Frankfurt University of Applied Sciences

Fachbereich 2 Informatik und Ingenieurwissenschaften

Entwicklung und Implementierung

praxisorientierter KI-Beispiele auf dem Raspberry
Pi S und dem AI-HAT+

Abschlussarbeit zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

Vorgelegt von:

Hai Anh Tran

Studiengang: Informatik (B.Sc.)
Matrikelnummer: 1347788

Referent: Prof. Dr. Christian Baun
Korreferent: Prof. Dr. Thomas Gabel
Begonnen am: 20.11.2025

Beendet am: 22.01.2026



Eidesstattliche Erklarung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbststindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Alle Stellen, die wortlich oder sinngemél aus verdffentlichten Quellen entnommen sind, sind
als solche kenntlich gemacht.

Die Zeichnungen und Abbildungen sind von mir erstellt worden oder mit einem
entsprechenden Quellennachweis versehen.

Diese Arbeit wurde noch nicht in gleicher oder dhnlicher Form bei keiner anderen
Priifungsbehorde eingereicht.

Unterschrift

T (T



Zusammenfassung

Diese Arbeit untersucht die Entwicklung und Implementierung praxisorientierter KI-Beispiele
auf dem Raspberry Pi 5 in Kombination mit dem AI-HAT+. Das Ziel dieser Arbeit ist es zu
zeigen, wie sich moderne KI-Verfahren mit begrenzten Ressourcen einsetzen lassen und welche
Herausforderungen dabei in Bezug auf Leistung, Echtzeitfdhigkeit und Entwicklungsaufwand

auftreten.

Auf einer Plattform, bestehend aus dem Raspberry Pi 5, dem Raspberry Pi Camera Module 2
und dem KI-Beschleuniger AI-HAT+, wurden mehrere Anwendungen umgesetzt: eine
Posenerkennung auf Basis von Korperposen, eine Anwendung zur Fahrzeugdetektion und -
zdhlung sowie eine Anwendung zur automatischen Maskierung von Gesichtern. Fiir diese
Beispiele werden passende KI-Modelle ausgewéhlt und mithilfe von Python, GStreamer und

Hailo-Werkzeugen in eine Videoverarbeitungskette integriert.

Die Arbeit beschreibt den vollstindigen Entwicklungsprozess der Auswahl der Modelle, bis hin
zur Implementierung der Datenverarbeitungsketten und der Evaluation der Prototypen
hinsichtlich Genauigkeit, Bildrate und Latenz. Die Ergebnisse zeigen, dass der Raspberry Pi 5
in Verbindung mit dem AI-HAT+ eine leistungsfahige und zugleich kostengiinstige Plattform

fiir praxisorientierte KI-Anwendungen darstellt.



Abstract

This thesis researches the development and implementation of practical Al examples on the
Raspberry Pi 5 in combination with the AI-HAT+. The aim of this work is to demonstrate how
modern Al methods can be used with limited resources and which challenges arise in terms of

performance, real-time capability and implementation effort.

The platform consists of the Raspberry Pi 5, the Raspberry Pi Camera Module 2 and the Al
accelerator AI-HAT+. Several applications were implemented on this platform: an application
for pose detection, for vehicle detection and counting and for automatic blurring of faces.
Suitable AI models are selected and integrated into real-time video pipelines using Python,

GStreamer and the Hailo tools.

The thesis describes the complete development process, from the selection of the models
through to the implementation of the data processing pipelines and the evaluation of the
prototypes with respect to accuracy, frame rate, and latency. The results show that the Raspberry
Pi 5 in combination with the AI-HAT+ represents a powerful yet cost-effective platform for

practical Al applications.



Inhaltsverzeichnis

L EINTURIUNG ...ttt ettt e et e e et e e e saeeeneaeeessaeesasaeessneeensseennns 11
1.1 Motivation und Hintergrund.............ccccviiiiiieiiiiecie et 11
1.2 Problemstellung und Forschun@sfrage ..........ccccveviiieriiieiiie e 12
1.3 Zielsetzung der ATDEIt .......c.ueeeiuiieiiiiecie ettt e e e e 12

2. GIUNAIAZEN ...ttt ettt ettt e et e eabe e beeesbe e st e snseesseeenseenseesnsaesneenseenens 13
2.1 KUnstliche INtEllIZENZ........ccouiiiiieiiieiieieeieee ettt ettt ennees 13
2.2 Maschinelles LeIMEIN.....c..ovuiiiiiiiiiiiiieieeiterteee ettt sttt s 13
2.3 Neuronale Netze und Deep Learning .........c.cecveevvierieeiiienieeiiienieeieeseeeeeeeeeevee e eneees 15
2.4 Training Und INTEIENZ ........ooiuiiiiiiiiiiee e 16
2.5 BA@E-KI ettt ettt ettt ettt saeeeaneas 16

3. Aktueller Stand von Edge-KI-Plattformen.............cocoeviriiniiiiiiiniininnciecceeciecicene 18
3.1 BeWertUNGSKITEEIION. ... eeuiiiiieiie ettt ettt et eee et e e ens 18
3.2 Bestehende Edge-KI-Plattformen............cocoeeuiiiiiiiieiiieicceeceeeeeeee e 19

3. 2.1 NVIDIA JEESOM ..ttt ettt ettt sttt e st esaneeas 19
3.2.2 Google Coral / EAZe TPU .......ccoiiiiiiiiieieeitecte ettt ens 20
3.2.3 Raspberry Pi mit AI-HATH ...ooiiiiiiiieeeteee ettt ens 21
3.3 Untersuchung der Plattformen anhand der Kriterien...........cccccuveevveeniieeniieenieeeieeeee, 22
3.4 Verwendete Hardwareplattform .............ooooiieiiiiiiiiieceeee e 24
34T RASPDEITY P15 ettt e 24
3.2 AT-HAT ettt ettt ettt sa et 25
3.4.3 Kamera und weitere Peripherie..........cocooiiriiiiiniiniiieiccecceceee e 25

4. Anforderungen und Design der KI-Beispiele..........ccccoeviieiiiiiiiiiiniiiieeeeeceeeeee e 26
4.1 Uberblick iiber die umgesetzten KI-ANWendungen .................ccoeveveveveveveveeererenenenenennn. 26
4.2 Funktionale Anforderungen...........ccueeeriieiiiiieniiieeeiieeciee et et e e eeeeaee e eessee e 27

4.2.1 POSENETKENNUNG ......eeiiiiiieiiieeeiie ettt ettt e e re e et e e ssaae e saseeessneeenaneeeenns 27
4.2.2 FAhTZEUGZANIUNG .....ceviiiiieiiieiie ettt et s eanees 27
4.2.3 GeSIChtSMASKIETUNG ....coviiiiieiieeiieiie ettt ettt et ettt seeeeaneas 28
4.3 Nicht-funktionale Anforderungen .............ccceeviieiiieriieiiienie e 28
4.4 Zielsetzung des SystemMAESIZN ....cccuuieiieruieiiieiieeieeeiie et ettt et eneees 29
4.5 Konzeption der gemeinsamen SystemarchiteKtur .............cccoevvveeeriieeiieeeiieeeee e 30
4.6 Auswahl der KI-MOdelle .......coouiiiiiiiiiiiiiee e 33
4.7 Annahmen und ADZIENZUNZEN .........eevvuiiiiiiiieiiieeeie ettt e e e e e e e aeeeeaee e 34

S, IMPIEMENTICTUNG ....vveeiiieeiee ettt ettt e et e e ste e e staeeetaeeensaeesssaeeensaeennseeennnes 35



5.1 Entwicklungsumgebung und verwendete Technologien...........cccceeevveeeciieenciieencieeenenen. 35

5.1.1 GStreamer als VideOPIPEIINe ........oeeiuiiieiiiieiieeieeeee e e 35
5.1.2 Hailo-SoftwareumgebUung ...........c.ceeciiieiiieeiiieeieeeee e e 36
5.1.3 Python-Bibliotheken fiir Bildverarbeitung und Numerik ..........c.cccccovvevcvieeniieennen.. 37

5.2 Gemeinsame BasiSimplementierung ...........ccoveevieruieriieniienieeieeereesiee e eieesaeesaeesineens 38
5.3 Implementierung der GestenerkennuUNG............cccveeruieriieriieriieiieeieerieeeee et e seeeeeeeare e 43
5.4 Implementierung Fahrzeugzahlung ...........c.cccooeviiiiiiiiiiiniiiceeeee e 47
5.5 Implementierung der Gesichtsmaskierung .............ccoevcveeriiiniieniienieeieeeie e 49
5.5.1 Abgrenzung der Gesichtsmaskierung gegeniiber den anderen Anwendungen........ 49
5.5.2 IMPIEMENEICTUNE ....ccuveeeiiieeiiie ettt et e et e e et e e e aeeeeteeesseeesssaeessseeesssaeessseeennseeas 51

5.6 ZUSAMMENTASSUNG ......eeiuiiiiiieiieiie ettt ettt et et e teesteebeeeabeesstesabeessteenbeesseesnseesaeeans 54
6. EVAIUALION ..ottt ettt ettt et ettt e et eeeeaeeas 55
6.1 Zielsetzung der Evaluation ............cooouieiiiiiiiiiiieiieeeee ettt 55
6.2 VersuChSauDAU ........ccooiiiiiiiiiieeee ettt 55
6.3 BeWeTrtuUNZSMELITKEN ... .ocuviiiiieiiieiiecie ettt ettt e et saeebeessaeesseessaeenseesaneens 56
6.4 Ergebnisse der POSENErKennuNg ..........ccccovciieriiiiiieiiieeieeieeeieeieesre et sae e sve e ens 58
6.5 Ergebnisse der Fahrzeugzahlung .............cccoeviiiiiiiiieiiiieiieeieeeece et 60
6.6 Ergebnisse der GesichtSmaskKirUNg .........cocueeieriiiieniiniiiieiceceeecrecee e 62
6.7 Diskussion und Bewertung der Ergebnisse ..........ccccevoieiiiiiiieiiiiiieiieeecee e 64
7. Zusammenfassung und AUSDIICK ..........oooiiiiiiiiiiiiie e 66
7.1 Zusammenfassung der ATDEIt .........cccuieiuiiiiieiieiie ettt e 66

7.2 Weiterentwicklungsmdglichkeiten und offene Fragen ...........coccooieiiiiiiininnnnc, 67



Abbildungsverzeichnis

Abbildung 1: Aufbau von neuronalen NEetZen ...........cccoovveviiieiiiiiiienieiiiee e 15
Abbildung 2: NVIDIA Jetson Orin Nano Developer Kit [........cccccoovveeviieiiiieniieeieeeee e, 19
Abbildung 3: Google Coral Dev Board ...........cccoeeiiiiiiiiieiieceeee e 20
Abbildung 4: Raspberry Pi 5 mit AI-HATH ...oooiiiiiiieeeeeeeee e 21
Abbildung 5: Aktivititsdiagramm der Videoverarbeitungskette...........ccooevvveveiiinieniincnnn. 32
Abbildung 6: GStreamer, Elemente, Pads, PIpeline ..........cccccecvveeiiiieiiiecieeeeeeeee e 35
Abbildung 7: Aktivitidtsdiagramm Ablauf der Videopipeline..........ccccccveeeeiveencieencieecieeeen, 42
Abbildung 8: Architekturdiagramm der Gesichtsmaskierung Pipeline...........ccccccevvenienennnee 50
Abbildung 9: Videobild Posenerkennung.............cccoecveeiiiiiienieeiiieniecieeee e 59
Abbildung 10: Videobild Fahrzeugzahlung .............cccooiiiiniiiiiiiiiicececeeee 61

Abbildung 11: Videobild Gesichtsmaskierung.............cccoceeveriiriiiiiniineiienieneceeeecne e 63



Tabellenverzeichnis

Tabelle 1: Uberblick Edge-KI-PIattformen ...............cccvovuevivivivceeeeeeeereeeeeeeeeeeeeeee e 23
Tabelle 2: Metriken des Testlaufs fiir Posenerkennung..............ccccveeviieeiiieniiieecieecee e 58
Tabelle 3: Metriken des Testlaufs fiir Fahrzeugzahlung.............cccovveiiieeiiieciieeeeeeee, 60

Tabelle 4: Metriken des Testlaufs flir GesichtsSmaskierung............cccevvveviierieeiieniieenieenieenen. 62



