Solution of Exercise Sheet 3

Exercise 1 (Bridges and Switches)

1. Explain what the purpose of Bridges in computer networks is.

For connecting different physical networks, Bridges are required because they forward frames from one physical network to another one.

Bridges and Switches check the correctness of the frames via checksums.
2. Give the number of interfaces („Ports") a Bridge provides.

2 ports.
3. Explain what the major difference between Bridges and Layer-2-Switches is.

Bridges with > 2 ports are called Multiport Bridge or Layer-2-Switch.
4. Explain why Bridges and Layer-2-Switches do not require physical or logical addresses.

Bridges do not need addresses for filtering and forwarding the frames, because they do not actively participate in the communication. They work transparent, just like the devices of the Physical Layer.
5. Name at least two examples of Bridge implementations.

WLAN Bridges and Laser Bridges.
6. Explain what the advantage of Learning Bridges is in contrast to „dumb" Bridges.

Learning Bridges learn which network devices are accessible via which port.
7. Name the information that is stored in the forwarding tables of Bridges.

The information, which network devices are accessible via which port in local forwarding tables.
8. Explain what happens, if for a network device, no entry exists in the forwarding table of a Bridge.

This is not a problem because the table is only used for optimization. If for a network device no entry in the forwarding table exists, the Bridge forwards the frame to every port, which is connected to a physical network.
9. Explain why Bridges try to avoid loops.

Loops can cause malfunctions and reduce the performance of the network or even lead to a network failure.
10. Name the protocol that Bridges implement for handling loops.

Spanning Tree Protocol (STP).
11. Explain what a spanning tree is.

It is a subgraph of the graph, which covers all nodes, but it is cycle-free, because edges have been removed.
12. Give the information, the Bridge ID according to the IEEE contains.

The Bridge ID consists of the Bridge priority (2 bytes) and MAC address (6 bytes) of the Bridge port with the lowest port ID.
13. Explain what the difference between the Bridge ID according to the IEEE and the Cisco extended version of the Bridge ID is.

Cisco subdivides the original 2 bytes long part for the Bridge priority. 4 bits now represent the Bridge priority. The remaining 12 bits are used to encode the VLAN ID.
14. Give the number of priority values that can be encoded with the Bridge ID according to the IEEE.

65,536 priority values can be represented.
15. Give the number of priority values that can be encoded with the Cisco extended version of the Bridge ID.

4 bits represent the Bridge priority \Longrightarrow only 16 values can be represented.
16. Explain what a Bridge Protocol Data Unit (BPDU) message is and for what purpose it is used.

Bridges exchange information about Bridge IDs and path costs via special data frames, called Bridge Protocol Data Unit (BPDU). These messages are used by the Spanning Tree Protocol (STP).
17. Give the selection criteria for determining, whether a Bridge becomes the Root Bridge.

First, the Bridges have to determine the Bridge with the lowest Bridge Priority in the Bridge ID. This Bridge is the Root Bridge of the spanning tree to be generated.
18. Explain what a Designated Bridge is and what its task is.

Prof. Dr. Christian Baun
Computer Networks (WS2324)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

For each physical network, a single one of the directly connected Bridges needs to be selected as responsible for forwarding the frames towards in the direction of the Root Bridge. This Bridge is called Designated Bridge for this network.
19. Give the number of Designated Bridges, a computer network contain.

For each physical network, a single Designated Bridge exists.
20. Give the selection criteria for determining, whether a Bridge becomes a Designated Bridge.

The Bridge with the lowest path costs to the Root Bridge is selected as Designated Bridge.
21. Explain what the impact of Bridges and Layer-2-Switches on the collision domain is.

If a physical network is subdivided via a Bridge or Switch, also the collision domain is divided and the number of collisions decreases.

For Bridges and Switches, each port forms its own collision domain.
22. Explain what a switched network is.

In a switched network, each port of the switches is connected with just a single network device.
23. Explain the benefit of a switched network compared to a non-switched network.

Such a network is free from collisions and state of the art.

Prof. Dr. Christian Baun Computer Networks (WS2324)

Exercise 2 (Collision Domain)

Sketch in the diagram all collision domains.

Exercise 3 (Spanning Tree Protocol)

The figure shows the physical connections of a network topology. A-J are physical networks (LANs). B1-B7 are Bridges (L2-Switches). All Bridges boot up at the same time after a power failure. Highlight in the figure which ports and Bridges are not used when the Spanning Tree Protocol is used.

