hadoop.apache.org

Since 2008 coordinates the Apache Software
Foundation the development

Hadoop is a top-level project of the Apache
Software Foundation

July 2009: A Hadoop cluster of Yahoo sorted 100 terabytes in 2 hours
and 53 minutes (http://sortbenchmark.org)
June 2012: Facebook uses a Cluster of 100PB of data inside HDFS
https://www.facebook.com/notes/ facebook-engineering/
under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920/
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Roots of MapReduce

The MapReduce concept has its roots in Lisp
Lisp implements the functions map() and reduce()
The map-function of Lisp is called with a list of input values and a
function as parameter

The supplied function is applied to each value in the list
The reduce-function of Lisp is also called with a function and a list of
input values

reduce operates similar to map, but it combines the results to a single one
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MapReduce and functional Programming

MapReduce bases of the functional programming principle
Functional programming is a programming style in which programs
consist solely of functions
Functional programs are a set of (function)-definitions
(Function)-definitions implement partial mappings of input data to
output data
The input data is never changed!
The functions are idempotent (free of side effects)

For each function call, the same result is returned
Only calculations are carried out with input data and then, (intermediate)
result are generated

Google uses MapReduce for the PageRank algorithm
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MapReduce

MapReduce consists of a few steps:
1 Partitioning of the initial data
2 Mapping (map) the data to a data structure which consists of a

key-value pair
3 Distributing (shuffle) and sorting (sort) the key-value pairs
4 Reducing (reduce) the key-value pairs to obtain the result
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MapReduce – Operation Steps

The Map phase and the Reduce phase can be executed in parallel on
the nodes of a cluster

A master coordinates and monitors the MapReduce applications
The diagram shows that the data processing via MapReduce is similar
with the processing in a UNIX pipe

Source: Christophe Bisciglia, Tob White. An Introduction to Hadoop. 2009
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Example: Distributed Frequency Analysis with MapReduce (1/9)

Objective: Figure out for a large text how many times which words
occur

Sources: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data
Processing on Large Clusters. 2004 and
http://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

First, the MapReduce
library of the user program
splits the input data into m
parts

The parts are called split
or shard
It is useful to have at
least as many splits as
map workers in the
cluster exist, in order
that they are all busy
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Example: Distributed Frequency Analysis with MapReduce (2/9)

As next step, the user program creates via fork() copies of itself and
creates this way the master and the workers

Sources: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data
Processing on Large Clusters. 2004 and
http://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

The master assigns the m
map tasks to the workers
Each map worker reads a
split part of the input data
and extracts the key-value
pairs
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Example: Distributed Frequency Analysis with MapReduce (3/9)

Map function
1 map(String key, String value):
2 // key: document name
3 // value: document contents
4 for each word w in value:
5 EmitIntermediate(w, "1");

map gets a document name key and a
document value provided as strings

map scans the document word by word

The map-process inserts for each word w a 1 into the intermediate result
list of the word

At the end of the map phase, for a text with n different words, n
intermediate result lists exist

Each intermediate result list contains as many 1 entries, as the
corresponding word exists in the document

Source: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data Processing on Large Clusters. 2004
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Example: Distributed Frequency Analysis with MapReduce (4/9)

Text = "Fest gemauert in der Erden
steht die Form, aus Lehm gebrannt.
Heute muß die Glocke werden,
frisch, Gesellen, seid zur Hand.
Von der Stirne heiß
rinnen muß der Schweiß,
soll das Werk den Meister loben,
doch der Segen kommt von oben."

The text is split into sentences
It is also useful to convert all uppercase
characters to lowercase characters and
to remove the punctuation symbols

Input_list = [ (sentence_1, "fest gemauert in der erden steht die form aus lehm gebrannt"),
(sentence_2, "heute muß die glocke werden frisch gesellen seid zur hand"),
(sentence_3, "von der stirne heiß rinnen muß der schweiß soll das werk den meister loben

doch der segen kommt von oben") ]

The input list contains three key-value pairs
Therefore 3 map processes can be started

Process_1 = map(sentence_1, "fest gemauert in der erden steht die form aus lehm gebrannt")
Process_2 = map(sentence_2, "heute muß die glocke werden frisch gesellen seid zur hand")
Process_2 = map(sentence_3, "von der stirne heiß rinnen muß der schweiß soll das werk den meister loben

doch der segen kommt von oben") ]

Source of this example: http://de.m.wikipedia.org/wiki/MapReduce

Prof. Dr. Christian Baun – 5th Slide Set Cloud Computing – Frankfurt University of Applied Sciences – WS2223 15/73



MapReduce/Hadoop Hadoop - Components and Extensions

Example: Distributed Frequency Analysis with MapReduce (5/9)

The map processes generate lists with intermediate result pairs:
P1 = [ ("fest", 1), ("gemauert", 1), ("in", 1), ("der", 1), ("erden", 1), ("steht", 1), ("die", 1),

("form", 1), ("aus", 1), ("lehm, 1), ("gebrannt", 1) ]
P2 = [ ("heute", 1), ("muß", 1), ("die", 1), ("glocke", 1), ("werden", 1), ("frisch", 1), ("gesellen", 1),

("seid", 1), ("zur", 1), ("hand", 1) ]
P3 = [ ("von", 1), ("der", 1), ("stirne", 1), ("heiß", 1), ("rinnen", 1), ("muß", 1), ("der", 1),