Quell- und Pseudocodeverzeichnis

Codeblock 1: Quellcode Pipeling bauen ............ccceevieeiiiiiieiieniecieeee et 38
Codeblock 2: Quellcode Hailo-Elemente holen und konfigurieren ...........ccccceeevvevieeieennnnnen. 39
Codeblock 3: Quellcode Callback-FUunktion ...........ccc.oeeieiiiieieiiiiieceeiieee e 40
Codeblock 4: Quellcode identity-Element holen und anhdngen............ccccoeeeveeeciiiecciieenneen, 40
Codeblock 5: Quellcode Main-FunKtion.............ccceieeviiiiiiieciieeciiee e 41
Codeblock 6: Quellcode Umrechnung der Gelenkpunkte in Bildpixel...........cccceeveeiveninennnen. 44
Codeblock 7: Quellcode HANDS UP Regeln .......cocoovieiiiiiniiiiiiiiiiicnicncccececieeene 44
Codeblock 8: Quellcode T POSE Regeln.......cc.cocuieiiiiiiiiiiiniiiiiicecieecseeeceeecse e 45
Codeblock 9: Quellcode ARMS DOWN Regeln .......cccoeeviieiieiiiiiiiiiiciecieeeeee e 46
Codeblock 10: Quellcode Callback-Funktion Posenerkennung..............cccovvieviienieenieennennnen. 46
Codeblock 11: Pseudocode Callback-Funktion Fahrzeugzahlung..............cocooeeiininnninin. 48
Codeblock 12: Pseudocode Callback-Funktion on_preview sample .........c.ccceeevvenienenicnnnene 51
Codeblock 13: Pseudocode worker loop Thread..........ccoooieiiiiiiiiiiiiiiiieeeee e, 52
Codeblock 14: Quellcode map net to preview letterbox Funktion............cccecvvevveeiiennnennen. 53

Codeblock 15: Pseudocode Bildmanipulation Funktion...........c.ccceevveviieiiienieicienieeieenreenenn 53



Abkiirzungsverzeichnis

Al Artificial Intelligence

ca. circa

CNNs Convolutional Neural Networks
CPU Central Processing Unit

CSI Camera Serial Interface

Cv Computer Vision

GPIO General Purpose Input/Output
GPU Graphics Processing Unit

HAT Hardware Attached on Top
HDMI High-Definition Multimedia Interface
HEF Hailo Executable Format

ID Identification

KI Kiinstliche Intelligenz

MB Megabyte

ML Machine Learning

ms. milliseconds

NPU Neural Processing Unit

oS Operating System

PCle Peripheral Component Interconnect Express
RAM Random Memory Access

ROI Region Of Interest

RT Runtime

SDK Software Development Kit
TOPS Tera Operation Per Second
TPU Tensor Processing Unit

USB Universal Serial Bus

z. B. zum Beispiel



1. Einfiihrung

Im ersten Kapitel wird das Thema der Arbeit eingefiihrt und in einen iibergeordneten Kontext
eingeordnet. Zundchst werden Motivation und Hintergrund von Kiinstlicher Intelligenz auf
eingebetteten Systemen erldutert. AnschlieBend werden die Problemstellung und die zentrale

Forschungsfrage formuliert, bevor die Zielsetzung der Arbeit beschrieben wird.

1.1 Motivation und Hintergrund

In den vergangenen Jahren hat der Einsatz von Kiinstlicher Intelligenz im Alltag deutlich an
Bedeutung gewonnen. Kl-basierte Systeme sind ldngst nicht mehr nur in groBen Rechenzentren
zu finden, sondern begegnen uns in Smartphones, Haushaltsgeriten, Fahrzeugen und
zunehmend auch in eingebetteten Systemen. Als ,,Edge-KI* werden Systeme bezeichnet, die
Daten direkt am Gerét verarbeiten und eine Echtzeitanwendung ermoglichen, ohne einen

Umweg iiber die Cloud.

Parallel dazu hat sich der Markt fiir kompakte, leistungsfahige Einplatinencomputer
weiterentwickelt. Der Raspberry Pi 5 verfiigt iiber eine leistungsstarke Hardwarebasis, die in
Kombination mit spezialisierten KI-Beschleunigern, wie dem AI-HAT+, ein attraktives

Gesamtpaket fiir die Umsetzung von praxisnahen KI-Anwendungen bietet.

Ein wesentlicher Vorteil solcher Edge-KI-Plattformen ist die Mdglichkeit, komplexe Aufgaben
wie Bildverarbeitung oder Objekterkennung auf kostengiinstiger Hardware auszufiihren. Wo
frither leistungsstarke Desktop-Rechner oder Cloud-Server erforderlich waren, geniigen heute
kompakte Module, die sich problemlos in bestehende Systeme integrieren lassen. Der AI-HAT+
erweitert den Raspberry Pi 5 dabei um einen dedizierten KI-Beschleuniger, der speziell fiir KI-
Aufgaben optimiert ist und gleichzeitig einen geringen Energieverbrauch erméglicht. Dadurch

werden Anwendungen realisierbar, die sowohl interaktiv als auch echtzeitfdhig sind.

11



1.2 Problemstellung und Forschungsfrage

Im Rahmen dieser Forschung stellt sich die Frage, wie sich eine praxisnahe Kombination aus
Einplatinenrechner und KI-Beschleuniger fiir typische Bildverarbeitungsaufgaben eignet. Es
existieren zwar zahlreiche Beispielanwendungen, jedoch konzentrieren sie sich hiufig auf
einzelne Szenarien und nicht auf den kompletten Entwicklungsprozess. Fiir den Raspberry Pi 5
mit dem AI-HAT+ ist bisher begrenzt dokumentiert, wie sich mehrere verschiedene
Anwendungen auf einer gemeinsamen Grundlage realisieren und im Hinblick auf Bildrate und

Latenz bewerten lassen.

Vor diesem Hintergrund ergibt sich die zentrale Frage dieser Arbeit: Inwieweit eignet sich die
Kombination aus Raspberry Pi 5 und AI-HAT+ als Plattform fiir die Entwicklung von

praxisorientierten KI-Anwendungen?

1.3 Zielsetzung der Arbeit

Im Rahmen dieser Arbeit werden auf Basis des Raspberry Pi 5 und des AI-HAT+ mehrere
praxisorientierte KI-Beispiele entwickelt und implementiert. Diese Beispiele decken
unterschiedliche Anwendungsfelder ab. Von Mensch-Maschine-Interaktion iiber Datenschutz

bis hin zur einfachen Verkehrsiiberwachung.

Das Ziel der Arbeit ist es, den gesamten Entwicklungsprozess dieser Anwendungen
nachvollziehbar darzustellen. Der Prozess fangt bei der Auswahl geeigneter Modelle und
Frameworks an und geht weiter zur Umsetzung der Videoverarbeitungskette, bis hin zur
Evaluation hinsichtlich Bildrate und Latenz. Damit soll aufgezeigt werden, welches Potenzial
der Raspberry Pi 5 in Verbindung mit dem AI-HAT+ als Plattform fiir praxisnahe KI-Beispiele

bietet und welche Chancen und Grenzen sich beim Einsatz solcher Systeme ergeben.

12



2. Grundlagen

In diesem Kapitel werden die theoretischen und technischen Grundlagen vorgestellt, die
erforderlich sind, um die im Rahmen dieser Arbeit entwickelten KI-Anwendungen zu
verstehen. Als Erstes werden zentrale Begriffe aus dem Bereich Kiinstliche Intelligenz und
Maschinelles Lernen erldutert. Daraufhin wird auf neuronale Netze eingegangen und der
Unterschied zwischen Training und Inferenz wird erklért. AbschlieBend wird das Konzept der
Edge-KI vorgestellt, welches fiir den Einsatz des Raspberry Pi 5 in Kombination mit dem Al-
HAT+ eine zentrale Rolle spielt.

2.1 Kiinstliche Intelligenz

Unter Kiinstlicher Intelligenz (KI) werden Verfahren verstanden, die es Computersystemen
ermOglichen, Aufgaben zu 16sen, welche typischerweise menschliche Intelligenz erfordern
wiirden. Anwendungen und Gerite, die mit KI ausgestattet sind, konnen unter anderem Bilder

und Sprachen erkennen, sowie Entscheidungen treffen und aus Erfahrungen lernen [1].

In der Praxis wird der Begriff KI hiufig als Oberbegriff fiir verschiedene Methoden verwendet.
Diese reichen von einfachen regelbasierten Systemen bis hin zu komplexen lernenden
Systemen. In dieser Arbeit steht insbesondere der Bereich des maschinellen Lernens im
Vordergrund, bei dem Systeme nicht flir einen expliziten Einzelfall programmiert werden,

sondern selbststindig Muster in Daten erkennen und daraus ein Modell ableiten [2].

Im Bereich der Kiinstlichen Intelligenz wird zwischen ,,schwacher KI*“ und ,starker KI*
unterschieden. ,,Starke KI* ist in der Lage, jede intellektuelle Aufgabe zu 16sen. Im Gegensatz

dazu 16st ,,schwache KI* konkrete Aufgaben. [3]

Die in dieser Arbeit entwickelten Anwendungen basieren auf lernenden Modellen und werden

dem Bereich der ,,schwachen KI* zugeordnet.

2.2 Maschinelles Lernen

Maschinelles Lernen (ML) ist ein Teilgebiet der KI und befasst sich mit Algorithmen, die aus

Beispieldaten lernen, anstatt feste Regeln vorzugeben. Daraus ergibt sich ein Modell. Das

13



System erhélt dabei Trainingsdaten, die aus Eingaben (z. B. Bildern) und oft auch zugehdrigen
Zielwerten (z. B. Klassenbeschriftungen wie ,,Auto”“ oder ,Person®) bestehen. Im
Trainingsprozess werden interne Parameter der Modelle angepasst, damit es neue, bisher

unbekannte Daten moglichst korrekt verarbeiten kann [2].

Je nach Art der verfiigbaren Daten und Zielsetzung wird zwischen verschiedenen

Lernparadigmen unterschieden:

Uberwachtes Lernen:

Beim iiberwachten Lernen werden Modelle mit gekennzeichneten Datensétzen trainiert, zum
Beispiel ein Bild mit der Beschriftung ,,Fahrzeug*. Das Modell passt wihrend des Trainings
seine Gewichtungen so an, dass es Daten klassifizieren oder Ergebnisse moglichst prézise
vorhersagen kann [2]. Typische Verfahren sind Klassifikation, wie die Erkennung einer

bestimmten Korperpose, und Regression, also die Vorhersage eines kontinuierlichen Werts.

Uniiberwachtes Lernen:

Bei dem uniiberwachten Lernen liegen nur Eingabedaten ohne explizite Zielwerte vor. Das
Modell versucht, Strukturen oder Cluster (Gruppierungen) in den Daten zu finden, die nicht
offensichtlich sind. Typische Aufgaben sind das Gruppieren von dhnlichen Daten (Clustering),
Assoziationen in den Daten zu finden und die Dimensionsreduktion, also Daten zu

komprimieren und zu visualisieren [2].

Bestirkendes Lernen:

Ein Agent lernt durch Interaktion mit einer Umgebung und erhilt Belohnungen oder Strafen.
Der Agent wihlt Aktionen, bekommt eine Riickmeldung in Form von einer Belohnung oder
einer Strafe und passt sein Verhalten an. Das Ziel dabei ist nicht die Fehler-Minimierung,
sondern die maximale Belohnung [2]. Typische Anwendungsfille sind in der Robotertechnik

oder in Videospielen zu finden.

In dieser Arbeit wurden Modelle verwendet, die im Rahmen des iiberwachten Lernens trainiert
worden sind. Das eigentliche Training der Modelle findet dabei nicht auf dem Raspberry Pi 5
statt, sondern wurde zuvor auf leistungsstirkeren Systemen durchgefiihrt. Auf dem Raspberry

Pi wird anschlieBend nur noch die sogenannte Inferenz ausgefiihrt (sieche Abschnitt 2.4).

14



2.3 Neuronale Netze und Deep Learning

Viele moderne KI-Anwendungen basieren auf kiinstlichen neuronalen Netzen. Neuronale Netze
sind Modelle des maschinellen Lernens, die aus vielen einfachen ,,Neuronen bestehen. Sie
orientieren sich grob an der Arbeitsweise biologischer Nervenzellen und fithren einfache
Rechenoperationen durch. Durch das Zusammenschalten vieler solcher Neuronen entstehen
mehrere Schichten, die zusammen ein leistungsfahiges Modell darstellen und komplexe Muster

erkennen konnen [4].