Attention: If multiple paths from a network to the root bridge have the same distance, then take the bridge IDs as decision criterion. The smaller the ID of a bridge is, the higher is its
 priority.

Non used Bridges and ports are highlighted with red color.
Hint: For solving this question, identify the Root Bridge first. It is the Bridge with the lowest Bridge Priority value inside the Bridge ID. In this network topology, we

Prof. Dr. Christian Baun Computer Networks (WS2324)

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences
just have Bridge ID values 1-7. Therefore the Root Bridge is B1. As the next step, for each physical network A-J, a single one of the directly connected Bridges needs to be selected as responsible for forwarding the frames into the Root Bridge's direction. The Bridge is called Designated Bridge for this network. The Bridge with the lowest path costs (minimum number of hops) to the Root Bridge becomes the Designated Bridge. If multiple Bridges exist for a physical network that have the same distance (number of hops) to the Root Bridge, the Bridge with the lowest Bridge Priority value inside the Bridge ID becomes the Designated Bridge.

Exercise 4 (Spanning Tree Protocol)

The figure shows the physical connections of a network topology. A-I are physical networks (LANs). B1-B6 are Bridges (L2-Switches). All Bridges boot up at the same time after a power failure. Highlight in the figure which ports and Bridges are not used when the Spanning Tree Protocol is used.

Attention: If multiple paths from a network to the root bridge have the same distance, then take the bridge IDs as decision criterion. The smaller the ID of a bridge is, the higher is its priority.

Non used Bridges and ports are highlighted with red color.
Hint: For solving this question, identify the Root Bridge first. It is the Bridge with the lowest Bridge Priority value inside the Bridge ID. In this network topology, we just have Bridge ID values 1-6. Therefore the Root Bridge is B1. As the next step, for each physical network A-I, a single one of the directly connected Bridges needs to be selected as responsible for forwarding the frames into the Root Bridge's direction. The Bridge is called Designated Bridge for this network. The Bridge with the lowest path costs (minimum number of hops) to the Root Bridge becomes the Designated Bridge. If multiple Bridges exist for a physical network that have the same distance
(number of hops) to the Root Bridge, the Bridge with the lowest Bridge Priority value inside the Bridge ID becomes the Designated Bridge.

Exercise 5 (Addressing in the Data Link Layer)

1. Data Link Layer protocols specify the format of...
\boxtimes physical network addresses \square logical network addresses
2. Give the name (technical term) of physical network addresses (Data Link Layer addresses).

MAC addresses (Media Access Control).
3. Name the protocol that is used by Ethernet for the address resolution.

Address Resolution Protocol (ARP).
4. Which devices receive a frame with the destination address $\mathrm{FF}-\mathrm{FF}-\mathrm{FF}-\mathrm{FF}-\mathrm{FF}-\mathrm{FF}$.

This address is the MAC broadcast address. Every participant in the physical network receives this frame.
5. Explain what MAC spoofing is.

MAC addresses can be modified via software. The method is called MAC spoofing.

Exercise 6 (Framing)

1. One way to mark the frames' borders is via character count in the frame header. Name a potential issue that can arise from this method.

If the field, which contains the number of bytes payload inside the frame is modified during transmission, the receiver is unable to correctly detect the end of the frame.
2. One way to mark the frames' borders is via Byte Stuffing. Name a drawback of this method.

The strong relationship with the ASCII character encoding. he network t
3. Explain why up-to-date Data Link Layer protocols, such as Ethernet and WLAN, work bit-oriented and not byte-oriented.

Because this allows using any character encoding.
4. Mark the information that an Ethernet frame contains.Sender IP addressSender MAC addressHostname of the receiverInformation about the Transport Layer protocol used
\boxtimes Preamble to synchronize the receiverPort number of the receiverCRC checksumInformation about the Application Layer protocol used
\boxtimes VLAN tag
\boxtimes Receiver MAC addressReceiver IP address
\boxtimes Information about the Network Layer protocol usedHostname of the senderSignals, which are transmitted via the transmission mediumPort number of the sender

Exercise 7 (Byte Stuffing)

The Data Link Layer splits the bit stream from the Physical Layer into frames. The character-oriented protocol BISYNC uses control characters to mark the structure of the frames. The start of a frame highlights the character SYN. The start of the header highlights the character SOH (Start of header). The payload is located between STX (Start of text) and ETX (End of text). The figure shows the structure of BISYNC frames:

8 Bit	8 Bit	8 Bit	8 Bit			8 Bit	16 Bit
SYN	SYN	SOH	Header	STX	Body	ETX	CRC
	itation	$\underbrace{}_{\substack{\text { Startof of } \\ \text { Header }}}$		$\underset{\substack{\text { Startof of } \\ \text { Text }}}{\text { ata }}$		$\underset{\substack{\text { End of } \\ \text { Text }}}{\text { cen }}$	

Control character	SOH	STX	ETX	DLE	SYN
Hexadecimal notation	01	02	03	10	16

If the payload (body) contains the control characters ETX and DLE (Data Link Escape), they are protected (escaped) by the Data Link Layer protocol with a stuffed DLE caracter. A single ETX in the payload area is represented by the sequence DLE ETX. The DLE character itsef is represented by the sequence DLE DLE.