("schweiß", 1), ("soll", 1), ("das", 1), ("werk", 1), ("den", 1), ("meister", 1), ("loben", 1),
("doch", 1), ("der", 1), ("segen", 1), ("kommt", 1), ("von", 1), ("oben", 1) ]

Each map worker sorts its local list of the intermediate result pairs
This is carried out by the MapReduce framework automatically

Next, each map worker groups inside its local list of intermediate result
pairs those key-value pairs, which have the same key

This is carried out by the MapReduce framework automatically too

Sources: https://www.inkling.com/read/hadoop-definitive-guide-tom-white-3rd/chapter-6/shuffle-and-sort
and http://de.m.wikipedia.org/wiki/MapReduce

Prof. Dr. Christian Baun – 5th Slide Set Cloud Computing – Frankfurt University of Applied Sciences – WS2223 16/73



MapReduce/Hadoop Hadoop - Components and Extensions

Example: Distributed Frequency Analysis with MapReduce (6/9)

The following output shows the result of the map phase
P1 = [ ("aus", 1), ("in", 1), ("der", 1), ("die", 1), ("erden", 1), ("fest", 1), ("form", 1),

("gebrannt", 1), ("gemauert", 1), ("lehm, 1), ("steht", 1) ]
P2 = [ ("die", 1), ("frisch", 1), ("gesellen", 1), ("glocke", 1), ("hand", 1), ("heute", 1), ("muß", 1),

("seid", 1), ("werden", 1), ("zur", 1) ]
P3 = [ ("das", 1), ("den", 1), ("der", (1, 1, 1)), ("doch", 1), ("heiß", 1), ("kommt", 1), ("loben", 1),

("meister", 1), ("muß", 1), ("oben", 1), ("rinnen", 1), ("schweiß", 1), ("segen", 1), ("soll", 1),
("stirne", 1), ("von", (1, 1)), ("werk", 1) ]

The result of this phase is the
intermediate result of MapReduce

Each map process stores its
intermediate result to a local file
Each key-value pair in the intermediate
result is called partition

Each map worker informs the master about the file name with the
intermediate result and the partitions
If all map processes have finished execution, the shuffle phase starts

Source of this example: http://de.m.wikipedia.org/wiki/MapReduce
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Example: Distributed Frequency Analysis with MapReduce (7/9)

The master allocates partitions and file names with intermediate results
on map workers to the individual reduce workers

Sources: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data
Processing on Large Clusters. 2004 and
http://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

Each reduce worker
accesses via Remote
Procedure Calls the files to
receive the intermediate
results

Next, it sorts the
key-value pairs
according to their keys
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Example: Distributed Frequency Analysis with MapReduce (8/9)

Reduce function
1 reduce(String key, Iterator values):
2 // key: a word
3 // values: a list of counts
4 for ’word’
5 int result = 0;
6 for each v in values:
7 result += ParseInt(v);
8 Emit(AsString(result));

reduce is executed for each word key
and for the intermediate result list
values

reduce adds all numbers

Using the example of key "der":
Input:
P1 = [ ("der", 1) ]
P3 = [ ("der", (1, 1, 1)) ]

Output:
Output = [ ("der", 4) ]

Sources: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data Processing on Large Clusters. 2004 and
http://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html
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Example: Distributed Frequency Analysis with MapReduce (9/9)

Finally, the
master passes
control back to
the user program

Output of the user
program

aus, 1
das, 1
den, 1
der, 4
die, 2
...

The result of MapReduce is stored in r output files, which
have been generated by r reduce workers
The user program may merge the output files of the
reduce workers to the final result

Sources: Jeffrey Dean, Sanjay Ghemawat. MapReduce: Simplied Data Processing on Large Clusters. 2004 and
http://www.cs.rutgers.edu/~pxk/417/notes/content/mapreduce.html

Prof. Dr. Christian Baun – 5th Slide Set Cloud Computing – Frankfurt University of Applied Sciences – WS2223 20/73



MapReduce/Hadoop Hadoop - Components and Extensions

Examples, where MapReduce is helpful

Distributed frequency analysis
How many times do words exist in a long text?

Map-function: Writes <Word, 1> into an intermediate memory
Reduce-function: Sums the values of a word to <Word, Sum>

Distributed grep
Which lines of text contain a search pattern?

Map-function: Writes rows detected into an intermediate memory
Reduce-function: Forwards the intermediate results for output through

Calculation of website requests (web access log)
Map-function: Scans the web server log data and writes key-value pairs
<URL, 1> into an intermediate memory
Reduce-function: Sums the values for an URL to <URL, Sum>

PageRank algorithm
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Google PageRank

The PageRank algorithm rates linked documents (web pages)
Developed and patented by Larry Page and Sergei Brin
Basis of the Google search engine for the ranking of web pages
Principle: The numerical weight (PageRank) PRp of a web page p
depends of the number and the numerical weight of the web pages,
which refer to p
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PageRank Algorithm Source: Lars Kolb (Universität Leipzig) and Wikipedia

PRp = PageRank of a web page p
LIN(p) = Set of documents, which refer to p
=⇒ incoming links
LOUT (p) = Set of documents, to which p refers
=⇒ outgoing links

PR(p) = (1− d) + d ∗
∑

pi∈LIN(p)

PR(pi)
amount LOUT (pi)

d = damping factor between 0 and 1 (usually 0.85)
A small portion of the weight (1− d) is withdrawn from any web page
and distributed equally among all detected web pages

This prevents, that the weight flows away to websites, which do not
contain links to other websites