Neuronale Netze bilden laut der Quelle [4] die Basis von Deep Learning. Die Eingabeschicht
nimmt Daten auf, wihrend mehrere versteckte Schichten die Daten verarbeiten. Im Anschluss
liefert die Ausgabeschicht das Ergebnis. Jede Verbindung hat ein Gewicht, um abzuwégen, wie
wichtig ein Eingangssignal ist. Zusétzlich hat jeder Knoten einen Schwellenwert, um
abzustimmen, wann er anspringt. Wenn das Ergebnis liber dem Schwellenwert liegt, wird der
Knoten aktiviert und das Signal wird an die nichste Schicht weitergeleitet. Somit konnen
neuronale Netze hierarchische Merkmale aus Rohdaten lernen. Im Kontext der
Bildverarbeitung werden hdufig Convolutional Neural Networks eingesetzt (CNNs). Diese
nutzen Faltungsoperationen (Convolutions), um Bildstrukturen wie Kanten, Formen oder
Texturen zu erkennen. Typische Aufgaben, die mit CNN-basierten Modellen geldst werden,

sind Bildklassifizierung und Objekterkennung.

Deep neural network

Input layer Multiple hidden layer Qutput layer
A N €
(; &
£ £
L L

Abbildung 1: Aufbau von neuronalen Netzen [4]

15



2.4 Training und Inferenz

Im Lebenszyklus eines neuronalen Netzes wird zwischen zwei Phasen unterschieden: Training

und Inferenz.

Training:

In der Trainingsphase wird das Modell mit groBen Mengen von beschrifteten Daten trainiert.
Dabei werden die Parameter des Netzes so angepasst, dass der Fehler zwischen den
Modellvorhersagen und den Zielwerten minimiert wird [5]. Dieser Prozess ist sehr

rechenintensiv und wird in der Regel auf leistungsfihiger Hardware durchgefiihrt.

Inferenz:

In der Inferenzphase ist das Training abgeschlossen. Das Modell wird mit neuen Eingabedaten
versorgt und berechnet die entsprechenden Ausgaben. Ein Beispiel wére ein Bild einer Person
als Eingabe und die Erkennung (markierter Bildbereich) sowie die Klassifizierung der Person
als Ausgabe. Hier steht insbesondere die Effizienz im Vordergrund. Die Berechnungen miissen
schnell genug sein, um Echtzeit-Anforderungen zu erfiillen, und gleichzeitig auf der

verfiigbaren Hardware ausfiihrbar bleiben [5].

Die vorliegende Arbeit konzentriert sich ausschlieBlich auf die Inferenzphase. Die verwendeten
Modelle werden in einem bereits trainierten Zustand bereitgestellt, typischerweise in einem
geeigneten Format fiir den AI-HAT+. Der AI-HAT+ iibernimmt dabei einen Grofteil der

Rechenarbeit der Inferenz.

2.5 Edge-KI

Ein zentrales Konzept dieser Arbeit ist die Edge-KI. Sie bezeichnet das Ausfiihren der KI-
Algorithmen direkt auf dem Endgerét selbst oder in unmittelbarer Néhe der Datenquelle. Somit
wird eine Echtzeit-Datenverarbeitung und -analyse ermdoglicht, ohne eine Abhédngigkeit von

einer Cloud-Infrastruktur [6].

16



Edge-KI bietet mehrere Vorteile laut Quelle [6]:

Geringe Latenz:
Da die Verarbeitung lokal erfolgt, entfallen Netzwerklaufzeiten. Dies ist besonders
wichtig fiir Anwendungen mit Echtzeitanforderungen, zum Beispiel bei einer

Fahrzeugerkennung bei selbstfahrenden Autos.

Datenschutz:
Sensible Daten miissen nicht in ein anderes Netzwerk iibertragen werden. Dies reduziert
das Risiko von Datenschutzverletzungen, da die Informationen direkt auf dem Gerét

verarbeitet werden.

Echtzeitanalyse:
Die Anwendungen konnen ohne stabile Internetverbindung betrieben werden, was in

vielen Szenarien (z. B. mobile Systeme, abgelegene Orte) von Vorteil ist.

Edge-KI stehen auch Herausforderungen gegeniiber [6, 7]:

Viele Edge-Gerite verfiigen im Vergleich zu Cloud-Servern noch deutlich weniger
Rechenleistung, Speicher und Energie. KI-Modelle miissen daher speziell optimiert und

angepasst werden, damit sie auf der Zielhardware benutzt werden konnen.

Edge-KI eignet sich fiir lokale Echtzeitaufgaben direkt auf dem Gerdt. Fiir
rechenintensive Aufgaben wie Training oder Datenaggregation, wird jedoch haufig
weiterhin die Cloud benétigt. Zudem ist die Verwaltung vieler verteilter Edge-Gerite

im groflen Maf3stab aufwendig.

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ ist ein typisches Beispiel einer Edge-

KI-Plattform. Die in dieser Arbeit entwickelten Anwendungen demonstrieren, wie sich

komplexe KI-Funktionen direkt auf dem Endgerét realisieren lassen, trotz begrenzter

Ressourcen.

17



3. Aktueller Stand von Edge-KI-Plattformen

Wie in den vorherigen Abschnitten genannt, hat sich der Bereich der Edge-KI weiterentwickelt.
Fiir typische KI-Aufgaben wie Objekterkennung existieren inzwischen zahlreiche Hard- und
Softwarelosungen, die sich in Leistungsfihigkeit, Kosten und Entwicklungsaufwand
unterscheiden. Das Ziel dieses Kapitels ist es, den verwendeten Raspberry Pi 5 in Kombination
mit dem KI-Beschleuniger AI-HAT+ in diesen Kontext einzuordnen. Dazu werden Kriterien
definiert und anschlieend bestehende Losungen vorgestellt. Die Plattformen werden anhand
dieser Kriterien verglichen. Auf dieser Grundlage lésst sich begriinden, warum der Raspberry
Pi mit dem AI-HAT fiir die angestrebten KI-Beispiele geeignet ist und wo weiterhin Bedarf fiir

eigene Entwicklungen und Untersuchungen besteht.

3.1 Bewertungskriterien

Ein zentrales Kriterium ist die Funktionalitiit, also ob und in welchem Umfang typische
Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung unterstiitzt werden.
Dazu sollten vorgefertigte Modelle oder Beispielanwendungen existieren, um die Funktionalitét

der Plattform zu bestitigen.

Eng damit verbunden ist die Leistungsfihigkeit im Hinblick auf Echtzeitbetrieb. Es ist
relevant, ob eine Plattform die Bildraten im Bereich von mehreren zehn Bildern pro Sekunde
mit moglichst geringer Verzogerung erreichen kann. Die Hersteller der Plattformen geben die
Rechenleistung von KI-Beschleunigern héufig in ,,TOPS* an, also in ,,Tera-Operationen pro

Sekunde®. Dieser Wert dient in dieser Arbeit als grobe Orientierung fiir die Rechenleistung.

Ein weiteres Kriterium sind die Anschaffungs- und Betriebskosten. Da sich die Arbeit an
einer typischen Lehr- und Entwicklungsumgebung orientiert, spielt die Verfligbarkeit als auch

die Kosten eine Rolle.

SchlieBlich ist der Entwicklungsaufwand von Bedeutung: Eine Losung ist fiir den Rahmen
einer Bachelorarbeit nur dann praktikabel, wenn sie {iber eine nachvollziehbare
Dokumentation, Beispielprojekte und ein nutzbares Software-Entwicklungspaket (SDK)

verfiigt.

18



3.2 Bestehende Edge-KI-Plattformen

Als représentative Beispiele aktueller Edge-KI-Losungen werden im Folgenden drei Ansitze
betrachtet: NVIDIA Jetson, Google Coral mit Edge TPU sowie der Raspberry Pi 5 in
Kombination mit dem AI-HAT+.

3.2.1 NVIDIA Jetson

Plattformen der NVIDIA-Jetson-Reihe sind kompakte Rechnersysteme, die fiir rechenintensive
Bild- und KI-Anwendungen ausgelegt sind [8]. Eine Charakteristik der Jetson-Systeme ist die
Integration der Rechenkomponenten und Beschleunigereinheiten auf dem Gerét. Die Systeme
basieren auf einem Chip, der Prozessor, Grafikeinheit und weitere Komponenten auf einem
System kombiniert [9]. Fiir KI-Anwendungen ist der integrierte Grafikprozessor der Jetson-
Systeme relevant, um die Rechenoperationen der neuronalen Netze besser parallelisieren zu
konnen [10]. Aus der Sicht der Softwareentwicklung bieten Jetson-Systeme eine Vielzahl an
Bibliotheken und Werkzeugen an, die die Ausfithrung neuronaler Netze auf der GPU
beschleunigen. Diese Werkzeuge umfassen sowohl allgemeine Rechenbibliotheken als auch
Optimierungswerkzeuge fiir neuronale Netze [11]. Der Entwicklungsaufwand kann bei den
Systemen sinken, da viele Modelle ohne grundlegende Umformung lauffahig sind. In der Praxis
werden Jetson-Plattformen oft benutzt, wenn eine hohe Leistung oder anspruchsvollere

Modelle bendtigt werden.

Abbildung 2: NVIDIA Jetson Orin Nano Developer Kit [41]

19



3.2.2 Google Coral / Edge TPU

Google-Coral-Plattformen enthalten als Zusatzhardware einen KI-Beschleuniger an einem
Einplatinenrechner. Die Kernkomponente ist die Edge TPU: ein spezialisierter KI-Chip fiir die
Ausflihrung neuronaler Netze [12]. Der Anschluss erfolgt dabei meist iiber die PCle-
Schnittstelle. PCI Express ist eine interne Schnittstelle, die fiir hohe Datenraten ausgelegt ist
und sich besonders fiir den Transfer von gro3en Datenmengen eignet. Das zentrale Merkmal
dieses Ansatzes ist eine starke Spezialisierung auf die effiziente Inferenz. Fiir die Edge TPU
gelten jedoch strikte Anforderungen an die Modellform: Haufig miissen Modelle in einem
kompakten Format vorliegen (TensorFlow Lite) und als vollstindig quantisierte
Ganzzahlmodelle bereitgestellt werden, damit sie vollstindig auf dem Beschleuniger
ausgefiihrt werden konnen [13]. Laut Coral reduziert die Quantisierung die Zahlenprézision
(von FlieBkommazahl zu Ganzzahlen) im Modell und senkt dadurch den Speicherbedarf und
den Rechenaufwand, was zu einer verbesserten Geschwindigkeit und Energieeffizienz fiihrt

[13].

Abbildung 3: Google Coral Dev Board [42]

20



3.2.3 Raspberry Pi mit AI-HAT+

Der in dieser Arbeit verwendete Raspberry Pi 5 ist ein weiterer Einplatinenrechner, der durch
Zusatzhardware fiir KI-Aufgaben erweitert werden kann. Der AI-HAT+ ist dabei eine
Aufsteckplatine, die einen dedizierten KI-Beschleuniger enthilt. Technisch gesehen handelt es
sich hierbei um einen Hailo-basierten Beschleuniger, der iiber die PCle-Schnittstelle

angebunden wird [14].

In einer typischen KI-Anwendung iibernimmt der Raspberry Pi die Aufgaben der
Datenerfassung und Systemsteuerung, wie den Zugriff auf die Kamera und das Dateisystem.
Der AI-HAT+ fihrt dabei die rechenintensive Inferenz aus. Daraus ergibt sich eine
Arbeitsaufteilung, die die CPU des Raspberry Pi entlastet. Wie bei den Coral-Plattformen
miissen die Modelle in einem speziellen Format (HEF-Modelle) fiir den KI-Beschleuniger
vorbereitet werden. Dazu gehort die Anpassung der Rechenoperationen sowie die
Quantisierung. Im Abschnitt 3.4 werden der Raspberry Pi 5 und AI-HAT+ im Einzelnen
betrachtet.