Mark the payload inside the following BISYNC frames.

1. 161601999897969502 A1 A2 A3 A4 A5 03 A0 B7

Payload: A1 A2 A3 A4 A5
2. 161601999897969502050410030201037635

Payload: 0504030201
3. 161601999897969502100310101003039255

Payload: 031003
4. 1616019998979695021010101010030102 A1 0399 B2

Payload: 1010030102 A1
Source: Jörg Roth. Prüfungstrainer Rechnernetze. Vieweg (2010) and Wikipedia

Exercise 8 (Bit Stuffing)

The Data Link Layer protocol HDLC (High-Level Data Link Control) uses Bit Stuffing. If the sender discovers 5 consecutive 1 bits in the bitstream from the Network Layer, it stuffs a single 0 bit into the outgoing bit stream. If the receiver discovers 5 consecutive 1 bits, followed by a single 0 bit in the bit stream from the Physical Layer, it removes (destuffs) the 0 bit.

Give the encoding for each one of the following bit sequences, when the sender stuffs after 5 consecutive 1 bits a single 0 bit into the bit stream from the Network Layer.

1. 01111110101001111111100011110010100111111011111111100101

Bit stream with stuffed 0 bits:
011111010101001111101110001111001010011111010111110111100101
2. 00111111011100011111001111111100101010101100111111100001

Bit stream with stuffed 0 bits:
001111101011100011111000111110111001010101011001111101100001
3. 11

Bit stream with stuffed 0 bits:
1111101111101111101111101111101111101111101111101111101111101111101

Exercise 9 (Error Detection - CRC)

1. Calculate the frame to be transferred.

Generator polynomial: 100101
Payload: 11010011

The generator polynomial has 6 digits \Longrightarrow five 0 bits are appended
Frame with appended 0 bits: 1101001100000
1101001100000
100101|||||||
------v||||||
100011||||||
100101||||||
------vvv|||
110100|||
100101|||
------v||
100010||
100101||
------vv
11100 = Remainder

Remainder: 11100
Transferred frame: 1101001111100
2. Check, if the received frame was transmitted correctly.

Transferred frame: 1101001110100
Generator polynomial: 100101
1101001110100
100101|||||||
------v|||||| 100011|||||| 100101|||||| ------vvv|||

110110|||
100101|||
------v||
100111||
100101||
------vv
1000 => Error
3. Check, if the received frame was transmitted correctly.

Transferred frame: 1101001111100
Generator polynomial: 100101
1101001111100
100101|||||||
------v||||||

Prof. Dr. Christian Baun Computer Networks (WS2324)

100011||||||
100101||||||
------vvv|||
110111|||
100101|||
------v|
100101||
100101||
------vv
00 => Transmission was error-free
4. Calculate the frame to be transferred.

Generator polynomial: 100101
Payload: 10110101
The generator polynomial has 6 digits \Longrightarrow five 0 bits are appended.
Frame with appended 0 bits: 1011010100000

1011010100000
100101|||||||
------vv|||||
100001|||||
100101|||||
------vv|||
100000||
100101||
------vv
10100 = Remainder

Remainder: 10100
Transferred frame: 1011010110100
5. Check, if the received frame was transmitted correctly.

Transferred frame: 1011010110110
Generator polynomial: 100101
1011010110110
100101|||||||
------vv|||||
100001|||||
100101|||||
------vvv||
100101||
100101||
------vv

```
10 => Error
```

6. Check, if the received frame was transmitted correctly.

Transferred frame: 1011010110100
Generator polynomial: 100101
1011010110100
100101|||||||
------vv|||||
100001|||||
100101|||||
------vvv||
100101||
100101||
------vv
00 => Transmission was error-free
7. Check, if the received frame was transmitted correctly.