Source: http://dbs.uni-leipzig.de/file/CDM_WS_2013_14_03_MapReduce.pdf
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PageRank Example Source: Lars Kolb (Universität Leipzig)

PR(p) = (1− d) + d ∗
∑

pi∈LIN (p)

PR(pi )
amount LOUT (pi )

PR(A) = (1− d) + d ∗ PR(C)

PR(B) = (1− d) + d ∗ PR(A)
2

PR(C) = (1− d) + d ∗ (PR(A)
2 + PR(B))

Conversion to iteration equations with d = 0.5:
PRn+1(A) = 0.5 + 0.5 ∗ PRn(C)

PRn+1(B) = 0.5 + 0.5 ∗ PRn(A)
2

PRn+1(C) = 0.5 + 0.5 ∗ (PRn(A)
2 + PRn(B))

Result of the iteration with PR0(A) = PR0(B) = PR0(C) = 1

0 1 2 3 4 5 6 PR
A 1
B 1
C 1
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PageRank Example (Result) Source: Lars Kolb (Universität Leipzig)

For examples with just a few documents,
< 10 iterations are required to compute the
PageRank of the documents
For calculating the PageRank for the entire
WWW, around 100 iterations are required

Conversion to iteration equations with d = 0.5:
PRn+1(A) = 0.5 + 0.5 ∗ PRn(C)

PRn+1(B) = 0.5 + 0.5 ∗ PRn(A)
2

PRn+1(C) = 0.5 + 0.5 ∗ (PRn(A)
2 + PRn(B))

Result of the iteration with PR0(A) = PR0(B) = PR0(C) = 1

0 1 2 3 4 5 6 PR
A 1 1 1.125 1.0625 1.078125 1.078125 1.076171875 1.077
B 1 0.75 0.75 0.78125 0.765625 0.76953125 0.76953125 0.769
C 1 1.25 1.125 1.15625 1.15625 1.15234375 1.154296875 1.154
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PageRank and MapReduce Source: Lars Kolb (Universität Leipzig)

PageRank can be parallelized because:
Iteration n + 1 depends only of the values of iteration n
The calculations of the PR values of different documents are independent
of each other

Map phase:
Input: Document X , PRn, outgoing links LOUT (X )
Calculate for each link X −→ Y the sum component, which X
contributes for Y
=⇒ Output: Y , PRn(X)

amount LOUT (X)
Additional output: List of outgoing links: X , LOUT (X )

Reduce phase:
Input: Document X , sum components of the incoming links and the list
of outgoing links X , LOUT (X )
Calculate PRn+1
Output: X ,PRn+1, LOUT (X )

A predetermined number of iterations is carried out
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PageRank and MapReduce – Example Source: Lars Kolb (Universität Leipzig)
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PageRank and MapReduce – Result Source: Lars Kolb (Universität Leipzig)
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Hadoop – Components and Extensions

Hadoop Distributed File System (HDFS)
Pig: Database language of Yahoo
Hive: Data Warehouse of Facebook
HBase: Database for managing very large amounts of data
This is just a selection of popular components/extensions

Further extensions, such as Chukwa and ZooKeeper exist
Chukwa is used for real-time monitoring of very large distributed systems
ZooKeeper simplifies the configuration of distributed systems

Good introduction to Pig and Hive in German language
Ralf Falk, David Knaak, Michael Köster, Marko Salchow
http://wiki.fh-stralsund.de/index.php/Vergleich_Hive_vs._Pig
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Hadoop Distributed File System (HDFS)
Hadoop contains that Hadoop Distributed File System (HDFS)

Open-Source re-implementation of the Google File System (GFS)
Fault-tolerant, distributed file system

Image source:
http://hadoop.apache.org

Further details:
http://hadoop.apache.org/hdfs/

The Google Clusters consist of low-cost commodity hardware
Failure of individual nodes is not an exception, but rather the usual case
=⇒ Fault tolerance is an important goal of GFS and HDFS
New nodes can be added easily
Amounts of data in the petabyte range need to be managed

Helpful Source: Ghemawat, Gobioff, Leung. The Google file system (2003)
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Architecture of HDFS (follows the Master/Slave Principle)

Namenode (Master) stores the metadata, and reacts to failures
Exists exactly one time in a HDFS Cluster
=⇒ Single Point of Failure
Does not store any user data, but only metadata

Knows all files and directories, which exist in the HDFS Cluster
Stores the numbers of chunks of the files, the number of copies and their
locations (Datanodes)
Monitors the availability of the individual Datanodes, and redistributes
the chunks, in case a Datanode fails

Datanodes (Slaves) only store the user data
Special feature of HDFS and GFS: Chunk size is 64MB

The resulting internal fragmentation is accepted for the benefit of a lower
network overhead

Clients communicate with the Namenode and the Datanodes
The Namenode only operates as a directory service

Provides the information, on which Datanodes, a searched file is stored
Read and write requests send Clients directly to the Datanodes
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Security against Data Loss at HDFS

Image source:
http://hadoop.apache.org/common/
docs/current/hdfs_design.html

User data is replicated
three times on different
nodes to ensure data
consistency in case of
frequent failures of nodes

Datanodes inform the Namenode regularly via heartbeat about their
existence

If a Namenode does not receive any more messages of a Datanode, the
Namenode declares the Datanode as failed
Next, the Namenode orders the replication of the affected Chunks, in
order not to fall below the minimum number of replications
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Read Accesses at HDFS

The HDFS client calls a web service (for read access) on the Namenode
with the desired filename as a parameter
The Namenode checks the namespace, to find out which Datanodes
store the chunks