Abbildung 4: Raspberry Pi 5 mit AI-HAT+ [14]

21



3.3 Untersuchung der Plattformen anhand der Kriterien

Die im Abschnitt 3.1 definierten Kriterien werden im Folgenden auf die drei betrachteten
Plattformansitze angewendet, um den Raspberry Pi 5 mit Al HAT+ in den Stand der Technik

einzuordnen.

In Hinsicht auf die Funktionalitit unterstiitzen grundsétzlich alle drei Ansétze typische
Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung. Unterschiede ergeben
sich jedoch bei der Umsetzbarkeit. Bei Jetson-Systemen ist die Anzahl von lauftdhigen
Modellen hoch, da die Beschleunigung iiber die integrierte GPU erfolgt und es wenige
Vorgaben an Modellformate gibt. Bei externen KI-Beschleunigern wie Coral und AI-HAT+ ist
die Funktionalitét stiarker davon abhéngig, ob ein Modell in der geforderten Form bereitgestellt
werden kann. Dazu miissen die im Modell verwendeten Rechenoperationen vom jeweiligen
Beschleuniger unterstiitzt werden. Somit ist die Kompatibilitdt der konkreten Modelle ein

entscheidender Punkt.

Fiir die Echtzeitfihigkeit gilt, dass Jetson-Systeme in der Regel eine hohe Rechenleistung
erbringen, die fiir anspruchsvollere Modelle ein klarer Vorteil ist. Gleichzeitig sind hierfiir
hohere Anforderungen an Energieversorgung und Warmeabfuhr [15] zu beriicksichtigen, was
die Einordnung als ,kompaktes® und ,leichtgewichtiges* Lehr- und Entwicklungssystem
relativiert. Bei Coral- und AI-HAT+-basierten Losungen héngt die erreichbare Echtzeitfahigkeit
davon ab, ob das Modell vollstindig auf dem KI-Beschleuniger ausgefiihrt werden kann.
Insbesondere Arbeitsschritte wie Bildskalierung, Filterung oder die Ausgabe von Ergebnissen

konnen die Gesamtlatenz beeinflussen.

Das Kriterium Anschaffungs- und Betriebskosten ist fiir den Kontext einer Lehr- und
Entwicklungsumgebung relevant, da es die Verfligbarkeit und den Einsatz in typischen
Projektszenarien beeinflusst. Da die Jetson-Systeme leistungsorientiert sind und als
Gesamtsystem eingeordnet werden, liegen sie meist in héheren Anschaffungsklassen. Die
Einplatinenrechner sind als Basis weit verbreitet und bieten damit eine eher kostengiinstige

Lehr- und Entwicklungsumgebung.

Erginzend dazu wird der Entwicklungsaufwand minimiert, wenn nachvollziehbare
Dokumentation, Beispielprojekte und Software-Entwicklungspakete verfiigbar sind. Die
Jetson-Systeme verfligen iiber eine Anzahl von umfangreichen Entwicklungswerkzeugen,
jedoch erfordern sie dadurch auch eine stirkere Einarbeitung in die Systemumgebung. Bei
Coral-Systemen ergibt sich der Aufwand aus den Modellvorgaben und mdglichen Priifungen

22



fiir die Modellkompatibilitdt. Der AI-HAT+ ist in die Raspberry-Pi-Umgebung integriert und
es stehen Dokumentationen und Beispielprojekte zur Verfiigung. Allerdings werden Werkzeuge

benoétigt, um Modelle in ein geeignetes Ausfiihrungsformat zu tiberfiihren.

Die Tabelle 1 gibt einen zusammenfassenden Uberblick iiber die drei betrachteten Edge-KI-
Plattformen und ordnet sie den Kriterien zu. Herstellerzahlen der TOPS [16, 17, 14] kénnen nur

als grobe Orientierung verwendet werden, da sie von der Modellstruktur und Rechenart

abhingen.

Plattform | Funktionalitiat | Echtzeitfahigkeit | Anschaffungs- Entwicklungs
/Betriebskosten aufwand

NVIDIA Breites Hohe Leistung, hohere Viele
Jetson Spektrum fiir hoherer Anschaffung, Bibliotheken,
(Orin Bild- Energiebedarf, hoherer Betrieb, hoher Einstieg
Nano) verarbeitung bis zu 67 TOPS
Google Effiziente Schnell, nur bei niedriger, Modellhiirden
Coral/ Bildmodelle Kompatibilitit, Einplatinenrechner-
Edge TPU 4 TOPS basiert
Raspberry | Echtzeit- Hoch, CPU- niedriger, Pi-Integration,
Pi 5 mit AI- | Inferenz auf Vor/Nachverarbei- | Einplatinenrechner- | Werkzeugkette
HAT+ dem Pi tung, 13/26 TOPS | basiert erforderlich

Tabelle 1: Uberblick Edge-KI-Plattformen

Zusammenfassend verfiigen die drei betrachteten Ansétze alle iiber die Kapazitit, um typische
KI-Aufgaben zu bewiltigen. Dabei unterscheiden sie sich primir im Systemkonzept. Die
Jetson-Systeme sind als integrierte Gesamtsysteme konzipiert und bieten eine hohe
Rechenleistung. Jedoch erfordern sie auch eine abgestimmte Systemumgebung, um effizient zu
funktionieren. Zwar sind sowohl Coral- als auch AI-HAT-Systeme modellabhidngig, jedoch
unterscheiden sie sich in der Art der Abhéingigkeit. Bei Coral ergeben sich Einschrankungen
aus strikten Modellvorgaben, wéihrend bei dem AI-HAT+ das erforderliche Ausfiihrungsformat
im Vordergrund steht. Fiir die vorliegende Arbeit ist dabei entscheidend, dass der Raspberry Pi
5 eine verbreitete und nachvollziehbare Basis fiir Kamera- und Videodatenverarbeitung bietet

und der Al HAT+ die rechenintensive Inferenz auslagert. Durch die Nutzung vorgefertigter
23



Modelle kann der Entwicklungsfokus auf die Umsetzung gelegt werden sowie auf die
Evaluation der Anwendungen. Damit eignet sich der Raspberry Pi 5 mit AI-HAT+, um
praxisnahe KI-Beispiele zu implementieren und die Grenzen unter realistischen Bedingungen

zu untersuchen.

3.4 Verwendete Hardwareplattform

In diesem Abschnitt wird die in dieser Arbeit verwendete Hardwareplattform vorgestellt. Der
Raspberry Pi 5 in Kombination mit dem KI-Beschleuniger AI-HAT+ bilden die Basis fiir alle
entwickelten Anwendungen. Ergidnzend kommen eine Kamera sowie weitere Peripheriegeréte
zum Finsatz, um Videoeingaben zu erfassen und die Ergebnisse der KI-Verarbeitung

darzustellen.

3.4.1 Raspberry Pi 5

Der Raspberry Pi 5 ist die fiinfte Generation der weitverbreiteten Einplatinencomputer der
Raspberry-Pi-Familie. Er ist fiir einen kostenglinstigen, zugleich aber leistungsfahigen Einsatz

in Lehrumgebungen, Prototypen und eingebetteten Anwendungen konzipiert [18].
Zentrale Merkmale [19, 20], die flir diese Arbeit relevant sind, sind insbesondere:

e cine mehrkernfdhige CPU, die die Ausfiihrung der Steuerlogik, der Videoverarbeitung
sowie der Ansteuerung des KI-Beschleunigers tibernimmt

e ausreichend Hauptspeicher, um Videodaten, Puffer und die zur Inferenz benoétigten
Datenstrukturen im Arbeitsspeicher zu halten

e cine leistungsfihige Videoeinheit (GPU) zur Beschleunigung von Grafik- und
Videoaufgaben

e standardisierte Schnittstellen wie HDMI, GPIO-Pins sowie CSI- oder USB-

Schnittstellen fiir den Anschluss von Kameras und anderen Geriten

Der Raspberry Pi 5 iibernimmt in dieser Arbeit die Rolle der zentralen Steuereinheit. Er
initialisiert die Kamera, konfiguriert die Datenverarbeitungskette, iibergibt Bilddaten an den
AI-HAT+ und fiihrt die Nachverarbeitung der Inferenzresultate durch.

24



3.4.2 AI-HAT+

Der AI-HAT+ ist ein Aufsteckmodul (HAT) fiir den Raspberry Pi 5, welcher einen ,,Neural-
Network-Accelerator” (NPU) integriert. Dieser ist darauf ausgelegt, neuronale Netze effizient
auszufiihren, und iibernimmt einen Grofteil der rechenintensiven Operationen, die bei der
Inferenz von Deep-Learning-Modellen anfallen. ,,Die NPU erlaubt es, die beschleunigten KI-
Modelle lokal auszufiihren, sodass keine Daten zur Verarbeitung an einen Cloud-Server

iibertragen werden miissen.* (eigene Ubersetzung) [14].

Je nach Variante des Hailo-Chips bietet das System 13 TOPS (Hailo-8L) oder 26 TOPS (Hailo-
8). Die Kommunikation zwischen Raspberry Pi 5 und AI-HAT+ erfolgt tiber die definierte
PCle-Schnittstelle des HATs [14].

Der Vorteil des AI-HAT+ liegt insbesondere in der deutlich héheren Inferenzleistung im
Vergleich zu einer reinen CPU-Inferenz. Dadurch werden Bildraten im Echtzeitbereich
ermOglicht, die fiir Anwendungen wie Personenerkennung erforderlich sind. Der AI-HAT+

iibernimmt in dieser Arbeit den Inferenzteil der Anwendungen.

3.4.3 Kamera und weitere Peripherie

Fiir die Erfassung der Bilddaten wird das Raspberry Pi Camera Module 2 verwendet. Diese ist
mit dem Raspberry Pi 5 verbunden. Wichtig ist dabei, dass die Kamera eine ausreichende
Bildaufldsung und Bildrate liefert, um die im Rahmen dieser Arbeit untersuchten Anwendungen
sinnvoll zu betreiben. Typischerweise wird mit der Aufldsung von 720p und Bildraten zwischen

15 und 30 Bildern pro Sekunde gearbeitet.
Neben der Kamera kommen weitere Peripheriegerdte zum Einsatz, unter anderem:

e cinen Monitor zur Darstellung des Videobildes und der KI-Ergebnisse

e FEingabegerite wie Tastatur und Maus zur Bedienung des Systems

Die Gesamtplattform aus Raspberry Pi 5, AI-HAT+, Kamera und Peripherie bildet eine
kompakte Edge-KI-Plattform, ohne dass eine externe Cloud-Infrastruktur angebunden werden
muss. Sie dient in dieser Arbeit als Referenzplattform fiir die Untersuchung, wie
praxisorientierte KI-Anwendungen unter realistischen Randbedingungen auf einer

ressourcenbegrenzten Hardware umgesetzt werden kdnnen.
25



4. Anforderungen und Design der KI-Beispiele

In diesem Kapitel werden die Anforderungen der entwickelten KI-Anwendungen beschrieben
und das darauf aufbauende Design der Systemarchitektur vorgestellt. Im Fokus stehen drei KI-
Beispiele, die auf Bild- bzw. Videodaten operieren und in Echtzeit ausgefiihrt werden sollen.
Die Architektur soll dabei die begrenzten Hardware-Ressourcen der Plattform beriicksichtigen

und gleichzeitig geniigend Flexibilitét fiir die verschiedenen Anwendungsfille bieten.

4.1 Uberblick iiber die umgesetzten KI-Anwendungen

Im Rahmen dieser Arbeit werden folgende KI-Anwendungen realisiert:

Posenerkennung:

In dieser Anwendung wird die Korperhaltung einer Person im Kamerabild analysiert. Ein
Modell zur Schitzung von Koérperposen erkennt sogenannte ,,Schliisselpunkte. Diese Punkte
sind Positionen von bestimmten Gelenkpunkten wie Schultern, Ellenbogen oder Handgelenken.
Aus diesen Angaben lassen sich diskrete Posen wie ,,Arme gehoben* oder ,,Arme unten*
mithilfe einfacher Regeln ableiten. Diese Anwendung eignet sich insbesondere zur

Demonstration von Mensch-Maschine-Interaktion tiber Kérperbewegungen.

Gesichtsmaskierung:

Diese Anwendung detektiert das Gesicht im Kamerabild und maskiert es durch Verpixelung
oder Unschirfe der entsprechenden Bildbereiche in Echtzeit. Ein Gesichtsdetektionsmodell
liefert den Bildbereich des erkannten Gesichts. Auf dieser Basis wird entschieden, welche
Bildbereiche maskiert werden sollen. Sie adressiert den Aspekt des Datenschutzes und zeigt,

wie KI-basierte Erkennung mit anschlieBender Bildmanipulation kombiniert werden kann.