Transferred frame: 1010010110100
Generator polynomial: 100101
1010010110100
100101|||||||
------vv|||||
110001|||||
100101|||||
------v||||
101001||||
100101||||
------vv||
110001||
100101||
------v|
101000|
100101|
------v
11010 => Error
8. Calculate the frame to be transferred.

Generator polynomial: 100000111
Payload: 1101010101110101
The generator polynomial has 9 digits \Longrightarrow eight 0 bits are appended.
Frame with appended 0 bits: 110101010111010100000000

```
110101010111010100000000
100000111||||||||||||||
--------v||||||||||||
    101011011||||||||||||
    100000111||||||||||||
    ---------vv||||||||||
    101110011||||||||||
    100000111||||||||||
    ---------vv|||||||||
        111010001|||||||||
        100000111|||||||||
        ---------v||||||||
            110101100||||||||
            100000111||||||||
            --------v|||||||
            101010111|||||||
            100000111|||||||
            ---------vv||||||
                101000000||||||
                100000111||||||
            --------vv||||
                100011100||||
                        100000111||||
                        ---------vvvv
                    1 1 0 1 1 0 0 0 0
                    100000111
                        10110111 = Remainder
```

Remainder: 10110111
Transferred frame: 110101010111010110110111
9. Check, if the received frame was transmitted correctly.

Transferred frame: 110101010111110110110111
Generator polynomial: 100000111
110101010111110110110111
100000111||||||||||||||
---------v||||||||||||| 101011011||||||||||||| 100000111|||||||||||||
---------vv||||||||||||
101110011|||||||||||
100000111||||||||||||
--------vv||||||||||

Prof. Dr. Christian Baun Computer Networks (WS2324)

```
111010011|||||||||
100000111|||||||||
---------v||||||||
    110101000||||||||
    100000111||||||||
    --------v|||||||
    101011111|||||||
    100000111|||||||
    ---------vv|||||
        101100010||||||
        100000111||||||
        ---------vv||||
            110010111||||
            100000111||||
            ---------v|||
                100100000|||
                100000111||
                ---------vvv
                    100111111
                    100000111
                    111000 => Error
```

10. Check, if the received frame was transmitted correctly.

Transferred frame: 110101010111010110110111
Generator polynomial: 100000111
110101010111010110110111
100000111||||||||||||||
---------v||||||||||||| 101011011||||||||||||| 100000111||||||||||||| ---------vv|||||||||| 101110011|||||||||||| 100000111||||||||||||
--------vv||||||||||
111010001||||||||||
100000111||||||||
---------v|||||||||
110101100||||||||
100000111||||||||
---------v||||||||
101010111||||||||
100000111|||||||
---------vv|||||| 101000010||||||

```
100000111|||||
---------vv||||
    100010111||||
    100000111||||
    ---------vvvv
                100000111
                100000111
                    0 => Transmission was error-free
```


Exercise 10 (Error Correction - Simplified Hamming Code)

Transmission errors can be detected via CRC checksums. If it is important to not only recognize errors, but also to be correct them, then the data to be transmitted must be encoded in a way, that error-correction is possible. Error correction can be realized e.g. via the Simplified Hamming Code we discussed in the computer networks course.

1. A message of 8 bits payload (10011010) needs to be transferred. Calculate the message, that will be transmitted (payload inclusive parity bits).

Step 1: Determine parity bit positions:
$\begin{array}{rrrrrrrrrrrrr}\text { Position: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { Data to be transmitted: } & ? & ? & 1 & ? & 0 & 0 & 1 & ? & 1 & 0 & 1 & 0\end{array}$
Step 2: Calculate parity bit values:

```
    0 0 1 1 ~ P o s i t i o n ~ 3 ~
    0 1 1 1 ~ P o s i t i o n ~ 7 ~
    1001 Position 9
XOR 1011 Position 11
    0110 = parity bit values
```

Step 3: Insert parity bit values into the transmission:
$\begin{array}{rrrrrrrrrrrrr}\text { Position: } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \text { Data to be transmitted: } & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
2. The following messages have been received. Verify, if they were transmitted correctly.
a) 00111101

Prof. Dr. Christian Baun Computer Networks (WS2324)

```
            0 0 1 1 ~ P o s i t i o n ~ 3 ~
            0 1 0 1 ~ P o s i t i o n ~ 5 ~
XOR 0110 Position 6
--------
    0 0 0 0 ~ P a r i t y ~ b i t s ~ c a l c u l a t e d ~
XOR 0011 Parity bits received
0 0 1 1 ~ = > ~ B i t ~ 3 ~ i s t ~ d e f e c t i v e !
```

b) 101110100010

Received data:	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	1	1	0	1	0	0	0	1	0	