The namespace resides inside the main memory of the Namenode
The Namenode provides the Client:

Unique 64-bit identifiers (chunk handles) of the chunks on the Datanodes
a list of Datanodes, which store the chunks

The HDFS client calls the web service of one or more Datanodes, to
obtain the user data
By using the 64-bit identifiers, the Datanodes read the HDFS chunks
on their HDD and transfer them as the result to the client
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Write Accesses at HDFS (1/2)

The HDFS client calls a web service (for write access) on the
Namenode with the desired filename as a parameter
The Namenode checks, if the client has write permissions and if the file
already exists

If the verifications for the client are positive, the Namenode stores the
meta-information of the file in the namespace
If the file already exists, or if the client does not have write permissions,
the Namenode interrupts the process with an exception

It is impossible to overwrite files in HDFS
Overwriting files is only possible by deleting and re-creating them

The client splits the file to be stored into chunks and places them in a
local a queue
For each chunk in the queue, the client calls the web service interface of
the Namenode, which returns a list of Datanodes, to store the chunk

Additionally, the client receives an identifier for the chunk
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Write Accesses at HDFS (2/2)

The choice of the Datanodes to store a chunk depends on the
configuration

Several configuration options exist, e.g. the definition of racks to join
physically neighboring servers to a virtual rack (=⇒ rack-awareness)
Objective: Reduce network traffic

The HDFS client transmits the chunk and the list of Datanodes to a
single Datanode, which stores them locally with the identifier
After the successful transmission of the chunk, the Datanode forwards
the chunk to another Datanode in the list, to get the chunk stored
there too

This process is repeated with another Datanode from the list, until the
specified number of chunk replications is reached

File system alternatives in Hadoop
It is not absolutely necessary to use HDFS. Alternatives are among others S3 and FTP
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Secondary Namenode at HDFS

In order to ensure data integrity and a fast restart of the Namenode
after a failure, the secondary Namenode exists

It can not replace the Namenode in case of failure
The Secondary Namenode never communicates with the clients
The Namenode stores the metadata in form of an image
(= namespace), and a list of transactions which need to be applied to
the image

In case the Namenode fails, it needs to virtually carry out all the
transactions on the image to obtain the latest state

That takes a long time for large file systems

The Secondary Namenode stores the image (namespace) as backup in
intervals
If the the Namenode fails, during reboot, it can fetch the latest image
checkpoint from the Secondary Namenode
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Architecture of the Google File System (GFS) Image Source: Google
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Pig (1/2)

Can be used for the analysis of very large amounts of semi-structured,
structured or relational data

Includes a programming language and a compiler for queries on data
The programming language is Pig Latin

Pig Latin is called a Dataflow Language
It is used to specify sequences of individual transformations on data
Thus, doing ad-hoc analyzing of large amounts of data is possible

The compiler translates Pig Latin statements into MapReduce jobs
Pig also orchestrates the execution of the jobs in the Hadoop Cluster

Pig is used with the Pig shell (Grunt)
Grunt can also load scripts to execute commands in batch mode
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Pig (2/2)

Pig reads all data formats, regardless of their structure
By default, Pig expects the data as plain text and tab separated
For the interpretation of different formatted data, the users can specify
User Defined Functions (UDF)

With UDF, users can integrate own code into Pig programs
Apache offers with Piggybank an open repository
http://svn.apache.org/repos/asf/pig/trunk/contrib/piggyban
UDFs are written in Java and integrated as a JAR file into Pig

Advantage of Pig: Reduced complexity compared to MapReduce queries
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Pig Commands
Command Meaning
load Read data from the file system
store Write data into the file system
foreach Apply an expression to all records
filter Discard all records, which do not match the filter rules
group/cogroup Collect records with the same key from one or more input sources
join Combine two or more input sources according to a key
order Sort records according to a key
distinct Erase duplicate records
union Merge two records
split Split data into two or more records, using filter rules
stream Transfer all records to a specified binary file
dump Write the output to stdout
limit Limit the number of records

Source: Introduction to Pig. Cloudera (2009)
http://www.cloudera.com/videos/introduction_to_pig
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Example of a Job in Pig Latin
This example shows the complexity reduction of MapReduce queries
compared to Pig Latin queries

Query for the 5 most frequently visited web pages from people, which are
18-25 years old
The user information and data of the web pages are located in 2 different
files

Source of the example and the images: ApacheCon Europe 2009
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For Comparison, the Statements in MapReduce Format
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Savings because of using Pig
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Pig – Helpful Summary of Cloudera
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Hive

Data warehouse system on the basis of Hadoop
A data warehouse. . .

is a data collection site in form of a database
obtains data from different sources (e.g. other
databases)

Data model is analogous to relational database systems with tables
Payload stores Hive in HDFS
Tables are represented by folder in HDFS
The data inside the tables are stored serialized in files inside the folders
Metadata is stored in the relational database Metastore

Supports different column types (e.g. integer, string, date, boolean)
For Queries, the declarative language HiveQL is used

Query language which provides a SQL-like syntax
Hive translates HiveQL statements into MapReduce jobs

Hive also orchestrates the execution of the jobs in the Hadoop Clusters
Controlled via a command line interface, web interface or JDBC/ODBC
interface
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Load Text Data into Hive Tables and analyze them

For each access to a web server, these information is recorded:
Hostname or IP address of the accessing client
Date and time
Time zone
File
Result of the access (HTTP status message)
Bytes transferred

client.anbieter.de - - [08/Oct/2010:22:35:51 -0100] "GET /pfad/index.html HTTP/1.1" 200 1832