Fahrzeugzihlung:

In dieser Anwendung werden Fahrzeuge im Bild erkannt und gezéhlt, sobald sie eine im Bild
definierte virtuelle Linie iiberqueren. Ein Objekterkennungsmodell erkennt Fahrzeuge im Bild
und markiert die Position der Bildbereiche. Aus dieser Position wird abgeleitet, ob sich der

Mittelpunkt einer Fahrzeugbox bewegt hat und ob sie sich von einer Seite der Linie auf die

26



andere bewegt hat. Die Anwendung demonstriert ein einfaches Szenario der
Verkehrsiiberwachung und eignet sich, um die Kombination aus Objektverfolgung und

Ereignislogik (,,Linienkreuzung*) zu zeigen.

Die drei Beispiele decken damit unterschiedliche Anwendungsfelder ab: Mensch-Maschine-
Interaktion, Datenschutz und Videoanalyse im Verkehrsbereich. Gleichzeitig nutzen sie
dhnliche technische Bausteine wie Kamera, Inferenz, Nachverarbeitung, die eine gemeinsame

Systemarchitektur ermdglichen.

4.2 Funktionale Anforderungen

Im Folgenden werden die funktionalen Anforderungen an die einzelnen Anwendungen

beschrieben. Sie legen fest, welche Funktionen die Prototypen bereitstellen sollen.

4.2.1 Posenerkennung

Die Anwendung soll einen Videostream erfassen konnen iiber eine angeschlossene Kamera.
Dabei soll es moglich sein, mindestens eine Person zu erkennen und die Korpergeste liber
Schliisselpunkte zu berechnen. Durch vordefinierte Regeln soll die Anwendung die Korperpose
erkennen und die erkannte Pose im Videobild oder im Terminal in Echtzeit anzeigen. Dabei
liegt die Verarbeitung eines einzelnen Benutzers im Vordergrund, wihrend der Umgang mit

mehreren Personen optional ist.

4.2.2 Fahrzeugzidhlung

Die Anwendung soll Fahrzeuge im Videostream erkennen konnen, mithilfe eines
Objekterkennungsmodells. Es soll eine virtuelle Linie im Bild definiert werden, welche relativ
zur Fahrstrecke der Fahrzeuge liegt (horizontal oder vertikal). Die Position der erkannten
Fahrzeuge soll verfolgt werden und ein Zéhler wird erhoht, sobald ein Fahrzeug die Linie in

einer definierten Richtung tiberquert.

27



4.2.3 Gesichtsmaskierung

Die Anwendung soll Gesichter im Videostream erkennen konnen. Um erkannte Gesichter
deutlich sichtbar zu machen, wird eine Box um das erkannte Objekt gezeichnet. Danach folgt
die Maskierung der Gesichter durch Verpixelung oder Weichzeichnen der entsprechenden
Bildbereiche. Die Darstellung des maskierten Videostreams erfolgt dabei in Echtzeit. Die

Anwendung soll dabei mindestens ein Gesicht erkennen und maskieren konnen.

4.3 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen spielen nicht-funktionale Anforderungen eine wichtige
Rolle. Sie legen grob fest, wie gut die Anwendungen ihre Aufgaben erfiillen sollen. Genauere

Zielwerte fiir Bildrate oder Latenz werden in Kapitel 6 ,,Evaluation* festgelegt (Siehe 6.3).
Die folgenden Anforderungen gelten fiir alle Anwendungen:

Echtzeitfihigkeit und Latenz:

Alle Programme sollen reibungslos funktionieren und mindestens 15 Bilder pro Sekunde
anzeigen. Die Bildrate sollte bei normaler Belastung konstant bleiben, ohne dass es zu starken
Einbriichen kommt. Die Verzogerung zwischen Kameraaufnahme und Darstellung der
Ergebnisse soll minimal sein. Der Nutzer soll die Resultate in Echtzeit wahrnehmen, ohne dass

sich Verzégerungen oder Inkonsistenzen bemerkbar machen.

Ressourcennutzung:

Es sollte sichergestellt werden, dass die CPU- und Speicherauslastung in einem Bereich bleibt,
der fiir einen dauerhaften Betrieb ohne Instabilitit sorgt. Dabei soll der Raspberry Pi nach
langerer Zeit nicht liberhitzen oder in eine CPU-Drosselung geraten. Ressourcen bleiben bei

mehreren Prozessen ordnungsgeméilf verteilt und blockieren nicht das System.

Robustheit:

Die Anwendungen sollen iiber eine ldngere Zeit stabil funktionieren, ohne dass sie abstiirzen.
AuBlerdem sollen sie in alltdglichen Situationen (normale Beleuchtung, miBige Bewegung,
unterschiedliche Hintergriinde) verlédssliche Ergebnisse erzielen. Dariliber hinaus sollte die
Erkennung gegeniiber Verdeckungen, leichtem Wackeln und unterschiedlichen Distanzen

tolerant sein.

28



Bedienbarkeit:
Alle Programme sollen mit nur wenigen Schritten gestartet werden konnen, etwa mit einem
Skript oder einem Befehl. Die Ergebnisse werden verstandlich dargestellt, durch gezeichnete

Boxen, Schliisselpunkte und Statusanzeigen im Videobild oder im Terminal.

Datenschutz:
Die Daten sollen lokal verarbeitet werden und keine Cloudanbindung haben. Eine Speicherung
von Bildern ist nur bewusst moglich und klar gekennzeichnet. Insbesondere sollen die

Ergebnisse der Maskierung zuverldssig sein.

4.4 Zielsetzung des Systemdesign

Das Systemdesign verfolgt drei zentrale Ziele, die im Folgenden erldutert werden:

Echtzeitverarbeitung des Videostreams:

Als Erstes soll der Videostream der Kamera in Echtzeit verarbeitet werden konnen, sodass der
Benutzer eine direkte Riickmeldung seiner Bewegung oder der Ereignisse im Video erhilt.
Dazu ist ein durchgéngiger ,,Pipeline*“-Ansatz erforderlich, der Bildaufnahme, Vorverarbeitung,

Inferenz, Nachverarbeitung und Darstellung sinnvoll verbindet.

Auslagerung der KI-Inferenz auf den AI-HAT+:

Als Zweites wird es angestrebt, dass die rechenintensive Ausfiihrung der neuronalen Netze auf
den AI-HAT+ ausgelagert wird. Der Raspberry Pi 5 dient lediglich als Steuereinheit und
iibernimmt Vor- und Nachverarbeitungsaufgaben, sowie die Darstellung der Ergebnisse.

Dadurch sollen die Ressourcen der CPU geschont werden, um hohere Bildraten zu ermoglichen.

Gemeinsame Architektur fiir alle Anwendungen:

Das dritte Ziel ist es, die Architektur so zu gestalten, dass alle Anwendungen auf einer dhnlichen
Datenverarbeitungskette basieren, welche aus Kameraeingang, Vorverarbeitung, Inferenz,
Nachverarbeitung und Darstellung besteht. Die Unterschiede zwischen den Anwendungen
sollen in der Auswahl des Modells und der Auswertung des Modells liegen, nicht in den
verschiedenen Strukturen. Dadurch werden die Entwicklung, Vergleichbarkeit und

Wiederverwendung von Komponenten erleichtert.

29



4.5 Konzeption der gemeinsamen Systemarchitektur

Obwohl die drei Anwendungen unterschiedliche Aufgaben 16sen, sollen sie auf einer
gemeinsamen Systemarchitektur basieren. Wie im vorherigen Abschnitt genannt, erleichtert es
die Entwicklung, den Vergleich und eine mogliche Wiederverwendung der Komponenten. Der
Kern ist eine ,,Videopipeline™ (Videoverarbeitungskette). Dabei wird jedes einzelne Bild in
einer gleichen Abfolge von Verarbeitungsschritten durchlaufen. Auf hoher Abstraktionsebene

lasst sich die Architektur folgendermafB3en beschreiben:

1. Videoaufnahme: Die Kamera liefert einen kontinuierlichen Videostream an den Raspberry
Pi. Es werden die aktuellen Bilder des Videostreams ausgelesen, welche die Kamera liefert. Die

einzelnen Bilder dienen als Eingang fiir weitere Verarbeitung.

2. Vorverarbeitung: Die Rohbilder liegen zunichst im kameraspezifischen Ausgangsformat
vor. Je nach KI-Modell gibt es Anforderungen zur Auflésung und zum Farbraum. Der Schritt
der Vorverarbeitung passt die Bilder an diese Anforderungen. Die Bilder werden auf die
geeignete Eingangsauflosung skaliert (1280 x 720 Pixel, sofern das Modell keine anderen
Vorgaben macht). Als Néchstes folgt die Umwandlung in den benétigten Farbraum (RGB, falls

keine Vorgaben existieren). Gegebenenfalls ist auch eine Normalisierung der Pixelwerte notig.

3. Kl-Inferenz auf dem AI-HAT+: Das vorbereitete Bild wird nun an den AI-HAT+
iibertragen. In diesem Schritt wird das zuvor geladene Modell ausgefiihrt und das vorbereitete
Bild eingegeben. Dabei ist wichtig zu verstehen, dass die Anwendung keine Details liber die
interne Funktionsweise des AI-HAT+ kennen soll. Die Schnittstelle soll modellunabhingig
einheitlich sein. Die Bilder werden analysiert und der AI-HAT+ erzeugt strukturierte Ausgaben

wie Klasseninformationen, Schliisselpunkte oder Rahmenboxen (Bounding Boxes).

4. Nachverarbeitung: Die Roh-Ausgaben des Modells werden interpretiert und in nutzbare
Informationen umgewandelt. Die Rahmenboxen und Schliisselpunkte werden in das Bild

gezeichnet. Eine Skalierung in die urspriingliche Auflosung soll hier geschehen.
Gleichzeitig wird hier die anwendungsspezifische Logik eingebaut:

e Gestenerkennung: Die vom Modell gelieferten Schliisselpunkte enthalten die benétigten
Informationen, um anhand von vordefinierten Regeln eine diskrete Pose zu bestimmen.
e Gesichtsmaskierung: Das Modell liefert den Bildbereich des erkannten Gesichts, der

anschlieBend verpixelt oder weichgezeichnet wird.

30



e Fahrzeugdetektion und -zéhlung: Das Modell erkennt die verschiedenen Fahrzeuge im
Bild. Aus den Positionen wird abgeleitet, ob das Fahrzeug die virtuelle Linie
iiberquert. In dem Fall wird der Zahler erhdht.

5. Darstellung: Die Ergebnisse der Nachverarbeitung werden je nach Anwendung im Videobild
dargestellt, beispielsweise durch Skelett- und Schliisselpunktdarstellungen, maskierte
Bildbereiche und Rahmenboxen. Zusétzlich werden Textinformationen wie Pose, Zédhlerstand
oder Debug-Ausgaben im Terminal ausgegeben. Das erzeugte Bild wird auf dem Monitor

sichtbar und bildet die sichtbare Riickmeldung des Systems.

Die Architektur ist bewusst so ausgelegt, dass Kameraeingang, Vorverarbeitung, Inferenz,
Nachverarbeitung und Bildausgabe in allen Anwendungen in dhnlicher Weise realisiert werden.
Die Unterschiede ergeben sich hauptsidchlich im verwendeten Modell und im jeweiligen
Nachverarbeitungsschritt. Dadurch entsteht eine modulare Systemarchitektur, welche die

Wiederverwendung von Komponenten ermoglicht.

31



¢

. T
Bild von Kamera
einlesen
e ¢ "
Vorverarbeitung
(Skalierung, Farbraum
Mormalisierunag)

.

. T
Bild an Al-HAT+
ibergeben
e "
s ¢ "
Inferenz auf Al-HAT+
ausfilhren
A "

.

Modelausgabe empfangen
(Rahmenboxen, Klassen,
Schlisselpunkie)

.

Machverarbeitung
(Visualisierung
der Modellausgaben)

.