0011 Position 3
0101 Position 5
0111 Position 7
XOR 1011 Position 11

1010 Parity bits calculated
XOR 1010 Parity bits received

0000 => Correct transmission
c) 001101100100

1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	1	1	0	0	1	0	0

0011 Position 3
0110 Position 6
0111 Position 7
XOR 1010 Position 10

1000 Parity bits calculated
XOR 0010 Parity bits received
1010 => Bit 10 ist defective!
d) 0001101100101101

Received data: $\begin{array}{rlrlllllllrrrrrrr}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$

```
    0 0 1 0 1 ~ P o s i t i o n ~ 5 ~
    0 0 1 1 1 ~ P o s i t i o n ~ 7 ~
    0 1 0 1 1 ~ P o s i t i o n ~ 1 1 ~
    0 1 1 0 1 ~ P o s i t i o n ~ 1 3 ~
XOR 01110 Position 14
    0 1 0 1 0 ~ P a r i t y ~ b i t s ~ c a l c u l a t e d ~
XOR 00111 Parity bits received
0 1 1 0 1 ~ = > ~ B i t ~ 1 3 ~ i s t ~ d e f e c t i v e !
```


Exercise 11 (Media Access Control)

1. Explain why computer networks use protocols for media access control.

With Ethernet and WLAN, the network devices or stations use a shared transmission medium. To coordinate media access and to avoid collisions, media access control methods are required.
2. Explain why do Ethernet and WLAN use different media access control methods.

With wireless networks, it is not guaranteed that all stations can detect all collisions.

In wired networks with a shared transmission medium, each participant receives the transmissions of all other participants.
3. Explain how Ethernet devices react, when they detect a collision.

If a collision is detected, the sender stops the frame transmission and sends the jam signal to announce the collision. If the maximum number of transmission attempts is not yet reached, the sender tries to transmit the frame again after a random time.
4. Explain why it is important that the transmission of a frame is not completed when a collision occurs in an Ethernet network.

Otherwise, the network device might already be finished with the transmission and believes the transmission was successful.
5. Explain what is done to ensure that the transmission of a frame is not completed when a collision occurs in an Ethernet network.

Each frame must have a certain minimum length. It must be dimensioned in a way, that the transmission duration for a frame with minimum length does not fall below the maximum RTT (round trip time).

Faculty of Computer Science and Engineering Frankfurt University of Applied Sciences

This ensures that a collision reaches the sender before its transmission is finished. If a sender detects a collision, it knows that its frame has not arrived correctly at the receiver, and can try the transmission again later.
6. Name the two special characteristics of the transmission medium in wireless networks that cause undetected collisions at the receiver.

Hidden terminal problem and Fading.
7. Describe both special characteristics of subtask 6 .

Hidden terminal problem (problem caused by invisible or hidden terminal device). Because of obstacles, not all stations can detect all transmissions, although they interfere each other at the Access Point.

Fading (decreasing signal strength). The electromagnetic waves of the wireless network are weakened by obstacles and in free space. Caused by the positions of stations to each other, their signals are so weak, that the stations cannot detect each others transmissions.
8. Explain what the Network Allocation Vector (NAV) is and for what purpose it is used.

The NAV is a counter variable which is maintained by each node itself. It contains the expected time when the transmission medium will be occupied. It reduces the number of collisions when CSMA/CA is used.
9. Explain what the Contention Window (CW) is and for what purpose it is used.

If the NAV and another DIFS with an idle transmission medium has expired, a backoff time is created from the $C W$. The backoff time is calculated by using a random value between the minimum $C W$ and maximum $C W$ and multiplying this random value with the slot time. After the backoff time has expired, the frame is transmitted. The CW prevents that all stations which wait for a free transmission medium, start their transmissions at the same time.
10. Name a benefit and a drawback of using the control frames Request To Send (RTS) and Clear To Send (CTS).

Advantage: It reduces collisions because it solves the problem of hidden terminals.

Drawbacks: Delays occur, which are caused by the reservation of the transmission medium. The RTS and CTS frames, which are used to reserve the transmission medium, are overhead.

Exercise 12 (Address Resolution Protocol)

1. Explain what the function of the Address Resolution Protocol is.

The Address Resolution Protocol (ARP) is used to convert IP address of the Network Layer to MAC address of the Data Link Layer.
2. Explain what the ARP cache is.

The ARP cache is a table, which contains IP addresses and MAC addresses, that belong together. It is used to speed up the address resolution.