Import log data from access.log into a table:
LOAD DATA LOCAL INPATH ’access.log’ OVERWRITE INTO TABLE apachelog;

Print the first 20 rows of the tables, sorted according the IP addresses:
SELECT * FROM apachelog SORT BY ipaddress LIMIT 20;

Print all records, which contain the IP address 84.171.184.103:
SELECT * FROM apachelog WHERE ipaddress = ’84.171.184.103’;

Source: Ramin Wartala. Analyse großer Datenmengen mit Hive. iX 12/2010
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Hive Examples (Source: http://wiki.apache.org/hadoop/Hive/LanguageManual/DDL)

Create table page_view:
CREATE TABLE page_view(viewTime INT, userid BIGINT,

page_url STRING, referrer_url STRING,
ip STRING COMMENT ’IP Address of the User’)

COMMENT ’This is the page view table’
PARTITIONED BY(dt STRING, country STRING)
ROW FORMAT DELIMITED

FIELDS TERMINATED BY ’\001’
LINES TERMINATED BY ’\012’

STORED AS SEQUENCEFILE;

Erase table:
DROP TABLE [IF EXISTS] table_name

Print table name:
SHOW TABLES identifier_with_wildcards

Print partitions of a table:
SHOW PARTITIONS table_name

Rename table:
ALTER TABLE table_name RENAME TO new_table_name

Add or replace columns:
ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...)
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Distinction between Pig and Hive

Criterion Pig Hive
Typical application logfile analysis logfile analysis, data mining,
scenarios web analytics in real time,

data warehousing
Objectives simplification of MapReduce simplification of MapReduce

queries with a scripting language with a SQL style
Query language Pig Latin (procedural) HiveQL9 (declarative)
Metadata none stored in Metastore
User interfaces command line interface (Grunt) command line interface,

web interface
Export interfaces none ODBC/JDBC
Input data structure unstructured structured
Input data formats raw data raw data
Output data formats raw data raw data
Main developer Yahoo Facebook

Source: http://wiki.fh-stralsund.de/index.php/Vergleich_Hive_vs._Pig
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HBase http://hbase.apache.org

Column-oriented database to manage very large amounts of data in
Hadoop Clusters

Suited for large amounts of data, which are rarely changed, but often
added with additional data
Suited for billions of rows and millions of columns, distributed over many
servers from commodity hardware

Free re-implementation of Google BigTable
Googles BigTable runs on top of the GFS
HBase runs on top of HDFS (free re-implementation of the GFS)

Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes, Gruber.
Bigtable: A Distributed Storage System for Structured Data. Google (2006)
http://labs.google.com/papers/bigtable-osdi06.pdf
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Hadoop Success Stories (http://wiki.apache.org/hadoop/PoweredBy)

EBay
Clusters with 532 nodes (4,256 CPU cores, 5.3 PB memory)
Task: Optimization of the search functionality

Facebook
Clusters with 1,100 nodes (8,800 CPU cores, 12 PB memory)
Clusters with 300 nodes (2,400 CPU cores, 3 PB memory)
Task: Log data storage and analysis

Last.fm
Clusters with 44 nodes (352 CPU cores, 176PB memory)
Task: Log data storage and analysis, calculation of charts

Twitter
Task: Log data storage and analysis, storing the Tweets

Yahoo
Multiple Clusters, together with > 40,000 nodes and > 100,000 CPUs
Largest Cluster: 4,500 nodes (each with 8 CPUs and 4TB Storage)
Task: Web search and advertising
Further information: http://developer.yahoo.com/blogs/hadoop/
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Hadoop and IBM Watson vs. Mankind

http://www.ditii.com/2011/02/18/watson-powered-by-apache-hadoop-defeated-jeopardy-defenders-ken-jennings-and-brad-rutter/
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Cloudera http://www.cloudera.com

Cloudera is a powerful Hadoop distribution
Contains Hadoop and among others the programming language Pig, the
SQL database Hive, the columns-oriented database HBase, Apache
Zookeeper and Hadoop browser frontend Hue
Packages for Debian, Ubuntu, RedHat and SuSE are available

03/2009: Cloudera’s Distribution for Hadoop (CDH1)
03/2009: $5 Millions venture capital from Accel Partners
06/2009: $11 Millions venture capital from Greylock Partners
08/2009: Doug Cutting leaves Yahoo and becomes an employee of Cloudera
10/2010: $25 Millions venture capital from Meritech Capital Partners
03/2013: Intel invests $740 Millions for an 18% investment

Current version of Cloudera’s Distribution for Hadoop (State: January 2018)

https://www.cloudera.com/downloads/cdh/5-13-1.html
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Install Cloudera (CDH3) in Ubunutu 10.10 (1/2)
These instructions install a Cluster on a single node

Pseudo Distributed Mode
These instructions base of http://cloudera-tutorial.blogspot.com

Start an instance with Ubuntu 10.10 (ami-08f40561) in US-East
Allow access via the ports 22, 50030 und 50070 in the security group

DNS: ec2-50-17-58-144.compute-1.amazonaws.com

Insert the package sources in
/etc/apt/sources.list.d/cloudera.list
$ sudo add-apt-repository "deb http://archive.canonical.com/ubuntu maverick partner"
$ sudo add-apt-repository "deb http://archive.cloudera.com/debian maverick-cdh3 contrib"

Import the key of the Cloudera repository
$ sudo curl -s http://archive.cloudera.com/debian/archive.key | sudo apt-key add -