Machverarbeitung
(Anwendungsspezifische Logik

Fosenerkennung: Schlisselpunkie — Geste ableiten
Fahrzeugzahlug: Rahmenboxen — Linienkreuzung erkennen und £ahler aktualisieren
Gesichtsmaskierung: Rahmenboxen — Maskierungsbereich maskieren)

. vy

.

Darstellung des Bildes auf
Monitor / Terminal

!
®

Abbildung 5: Aktivititsdiagramm der Videoverarbeitungskette

32



4.6 Auswahl der KI-Modelle

Fiir die Umsetzung der Anwendungen wurden bewusst vortrainierte Modelle aus dem Hailo-
Model-Zoo [21] ausgewaihlt. Der Model-Zoo bietet eine reichliche Anzahl an vortrainierten
Modellen an, die im Zielformat fiir Hailo-Beschleuniger liegen. Zudem bietet er Umgebungen
und Werkzeuge an, um eigene Modelle zu trainieren. Das Training von eigenen Modellen wire
im Rahmen dieser Arbeit zeitlich und organisatorisch nicht sinnvoll gewesen, da die
Datenaufbereitung und das Modelltraining zeitintensiv sind und das eigentliche Ziel der Arbeit
verschoben hitte. Die Auswahlkriterien waren daher die Verfiigbarkeit als vorkompilierte HEF-
Datei, die Kompatibilitdt mit dem AI-HAT+, sowie eine ausreichende Laufzeitperformance fiir

Echtzeitanwendungen.

Fiir die Posenerkennung wurde das ,,YOLOS8s Pose“~-Modell [22] verwendet. Dieser schitzt
Korperposen und liefert pro Person mehrere Gelenkpunkte. Das Modell eignet sich besonders
gut, da es keine fertigen Klassen ausgibt, sondern nur die Positionen der Kérperpunkte. Dadurch

bleibt die Logik anpassbar, wihrend das Modell die Schétzung tibernimmt.

Die Fahrzeugdetektion und -zdhlung verwendet das ,,YOLOv8s“-Objekterkennungsmodell
[23]. Dieser kann 80 verschiedene Klassen erkennen und klassifizieren. Da in der Anwendung
mehrere Objekte erkannt werden sollen, wie zum Beispiel Autos, Motorrdder oder Fahrrader,

deckt das Modell die bendtigten Klassen ab.

Das Gesichtserkennungsmodell ,,SCRFD 10G*“ [24] wurde fiir die Gesichtsmaskierung
verwendet. Das Modell ist fir den Anwendungsfall besser geeignet als ein
Gesichtsidentifikationsmodell, da nur die Gesichtsregion benétigt wird. Eine Identitdt des

Gesichtes wiirde nicht das Datenschutz-Ziel dieser Anwendung verfolgen.

Insgesamt wurde die Modellauswahl so getroffen, dass sich alle drei Anwendungen mit der
konzipierten Architektur implementieren lassen. Dabei liefern die Modelle strukturierte
Ausgaben, die sich in der Nachverarbeitung weiterverarbeiten lassen. Die Unterschiede der
Modelle liegen somit in den Ausgaben und weniger in der Systemintegration, wodurch ein

Vergleich in der entwickelten Architektur moglich ist.

33



4.7 Annahmen und Abgrenzungen

Fiir die Konzeption der Anwendungen werden einige Annahmen getroffen und bewusste

Abgrenzungen vorgenommen:

Die Anwendungen sind als Prototypen zu verstehen und nicht als produktive Systeme.
Bestimmte Aspekte wie umfassende Fehlerbehandlung werden nicht betrachtet.

Das Training der verwendeten Modelle ist nicht Bestandteil dieser Arbeit. Es wird
vorausgesetzt, dass geeignete, vortrainierte Modelle zur Verfiigung stehen und in das
fiir den AI-HAT+ notwendige Format vorkompiliert sind (Hailo-Model-Zoo).

Die Anwendungen werden unter kontrollierten Bedingungen entwickelt und getestet,
zum Beispiel mit einer einzelnen Person vor der Kamera oder einem definierten
Kamerawinkel bei der Fahrzeugzdhlung. Extreme Szenarien wie schlechte
Beleuchtung, starke Bewegungsunschirfe oder sehr viele Objekte im Bild werden nur
eingeschrinkt betrachtet.

Die Arbeit konzentriert sich auf die bildbasierte KI-Verarbeitung. Weitere Sensoren

werden nicht einbezogen.

Durch diese Abgrenzungen bleibt der Umfang der Arbeit {iberschaubar, wihrend die gewéhlten

Beispiele dennoch ein breites Spektrum typischer Edge-KI-Anwendungen abdecken.

34



5. Implementierung

In diesem Kapitel wird beschrieben, wie das im vorherigen Abschnitt entwickelte Design
konkret in Software umgesetzt wurde. Fiir das Verstindnis werden als Erstes die technischen
Grundlagen erldutert. Im Anschluss wird auf die gemeinsame Basisimplementierung

eingegangen, bevor die Besonderheiten der einzelnen Anwendungen erldutert werden.

5.1 Entwicklungsumgebung und verwendete Technologien

Die Implementierung erfolgt in Python, da diese Sprache eine gute Unterstiitzung fiir
Bildverarbeitung, Skripting und die Anbindung externer Bibliotheken bietet. Auf der untersten
Ebene stellt das Betriebssystem Raspberry Pi OS die notwendigen Geritetreiber zur Verfiigung,
um die Kamera und den AI-HAT+ anzusprechen. Die Treiber, Multimedia-Frameworks und

Bibliotheken werden im Folgenden besprochen.

5.1.1 GStreamer als Videopipeline

GStreamer ist ein Multimedia-Framework [25], mit dem sich Videodaten in Pipelines
verarbeiten lassen. Eine Pipeline besteht aus einer Reihe von Elementen [26, 27], die jeweils
eine klar definierte Aufgabe iibernehmen. Somit konnen Datenverarbeitungsschritte
miteinander verbunden. Jedes Element besitzt sogenannte ,,Pads [28]. Das sind Eingangs- und
Ausgangsanschliisse (src und sink), tiber die Daten von einem Element zum néchsten flieen.

Somit entsteht eine durchgehende Datenstrecke.

[ source ] [ filter | [ sink

8

Abbildung 6: GStreamer, Elemente, Pads, Pipeline [26]

Die Pipeline wird in Python aufgebaut und gesteuert. Die einzelnen Elemente werden zu einer

festen Reihenfolge miteinander verbunden. Die Kamerabilder flieBen kontinuierlich durch
35



diese Kette. In den Hailo-Referenzanwendungen wird der AI-HAT+ {iber herstellerspezifische
GStreamer-Elemente in die Pipelines integriert [29]. Ein Element (hailonet) iibernimmt in der
Regel die Inferenz und ein weiteres Element (hailooverlay) kann die Visualisierung der
Erkennungsergebnisse unterstiitzen. Diese Hailo-Elemente fiigen sich wie normale GStreamer-
Bausteine in die Pipeline ein, sodass Kamera, Inferenz und Ausgabe in einem durchgehenden

Datenfluss verbunden werden konnen.

Fir die anwendungsspezifische Logik miissen die Anwendungen Zugriff auf die
Modellausgaben haben. Dafiir benutzt diese Arbeit das Konzept der ,,Pad-Probe® [30] in
GStreamer. Eine Pad-Probe ist ein ,,Abhorpunkt” an einem Pad eines Elements. Somit kann
eine Callback-Funktion an einem bestimmten Pad registriert werden. Typischerweise liegt dies
am Ausgangspad des Elements, das die Modellausgaben bereitstellt. Das heiflt, dass die
Callback-Funktion aufgerufen wird, sobald ein Bild dieses Pad passiert. Somit kann bei jedem

Bild die Funktion aufgerufen werden und die bendtigten Informationen abrufen.

5.1.2 Hailo-Softwareumgebung

Damit der AI-HAT+ als KI-Beschleuniger genutzt werden kann, wird eine spezifische Hailo-

Softwareumgebung bendtigt. Im Wesentlichen besteht die Umgebung aus drei Bausteinen:

Der Hailo-Treiber [31] sorgt dafiir, dass der AI-HAT+ vom Betriebssystem erkannt wird und
als Gerédt zur Verfligung steht. Der Treiber iibernimmt den Datentransfer zwischen dem
Arbeitsspeicher des Raspberry Pi und dem Speicher des Hailo-Chips. In der Implementierung
wird der Treiber nicht direkt angesprochen, jedoch ist er die Voraussetzung, damit andere

Bibliotheken auf den Beschleuniger zugreifen konnen.

Die HailoRT-Runtime [32, 33] ist die Laufzeitumgebung, die direkt mit dem Hailo-Chip
kommuniziert. Sie 1ddt die HEF-Modelle in den Chip und fiihrt die Inferenz durch. In den
Anwendungen dieser Arbeit wird HailoRT iiberwiegend indirekt {iber GStreamer-Elemente

genutzt, da die Hailo-Plugins intern auf HailoRT zuriickgreifen.

Das Hailo-SDK [34] ist das Entwicklerpaket und stellt verschiedene Werkzeuge bereit (z. B.
Modellkonvertierungswerkzeuge). Die Referenzbeispiele [35] aus dem SDK dienten als

Vorlage fiir den Aufbau der eigenen GStreamer-Pipeline.

36



5.1.3 Python-Bibliotheken fiir Bildverarbeitung und Numerik

In den Anwendungen kamen mehrere Python-Bibliotheken zum Einsatz.

Open Source Computer Vision Library (OpenCV) [36] ist eine verbreitete Bibliothek fiir
Bildverarbeitung und Computer Vision. Fiir die entwickelten Anwendungen stellt sie

Funktionen zur Skalierung, Filterung, Farbkonvertierung und mehr bereit.

NumPy [37] ist die Standardbibliothek fiir numerische Berechnungen in Python. Fiir die

Anwendungen stellt sie Datenstrukturen flir Vektor- und Matrixoperationen zur Verfligung.

Die Kombination aus GStreamer, Hailo-Softwareumgebung und Python-Bibliotheken bildet

die technische Grundlage fiir die folgenden Abschnitte der Implementierung.

37



5.2 Gemeinsame Basisimplementierung

In der gemeinsamen Basisimplementierung wird in der Funktion build pipeline die Pipeline
gebaut. Es wird eine Kette aus Kameraquelle (rpicamsrc fiir den Raspberry-Pi-Kamerastack
oder alternativ v4 12 s rc fiir Video4Linux2), Konvertierungs- und Skalierungsschritten, einem
Hailo-Inferenz-Element und einem Video-Sink erstellt. Dabei werden Breite, Ho6he und Bildrate
der Frames zentral festgelegt (1280x720 Pixel). Nach dem Aufbau werden die Hailo-
spezifischen Elemente (hailonet,hailooverlay und hailofilter)ausder Pipeline

geholt und bei Bedarf weiter konfiguriert.

FRAME WIDTH = 1280

FRAME HEIGHT = 720

FRAMERATE = 30

def build pipeline(app name: str = "name", use rpicam: bool = True):

if use rpicam:
source = (
"rpicamsrc name=src "
£f"! Video/x—raw,Width:{FRAME_WIDTH},height:{HEIGHT},”
f"framerate={FRAMERATE} /1"
)
else:
source = (
"v4l2src device=/dev/video0 name=src "
f"! video/x-raw,width={WIDTH}, height={HEIGHT},6 "
f"framerate={FRAMERATE} /1"
)

pipeline desc =
source

hef path

so_path

return Gst. (pipeline desc)

Codeblock 1: Quellcode Pipeline bauen
38




def configure hailo elements(pipeline):
hnet = pipeline. ("hnet")
overlay = pipeline. ("overlay")

# Beispiel: Eigenschaften konnten hier gesetzt werden
# hnet.set property("batch-size", 1)
# overlay.set property("draw-scores", True)

Codeblock 2: Quellcode Hailo-Elemente holen und konfigurieren

Die eigentliche Kl-Inferenz wird mit der Hilfe der GStreamer-Elemente hailonet und
hailooverlay realisiert. Die Elemente, sowie Hailo-Runtime werden als dynamische
Bibliotheken (.so-Dateien) von der Hailo-SDK bereitgestellt und in das System eingebunden.
Das Element hailonet iibernimmt das Laden des jeweiligen HEF-Modells in den Hailo-Chip
sowie die Ausfithrung der Inferenz. Die vorverarbeiteten Bilder werden als Eingabe an
hailonet tiibergeben. Dort werden sie verarbeitet und die Modell-Ausgaben, wie zum
Beispiel Rahmenboxen oder Schliisselpunkte, werden als Metadaten an den jeweiligen
Videobuffer gehdngt (hailofilter). Nun liest das Element hailooverlay die
Metadaten aus und zeichnet die entsprechenden Informationen direkt in das Videobild ein, z.