Install packages
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk
$ sudo apt-get install hadoop-0.20-conf-pseudo

Start Cloudera services
$ for service in /etc/init.d/hadoop-0.20-*; do sudo $service start; done
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Install Cloudera (CDH3) in Ubunutu 10.10 (2/2)

Check, which files Cloudera did install
$ dpkg -L hadoop-0.20-conf-pseudo

Check, if the Cloudera services are running
$ sudo jps
2232 SecondaryNameNode
2539 Jps
1994 DataNode
2074 JobTracker
2154 NameNode
2317 TaskTracker

If the list of services is complete, the installation was successful!
Web interface of the Namenode
http://ec2-50-17-58-144.compute-1.amazonaws.com:50070

Web interface of the Job Trackers
http://ec2-50-17-58-144.compute-1.amazonaws.com:50030

Terminate the Cloudera services
$ for x in /etc/init.d/hadoop-* ; do sudo $x stop ; done
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Web Interface of the Namenode
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Web Interface of the Job Tracker
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Simple Examples with the Cloudera Installation (1/5)

Example for the calculation of π
$ hadoop jar /usr/lib/hadoop/hadoop-*-examples.jar pi 10 100
Number of Maps = 5
Samples per Map = 1000
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Starting Job
11/06/06 19:18:15 INFO mapred.FileInputFormat: Total input paths to process : 5
11/06/06 19:18:16 INFO mapred.JobClient: Running job: job_201106061916_0001
11/06/06 19:18:17 INFO mapred.JobClient: map 0% reduce 0%
11/06/06 19:18:23 INFO mapred.JobClient: map 40% reduce 0%
11/06/06 19:18:27 INFO mapred.JobClient: map 60% reduce 0%
11/06/06 19:18:28 INFO mapred.JobClient: map 80% reduce 0%
11/06/06 19:18:29 INFO mapred.JobClient: map 100% reduce 0%
11/06/06 19:18:36 INFO mapred.JobClient: map 100% reduce 100%
11/06/06 19:18:36 INFO mapred.JobClient: Job complete: job_201106061916_0001
...
11/06/06 19:18:36 INFO mapred.JobClient: Launched reduce tasks=1
...
11/06/06 19:18:36 INFO mapred.JobClient: Launched map tasks=5
...
Job Finished in 20.638 seconds
Estimated value of Pi is 3.14160000000000000000
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Calculation of π via Monte Carlo Simulation

A = Surface ratio
r = Radius
C = Circle
S = Square

Image source: Wikipedia

π can be approximated via Monte Carlo simulation
Inscribe a circle of radius r inside a square with side
length 2r
AS = (2r)2 = 4r2

AC = πr2 =⇒ π = AC
r2

How can we approximate π?
1 Generate random dots in the square
2 The number of dots in AC in relation to the number of

dots in AS is equal to the surface ratio

AC
AS

= πr2
4r2 =⇒ AC

AS
= π

4 =⇒ 4 ∗ AC
AS

= π

The dots can be generated in parallel by the workers
The master receives the dots and calculates π
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Calculation of π via MapReduce

1 NUMPOINTS = 100000; // some large number - the bigger, the closer the approximation
2
3 p = number of WORKERS;
4 numPerWorker = NUMPOINTS / p;
5 countCircle = 0; // one of these for each WORKER
6
7 // each WORKER does the following:
8 for (i = 0; i < numPerWorker; i++) {
9 generate 2 random numbers that lie inside the square;

10 xcoord = first random number;
11 ycoord = second random number;
12 if (xcoord, ycoord) lies inside the circle
13 countCircle++;
14 }
15
16 MASTER:
17 receives from WORKERS their countCircle values
18 computes PI from these values: PI = 4.0 * countCircle / NUMPOINTS;

Source: Introduction to Parallel Programming and MapReduce
http://code.google.com/edu/parallel/mapreduce-tutorial.html
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Simple Examples with the Cloudera Installation (2/5)

grep example
$ hadoop-0.20 fs -mkdir input
$ hadoop-0.20 fs -put /etc/hadoop-0.20/conf/*.xml input
$ hadoop-0.20 jar /usr/lib/hadoop-0.20/hadoop-*-examples.jar grep input output ’dfs[a-z.]+’
11/06/06 20:05:49 INFO mapred.FileInputFormat: Total input paths to process : 7
11/06/06 20:05:49 INFO mapred.JobClient: Running job: job_201106061916_0010
11/06/06 20:05:50 INFO mapred.JobClient: map 0% reduce 0%
11/06/06 20:05:55 INFO mapred.JobClient: map 28% reduce 0%
11/06/06 20:05:59 INFO mapred.JobClient: map 42% reduce 0%
11/06/06 20:06:00 INFO mapred.JobClient: map 57% reduce 0%
11/06/06 20:06:02 INFO mapred.JobClient: map 71% reduce 0%
11/06/06 20:06:03 INFO mapred.JobClient: map 85% reduce 0%
11/06/06 20:06:05 INFO mapred.JobClient: map 100% reduce 0%
11/06/06 20:06:10 INFO mapred.JobClient: map 100% reduce 28%
11/06/06 20:06:11 INFO mapred.JobClient: map 100% reduce 100%
11/06/06 20:06:12 INFO mapred.JobClient: Job complete: job_201106061916_0010
...
11/06/06 20:06:12 INFO mapred.JobClient: Launched reduce tasks=1
...
11/06/06 20:06:12 INFO mapred.JobClient: Launched map tasks=7
...
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Simple Examples with the Cloudera Installation (3/5)