B. Rahmen um erkannte Fahrzeuge oder Gesichter.

Am Ende der GStreamer-Pipeline steht ein Video-Sink-Element wie autovideosink oder
waylandsink. Diese Elemente sind dafiir zustdndig, um den resultierenden Videostream im
Anzeigefenster des Raspberry Pi auszugeben. AuBBerdem wird in allen Anwendungen eine Pad-
Probe am Ausgabepad (src-Pad) angehangen. Diese Pad-Probe ruft pro Bild eine Riickruf-
Funktion (app callback) auf. In dieser Funktion ist der Zugriff auf den aktuellen
Videobuffer und die angehéngten Metadaten moglich. Die anwendungsspezifische Logik, wie
zum Beispiel die Posenklassifikation, wird auf Grundlage dieser Information in der Riickruf-
Funktion umgesetzt. Gleichzeitig wird hier eine Funktion eingebaut, um die Metriken wie

Bildrate, Latenz und CPU-Auslastung aufzuzeichnen.

39




def app callback(pad, info, user data):
buffer = info. ()
if buffer is None:
return Gst.

detections = []
try:

roi = hailo. (buffer)

detections = roi. (hailo. )
except Exception:

detections = []

#Anwendungsspezifische Logik hier
#Metriken

return Gst.

Codeblock 3: Quellcode Callback-Funktion

Die Pipeline erhilt ein identity-Element, damit die Pad-Probe sicher platziert werden kann.
Das identity-Element gibt die Bilder neutral weiter, ohne sie zu verdndern. Sie dient dem
Zweck, einen stabilen Ankerpunkt fiir die Pad-Probe bereitzustellen. Da Sink-Elemente von
Pipeline zu Pipeline unterschiedlich sein konnen, wére es ohne das Element schwieriger, die
Probe zuverldssig an derselben Stelle zu platzieren. Nachdem die Pipeline erstellt wurde, wird
das identity-Element iiber seinen Namen identity callback gesucht. AnschlieBend
wird das src-Pad ausgelesen und dort eine Pad-Probe registriert, die bei jedem Bild die Funktion

app_callback ausfiihrt. Im Codeblock 4 wurde dieses Vorgehen implementiert.

def build pipeline(app name: str = "name", use rpicam: bool = True):
(...)
= Gst. (pipeline desc)
identity = pipeline. ("identity callback")
src_pad = identity. ("src"
src_pad. (Gst. . , app_callback,
None)

return pipeline

Codeblock 4: Quellcode identity-Element holen und anhéngen

40




Der eigentliche Programmstart erfolgt tiber die main-Funktion. In der Funktion wird die
Videopipeline aufgebaut und eine GLib-Mainloop gestartet, sodass die Pipeline kontinuierlich
ausgefiihrt wird. Die eigentliche Struktur der Pipeline wird in einer eigenen Funktion gekapselt,
sodass die drei Anwendungen jeweils als eigenstindige Programme umgesetzt sind, jedoch alle

dem gleichen grundlegenden Pipeline-Autbau folgen.

import gi
from gi. import Gst, GObject
def main () :

Gst. (None)

loop = GObject. ()

pipeline = build pipeline ()

pipeline. (Gst. o )

try:
loop. ()
except KeyboardInterrupt:
pass
finally:
pipeline. (Gst. o )

(...)

if name == " main ":
main ()

Codeblock 5: Quellcode Main-Funktion

Durch die Kombination aus Hailo-SDK und GStreamer konnen Kamerabilder eingelesen, auf
den AI-HAT+ verarbeitet und das Ergebnis angezeigt werden. In den folgenden

Unterabschnitten wird auf die anwendungsspezifischen Unterschiede eingegangen.

41




Die Abbildung 7 zeigt noch einmal die Pipeline mit ihren Elementen:

Kameraguelle
(rpicamsrc f v412src)

v

Konverfierung Rohbild zu
Farb-Pixelformat
(videoconvert)

v

Skalierung auf Aufldsung

(videoscale)
o ¢ -
[ queue ]
ra ¢ T
Inferenz
(hailonet)

o -
i * N
Metadaten an den Buffer hdngen
(hailofilter)
¥

optionale queue

v

Visualisierung der Modell-
Ausgaben
(hailooverlay)

v

optionale queue

v

identity

—
—

—
—

l Pad-Probe (app_callback)

Darstellung
(waylandsink / autovideosink)

Abbildung 7: Aktivititsdiagramm Ablauf der Videopipeline

42



5.3 Implementierung der Gestenerkennung

Die Gestenerkennung auf Basis der Korperpose verwendet das Modell ,,YOLOS8s Pose*, das
fir jede erkannte Person im Bild eine Menge von Gelenkpunkten liefert. In der
Implementierung werden diese Schliisselpunkte zundchst in Pixelkoordinaten des
urspriinglichen Kamerabildes zuriickgerechnet. AnschlieBend werden sie so miteinander

verbunden, dass eine einfache Skelettdarstellung entsteht, die im Video visualisiert wird.

Als Erstes werden die Rohdaten von der Kamera geliefert. Das Modell erwartet jedoch eine
Eingabegrofle von 640x640 Pixel. Das Bild wird proportional skaliert, sodass das
Seitenverhéltnis gleich bleibt und die fehlenden Bereiche mit Randern aufgefiillt werden

(Padding). Ein ,,Strecken® des Bildes wiirde es verzerren und die Erkennung verschlechtern.

Im hailonet-Element wird das Modell geladen und der Hailo-Chip fiihrt die Inferenz aus.
Danach dekodiert das hailofilter-Element die Tensors und fiihrt die Koordinaten vom
Netzraum zuriick in den Bildraum mithilfe der Funktion filter letterbox (aus der
Nachverarbeitungsbibliothek  libyolov8pose postprocess.so). Die fertigen Metadaten
HAILO DETECTION und HAILO LANDMARKS werden an den GStreamer-Buffer angehéngt
und konnen mit der Funktion hailo.get roi from buffer (buffer) gelesen

werden.

Am Ende zeichnet hailooverlay noch die Boxen und die Schliisselpunkte, um ein Skelett
zu erhalten. Aus dem GStreamer-Buffer wird nun die beste Person und deren Schliisselpunkte
genommen, um die Pose zu klassifizieren. Da die Punkte noch relativ zur Rahmenbox

normalisiert sind, miissen sie in Bildpixel umgerechnet werden:

1. Relativ in Rahmenbox — relativ im Bild
Xrelativ zum Bild = P-X() - bbox.width() + bbox.xmin()
Yrelativ zum Bita = P-X() - bbox.width() + bbox.xmin()

2. Relativ im Bild — Bildpixel
XBildpixel = Xrelativ zum Bild ' w

YBildpixel = Yrelativ zum Bild H

43



roi = hailo.get roi from buffer (buffer)
detections = roi.get objects typed(hailo.HAILO DETECTION)

best kps, best conf = None, 0.0
for det in detections:
if det.get label() !'= "person":
continue
bbox = det.get bbox ()
conf = det.get confidence()
Imarks = det.get objects typed(hailo.HAILO LANDMARKS)
if not lmarks:
continue

pts = lmarks[0] .get points()

kps xyc = []

for p in pts:
x = (p.x()*bbox.width() + bbox.xmin()) * W
y = (p.y()*bbox.height ()+ bbox.ymin()) * H
kps xyc.append((x, y, conf))

if conf > best conf:
best conf, best kps = conf, kps xyc

Codeblock 6: Quellcode Umrechnung der Gelenkpunkte in Bildpixel

Um die Posen zu klassifizieren, miissen einige Regeln programmiert werden. Fiir HANDS UP
miissen die Handgelenke deutlich {iber der Nase und Schulterhohe liegen. Fiir die erste Regel
benoétigen wir die y-Koordinaten der Handgelenke. In Bildkoordinaten liegt der Ursprung oben
links. Das heif3t, dass fiir die Handgelenke ein hoherer Wert zuriickgegeben wird, obwohl sie
im Bild tief liegen (neutrale Position). Fiir die Programmierung der Regeln heil3t das, dass der
Wert der Handgelenke kleiner sein muss als der Nasen Wert. Dies gilt auch fiir die zweite Regel,
die besagt, dass die Handgelenke iiber den Schultern sein miissen. Damit sichergestellt werden
kann, dass die Handgelenke deutlich {iber der Nase und den Schultern sind, werden die

Koordinaten jeweils um 10% der Bildhdhe erhoht.

#lwy: y-Wert des linken Handgelenks
#rwy: y-Wert des rechten Handgelenks
#nose y: y-Wert der Nase

#mean sh: Mittelwert der Schultern

up margin = 0.10%*H

if (lwy < nose y - up margin and rwy < nose y - up margin) or \
(lwy < mean sh - up margin and rwy < mean sh - up margin):
return "HANDS UP"

Codeblock 7: Quellcode HANDS UP Regeln

44




T POSE wird erkannt, sobald Handgelenke und Ellenbogen auf Schulterhohe sind oder weit
nach aufen gehen. Um sicherzugehen, dass die Handgelenke nicht exakt auf der Schulterhdhe
liegen miissen, wird ein vertikales Toleranzband definiert. Das Band ldsst Abweichungen von
bis zu 18% der Bildhohe zu. Zudem wird verglichen, ob die Hohe der Handgelenke auf der
Hohe der Schultern liegt (innerhalb des Toleranzbands). Um zu schauen, ob die Arme
ausgestreckt sind, wird das Maximum aus 60% der Schulterbreite und 15% der Bildbreite
genommen. Dieser Wert wird mit den x-Werten der Handgelenke verglichen, um zu schauen,

ob sie seitlich weit genug von den Schultern entfernt sind.

#lwy/rwy: y-Wert des linken/rechten Handgelenks
#torso w: Breite des Torsos (ungefahre Schulterbreite)
#lsy/rsy: y-Wert der linken/rechten Schulter

#lsx/rsx: x-Wert der linken/rechten Schulter
tol y level = 0.18*H

out min x = max(0.6*torso w, 0.15*W)

left 1vl = abs(lwy - 1lsy) < tol y level

right 1lvl = abs(rwy - rsy) < tol y level

left out = abs(lwx - 1lsx) > out min x

right out = abs(rwx - rsx) > out min x

if left 1vl and right 1lvl and (left out or right out):
return "T POSE"

Codeblock 8: Quellcode T POSE Regeln

Als Letztes wird ARMS DOWN erkannt, sobald die Handgelenke deutlich unter der
Schulterhohe liegen. Um herauszufinden, ob die Handgelenke unter der Schulterhéhe sind,
werden die jeweiligen Handgelenke mit dem Mittelwert der Schultern verglichen. Ein
Schwellwert wurde auf 35% der Torsoh6he unterhalb der mittleren Schulterhohe definiert, da
dies die besten Ergebnisse in den Tests erzielte. Die Regel erwies sich trotzdem als zu
grof3ziigig, da seitlich ausgestreckte Arme teilweise als ARMS DOWN erkannt wurden. Daher
wurde eine zweite Bedingung erginzt, die die seitliche Nidhe der Arme zum Korper priift. Ein
Handgelenk gilt als nah am Korper, wenn der horizontale Abstand zur jeweiligen Schulter
kleiner ist als ein neu definierter Schwellwert, der sich aus dem Maximum aus 50%

Schulterbreite und 10% Bildbreite zusammensetzt.