Output of the grep example
$ hadoop fs -ls output
Found 3 items
-rw-r--r-- 1 ubuntu supergroup 0 2011-06-06 19:33 /user/ubuntu/output/_SUCCESS
drwxr-xr-x - ubuntu supergroup 0 2011-06-06 19:32 /user/ubuntu/output/_logs
-rw-r--r-- 1 ubuntu supergroup 129 2011-06-06 19:33 /user/ubuntu/output/part-00000

Result of the grep example
$ hadoop-0.20 fs -cat output/part-00000
1 dfs.datanode.plugins
1 dfs.name.dir
1 dfs.namenode.plugins
1 dfs.permissions
1 dfs.replication
1 dfs.thrift.address
1 dfsadmin

For control. . .
$ grep dfs[a-z.] /etc/hadoop-0.20/conf/*.xml
/etc/hadoop-0.20/conf/hadoop-policy.xml: dfsadmin and mradmin commands to refresh the security...
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.replication</name>
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.permissions</name>
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.name.dir</name>
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.namenode.plugins</name>
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.datanode.plugins</name>
/etc/hadoop-0.20/conf/hdfs-site.xml: <name>dfs.thrift.address</name>
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Simple Examples with the Cloudera Installation (4/5)

Word count example
$ hadoop-0.20 fs -mkdir inputwords
$ hadoop-0.20 fs -put /etc/hadoop-0.20/conf/*.xml inputwords
$ hadoop-0.20 jar /usr/lib/hadoop-0.20/hadoop-*-examples.jar wordcount inputwords outputwords
11/06/06 20:46:59 INFO input.FileInputFormat: Total input paths to process : 7
11/06/06 20:46:59 INFO mapred.JobClient: Running job: job_201106061916_0014
11/06/06 20:47:00 INFO mapred.JobClient: map 0% reduce 0%
11/06/06 20:47:05 INFO mapred.JobClient: map 28% reduce 0%
11/06/06 20:47:08 INFO mapred.JobClient: map 42% reduce 0%
11/06/06 20:47:10 INFO mapred.JobClient: map 57% reduce 0%
11/06/06 20:47:11 INFO mapred.JobClient: map 71% reduce 0%
11/06/06 20:47:13 INFO mapred.JobClient: map 85% reduce 0%
11/06/06 20:47:14 INFO mapred.JobClient: map 100% reduce 0%
11/06/06 20:47:17 INFO mapred.JobClient: map 100% reduce 100%
11/06/06 20:47:17 INFO mapred.JobClient: Job complete: job_201106061916_0014
...
11/06/06 20:18:20 INFO mapred.JobClient: Launched reduce tasks=1
...
11/06/06 20:18:20 INFO mapred.JobClient: Launched map tasks=7
...
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Simple Examples with the Cloudera Installation (5/5)

Output of the word count example
$ hadoop-0.20 fs -ls outputwords
Found 3 items
-rw-r--r-- 1 ubuntu supergroup 0 2011-06-06 20:47 /user/ubuntu/outputwords/_SUCCESS
drwxr-xr-x - ubuntu supergroup 0 2011-06-06 20:46 /user/ubuntu/outputwords/_logs
-rw-r--r-- 1 ubuntu supergroup 7913 2011-06-06 20:47 /user/ubuntu/outputwords/part-00000

Result of the word count example
$ hadoop-0.20 fs -cat outputwords/part-00000
...
based 1
be 20
being 1
below 3
below 2
between 1
beyond 1
blank 12
block 1
by 26
...
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Setting up a Hadoop Cluster with Cloudera CDH3 (1/5)

This installation guide installs a distributed Hadoop Cluster
Distributed Mode (Multi Node Cluster)

These instructions base of http://cloudera-tutorial.blogspot.com

Stop running Cloudera services
$ for x in /etc/init.d/hadoop-* ; do sudo $x stop ; done

List alternative Hadoop configurations
$ update-alternatives --display hadoop-0.20-conf

Copy the default configuration
$ sudo cp -r /etc/hadoop-0.20/conf.empty /etc/hadoop-0.20/conf.cluster

Activate the new configuration
$ sudo update-alternatives --install /etc/hadoop-0.20/conf hadoop-0.20-conf

/etc/hadoop-0.20/conf.cluster 50

Check the new configuration
$ update-alternatives --display hadoop-0.20-conf
hadoop-0.20-conf - auto mode

link currently points to /etc/hadoop-0.20/conf.cluster
/etc/hadoop-0.20/conf.cluster - priority 50
/etc/hadoop-0.20/conf.empty - priority 10
/etc/hadoop-0.20/conf.pseudo - priority 30
Current ’best’ version is ’/etc/hadoop-0.20/conf.cluster’.
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Setting up a Hadoop Cluster with Cloudera CDH3 (2/5)

Start an additional instance (ami-08f40561) (=⇒ Slave)
DNS: ec2-50-17-77-111.compute-1.amazonaws.com

Insert alias entries for the nodes in /etc/hosts
10.122.67.221 ec2-50-17-58-144.compute-1.amazonaws.com master
10.120.69.158 ec2-50-17-77-111.compute-1.amazonaws.com slave1

Install SSH client and server
$ sudo apt-get install openssh-server openssh-client

Generate ssh keys to login without a password
$ ssh-keygen -t rsa -P ""

Copy SSH key in $HOME/.ssh/id_rsa.pub to the Slave node into
$HOME/.ssh/authorized_keys

/etc/hadoop-0.20/conf.cluster/masters
One line with the public DNS or alias for each Master (Namenode)
If multiple Masters exist (=⇒ adjust the file masters)
In this example, the file masters contains only master
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Setting up a Hadoop Cluster with Cloudera CDH3 (3/5)

/etc/hadoop-0.20/conf.cluster/slaves
One line with the public DNS or alias for each Slave node
Slaves are nodes which run the Datanode and/or Tasktracker services
In this example, the file slaves contains only slave1

/etc/hadoop-0.20/conf.cluster/core-site.xml
<configuration>
<property>

<name>fs.default.name</name>
<value>hdfs://master:54310</value>

</property>
</configuration>

/etc/hadoop-0.20/conf.cluster/mapred-site.xml
<configuration>
<property>

<name>mapred.job.tracker</name>
<value>master:54311</value>

</property>
</configuration>
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Setting up a Hadoop Cluster with Cloudera CDH3 (4/5)
/etc/hadoop-0.20/conf.cluster/hdfs-site.xml

<value>1</value> is the number of Slaves
<configuration>
<property>

<name>dfs.replication</name>
<value>1</value>

</property>
</configuration>

Import the package sources and keys on the Slave and install the
Hadoop packages
$ sudo add-apt-repository "deb http://archive.canonical.com/ubuntu maverick partner"
$ sudo add-apt-repository "deb http://archive.cloudera.com/debian maverick-cdh3 contrib"
$ sudo curl -s http://archive.cloudera.com/debian/archive.key | sudo apt-key add -
$ sudo apt-get update
$ sudo apt-get install sun-java6-jdk
$ sudo apt-get install hadoop-0.20-conf-pseudo

Copy the directory /etc/hadoop-0.20/conf.cluster to the Slave
On the Master:

$ sudo apt-get install zip
$ sudo zip -r conf.cluster.zip /etc/hadoop-0.20/conf.cluster
$ scp conf.cluster.zip slave1:~

On the Slave:
$ sudo apt-get install zip
$ sudo unzip -d / conf.cluster.zip
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Setting up a Hadoop Cluster with Cloudera CDH3 (5/5)

Insert alias entries for the nodes into /etc/hosts on the Slave
10.122.67.221 ec2-50-17-58-144.compute-1.amazonaws.com master
10.120.69.158 ec2-50-17-77-111.compute-1.amazonaws.com slave1

Activate new configuration on the slave
$ sudo update-alternatives --install /etc/hadoop-0.20/conf hadoop-0.20-conf

/etc/hadoop-0.20/conf.cluster 50

Start the services on all nodes to activate the configuration
$ for x in /etc/init.d/hadoop-0.20-*; do sudo $x start; done

Stop the services on all nodes
$ for x in /etc/init.d/hadoop-0.20-*; do sudo $x stop ; done

Format the Namenode
$ sudo -u hdfs hadoop namenode -format

Start the services on the Master (Namenode)
$ sudo /etc/init.d/hadoop-0.20-namenode start
$ sudo /etc/init.d/hadoop-0.20-secondarynamenode start
$ sudo /etc/init.d/hadoop-0.20-jobtracker start

Start the services on the Slave (Datanode)
$ sudo /etc/init.d/hadoop-0.20-datanode start
$ sudo /etc/init.d/hadoop-0.20-tasktracker start

If all services start, the installation of the Cluster was successful
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Web interface of the Namenode

The Datenode was detected
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Web interface of the Namenode – Detail View Datanodes

Detail view of the Datanodes
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Amazon Elastic MapReduce

Elastic MapReduce (EMR) is a service for virtual Hadoop Clusters
It’s easier/faster to start with EMR MapReduce jobs compared with
manually creating a Hadoop Cluster in EC2

Input data and results are
stored inside S3
Information about the
current state of the
Hadoop jobs are stored
inside SimpleDB

Maximilian Hoecker. Hadoop as a Service (HaaaS) auf Basis von Eucalyptus und Cloudera.
Bachelorthesis. HS-Mannheim (2011)
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Amazon Elastic MapReduce (EMR)

For starting a MapReduce application, a Job-Flow must be specified
A Job-Flow is a configuration of a Hadoop Cluster (in EC2)
The configuration contains among others the instance type and
MapReduce parameters

Each Job-Flow is split into Steps
A step is either a MapReduce-Step (MapReduce application) or a
Configuration-Step (configure script or configuration command to
configure the EC2 instances)

EMR executes all steps in sequential order
First, EMR executes the configuration steps to configure the Cluster
and next executes the MapReduce applications
Job-Flows can be created and executed either via command-line tools,
via the web interface, or via the SOAP and REST interfaces

Prof. Dr. Christian Baun – 5th Slide Set Cloud Computing – Frankfurt University of Applied Sciences – WS2223 72/73



MapReduce/Hadoop Hadoop - Components and Extensions

Other MapReduce implementations
Besides Hadoop, other MapReduce implementations exist
Examples:

Quizmt from MySpace
Framework, developed with .NET
Free software (GPLv3)
http://qizmt.myspace.com

Disco
Framework, developed with Erlang and Python
Free software (BSD License) of the Nokia Research Center
http://discoproject.org

Skynet
Framework, developed with Ruby
Free software (MIT License)
http://skynet.rubyforge.org

Plasma
Framework, developed with Ocaml
Uses the distributed filesystem PlasmaFS
Free software (GPL)
http://plasma.camlcity.org/plasma/
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