45




below sh thr
hands below

mean sh + 0.35*torso h
(lwy > below sh thr) and (rwy > below sh thr)

near body max x= max(0.5*torso w, 0.10%W)
hands near = (abs(lwx - 1lsx) < near body max x) and (abs(rwx -
rsx) < near body max x)

if hands below and hands near:
return "ARMSiDOWN"

Codeblock 9: Quellcode ARMS DOWN Regeln

Die app callback-Funktion ist das Herzstiick der Anwendung. Sie wird flir jedes
ankommende Bild aufgerufen und fiihrt die Auswertung aus. Vereinfacht ldsst sich der Ablauf
so beschreiben: Die Kamera liefert als Erstes ein Videobild. Das Hailo-Modul fiihrt auf dem
Bild die Inferenz aus und in der Nachverarbeitung werden die Metadaten wie ,,Person* und
Schliisselpunkte der Pose an das Bild angehéngt. Nun wird app callback aufgerufen, liest
die Daten aus und klassifiziert die Pose. Im Anschluss werden die letzten Bilder geglittet, um
Flackern zu vermeiden. Das Bild lauft weiter durch die Pipeline und hailooverlay zeichnet
das Skelett. So bleibt app callback leichtgewichtig und kann die Daten analysieren, ohne

sie selbst zu rendern.

def app callback(pad, info, user state):
(...)

best kps = extract best person keypoints(detections, W, H)

pose = classify pose(best kps, W, H)

user state. . (pose)
smoothed = Counter (user state. ) . (1) [01[0]
user state. = smoothed

if PRINT EVERY FRAME:
print (smoothed)

return Gst.

Codeblock 10: Quellcode Callback-Funktion Posenerkennung

46




5.4 Implementierung Fahrzeugzihlung

Die Implementierung des Fahrzeugzdhlers besteht aus der Objektdetektion mit dem Modell
,»YOLOVS8s* und der GStreamer-Pipeline. Wie bei den anderen Anwendungen lddt hailonet
das HEF-Modell. Auf der Modellebene wird damit eine robuste Mehrklassen-Detektion
erreicht. Die Anwendung erkennt ausschlieBlich die Fahrzeugklassen ,,car®, ,,bus®, ,,truck* und

,motorcycle®.

In der GStreamer-Pipeline gelangt das Bild als Erstes zur Farbkonvertierung und Skalierung.
Das Modell erwartet dabei ein Seitenverhiltnis von 640x640 Pixel im RGB-Farbraum. Auch
hier bleibt das Seitenverhéltnis bei der Skalierung erhalten und die Rédnder werden aufgefiillt
(Padding). Das Element hailonet laddt das Bild fiir die Inferenz und danach zu
hailofilter fiir die Nachverarbeitung. Die Ausgabe des Modells sind Klassen und die
dazugehorigen Box-Koordinaten. Als Nachverarbeitungsbibliothek wird
libyolo_hailortpp postprocess.so genutzt, die auch mit der Funktion filter letterbox
die Boxen zuriick ins Originalbild rechnet. Da das Modell insgesamt 80 Klassen erkennen kann,
wird das Standardvisualisierungselement hailooverlay deaktiviert, da ausschlieBlich
Rahmenboxen fiir Fahrzeuge gezeichnet werden. Das Darstellen der Linie, Boxen und Texte

iibernimmt cairooverlay und textoverlay (bereitgestellte GStreamer Elemente).

Ein wesentlicher Punkt fiir die Zahlgenauigkeit ist die Stolperfallen-Logik in der Riickruf-
Funktion. Der Riickruf app callback wird pro Bild aufgerufen und ist die zentrale
Komponente in der Anwendung. Als Erstes werden die gewiinschten Klassen gefiltert. Somit
wird sichergegangen, dass ausschlieBlich die Fahrzeugklassen ,,car®, ,bus®, ,,truck® und
,motorcycle® erkannt werden. Danach werden Rahmenboxen in Pixelkoordinaten
gerechnet und ein Ankerpunkt definiert. Der Ankerpunkt ist wichtig, um die Position des
Fahrzeugs zu ermitteln. Anstatt die Mitte der Box zu verwenden, nutzt die Zihllogik die untere
Mitte der Box (Bodenkontaktpunkt). Bei mehreren Versuchen stellte sich heraus, dass dieser
Ankerpunkt Zihlfehler bei hohen Fahrzeugen minimiert und eine stabilere Uberquerung der
Linie liefert. Danach wird gepriift, auf welcher Seite der Linie sich der Ankerpunkt befindet.
Die Punkte des aktuellen Bildes werden mit dem vorherigen Bild verglichen und es wird
geschaut, ob ein Seitenwechsel mit derselben Objekt-1D erfolgt ist. Ein Wechsel von links nach

rechts wird als ,,LR* gezdhlt und umgekehrt als ,,RL*.

47



CALLBACK app_ callback(pad, info, state):

(...)
carsnow « O

FUR jede detektion IN dets:
klasse — detektion.klasse
WENN klasse € {car, bus, truck, motorcycle}:
WEITER

(x1, yl, x2, y2) « rechne Rahmenbox in Pixel
ankerpunkt « (cx = (x1+x2)/2, cy = y2)

s prev « state.last side[tid]
S now « seite relativ zur tripline(cx, cy)

WENN s prev existiert UND s prev # s now UND

(jetzt - state.last cross ts[tid]) 2 MIN CROSS INTERVAL:
WENN s prev < s now: state.passed LR += 1
SONST : state.passed RL += 1
state.last cross ts[tid] « jetzt

state.last side[tid] < s now

state.last seen[tid] « jetzt

fuge (x1,yl,x2,y2, klasse) zu state.draw boxes hinzu
carsnow += 1

aktualisiere Textoverlay mit:
"Cars: carsnow | Passed LR: state.passed LR RL:

state.passed RL"

RETURN OK

Codeblock 11: Pseudocode Callback-Funktion Fahrzeugzéhlung

48




5.5 Implementierung der Gesichtsmaskierung

Das Ziel dieser Implementierung ist die Echtzeitmaskierung von Gesichtern in einem
Videostream. Aufgrund praktischer Probleme bei der Bildmanipulation, musste die GStreamer-

Struktur angepasst werden.

5.5.1 Abgrenzung der Gesichtsmaskierung gegeniiber den anderen Anwendungen

Wihrend die anderen Anwendungen die Programmlogik iiber eine Pad-Probe an einem
identity-Element realisieren, wird in dieser Anwendung bewusst auf eine einzelne
Riickruffunktion (app callback pro Bild) verzichtet. Der Grund ist, dass eine Verpixelung
eine direkte Verdnderung der Bilddaten erfordert und das ,,Verdecken“ des Gesichts mit
cairooverlay nicht ausreicht. Allerdings werden Buffer von GStreamern oft als
unverdnderliche Zero-Copy-Buffer zur Verfiigung gestellt, was bei Manipulationen zu
Instabilititen fithren kann. In der Praxis traten bei Versuchen, den Buffer direkt zu verdndern,
Fehler wie ,,write map requested on non-writable buffer” auf. Auch extreme Verzogerungen

oder niedrige Bildraten traten bei vorherigen Versionen des Prototyps auf.

Der zentrale Entwurfspunkt der neuen Architektur ist die Trennung zwischen der Verarbeitung
der Pipeline und der Bildmanipulation. In der {iberarbeiteten Pipeline wird ein tee-Element
hinzugefligt. Dieser agiert wie ein Verteiler und trennt den Videostrom in zwei Datenpfade. Ein
Pfad dient zur Darstellung des Kamerabildes, wahrend der andere Pfad die KI-Inferenz auf dem
Hailo-Chip hat. Dadurch wird verhindert, dass aufwendige Bildoperationen die Videopipeline
blockieren. Wiirde die Maskierung direkt im GStreamer-Riickruf (app callback)

ausgefiihrt werden, konnte es im Video schnell zu Stau, Aussetzern oder ,,Einfrieren* kommen.

Um dies zu vermeiden, wird das Kamerabild {iber ein appsink-Element an die Anwendung
ibergeben und dort in einem eigenen, schreibbaren Speicherbereich bearbeitet. Das Ergebnis
wird anschlieend iiber appsrc wieder in eine Ausgabe-Pipeline gefiihrt. Die Kl-Inferenz
iiber den Hailo-Chip bleibt dabei unverindert und liefert weiterhin die Metadaten, welche tliber

die Pad-Probe ausgelesen werden.

49



Die Abbildung 8 beschreibt die iiberarbeitete Pipeline mit allen Elementen:

-
Kameraguelle
(rpicamsrc / v412src)
) v
tee

e h
i Eingangspipeline ! !
! v v !
i [ queus ] [ queue ] i
i s ™ i
i Skalierung und Farbkonvertierung Skalierung und Farbkonverfierung i
! RGE 640x640 RGE 1280x720 !
i (videoscale) (videoscale) i
N / |
L : N !
i Inferenz i
i {hailonet) i
: i » :
i ¥ i
b ) |
i Daten an Buffer i
i {hailofilter) :
i . A !
i ¥ ¥ i
i i, N i
i i
i identity appsink i
i i
L . |

¥ ¥

' Pad-Probe

{liest leizte Detekiion + queue (max. 1)

: Zeitstempel)

: Bildmanipulation :

(worker_loop) B —

i Python Logik

T T T T T T T TS E T m L r ——————————————————————————————————
appsrc

Darstellung
(waylandsink [ autovideosink)

Ausgangs- |
pipeline

=]
=
1]
=
1€}

bmmmmey

Abbildung 8: Architekturdiagramm der Gesichtsmaskierung Pipeline

50



5.5.2 Implementierung

Zu Beginn wird die Eingangsgrofie des Gesichtsmodells ,,SCRFD 10g“ bestimmt. Die
Gesichtserkennung liefert ihre Rahmenboxen im Koordinatensystem des Modell-Eingangs.
Damit die Boxen korrekt auf die von uns vorgegebene Auflosung (1280x720 Pixel) libertragen

werden konnen, liest das Programm die Netzgro3e aus dem HEF-Format aus (640x640 Pixel).

Der Anzeige-Zweig der Pipeline fiihrt die Kamerabilder in ein appsink-Element, damit die
Anwendung die Bilddaten iibernehmen kann. Die Bilder werden somit nicht in der Pipeline
verarbeitet, sondern an die Anwendung iibergeben. Mit der Riickruf-Funktion
on preview sample kann ausschlieBlich das aktuelle Bild aus dem Buffer ausgelesen
werden. Das Bild wird als NumPy-Array in eine kleine Warteschlange gelegt. Wie in der
Abgrenzung erwidhnt, findet in diesem Riickruf keine aufwendige Bildbearbeitung statt. Somit
wird der Riickruf absichtlich so kurz gehalten wie moglich: das Bild iibernehmen, das alte Bild

verwerfen und ein neues Bild ablegen.

CALLBACK on preview sample(sample) :
frame ~ lese aktuelles RGB-Bild aus sample
frame ~ kopiere Bild in lokales Array

WENN warteschlange voll:
verwerfe altes Bild

lege frame in Warteschlange

RETURN OK

Codeblock 12: Pseudocode Callback-Funktion on_preview sample

Der Inferenz-Zweig der Pipeline skaliert das Bild proportional auf die Eingangsgrofle des
Netzes (640x640) und die fehlenden Bildbereiche werden mit Rdndern aufgefiillt (Padding).
Anschlieend wird es zum hailonet- und hailofilter-Element weitergeleitet. Die
Rahmenboxen der erkannten Gesichter werden als Metadaten an den jeweiligen Buffer gehéngt.
Wie in den anderen Anwendungen wird eine Pad-Probe an das scr-Pad des identity-
Elements registriert. Die Pad-Probe liest pro Buffer die Metadaten aus und speichert nur die
aktuelle Liste der Rahmenboxen mit Zeitstempel. Auch hier gilt das gleiche Prinzip wie im

Anzeige-Zweig: Die Pad-Probe soll nur Daten abgreifen und nicht blockieren.

Die tatsdchliche Maskierung findet dann nicht im Riickruf statt, sondern im sogenannten
Worker-Thread. Dieser funktioniert wie ein zusétzlicher Ausfithrungsstrang, der parallel zum

Hauptprogramm lduft. Der Thread worker loop wartet auf ein neues Kamerabild aus der
51




Warteschlange. Sobald ein neues Bild vorliegt, werden die gespeicherten Rahmenboxen
genommen, und von den Netz-Koordinaten zuriick in die Vorschau-Auflosung umgerechnet.
Falls die Detektionen élter als 0,7 Sekunden sind, wird die Liste der Rahmenboxen geleert. Um
das Gesicht zu maskieren, wird ein fiir die erkannte Gesichtsbox ein leicht vergroBerter Bereich
berechnet und der Bildbereich im NumPy-Array verpixelt. AnschlieBend wird das bearbeitete
Bild in einen neuen GStreamer-Buffer kopiert und iliber appsrc in eine separate
Ausgabepipeline eingespeist. Das Ergebnis wird iiber waylandsink oder autovideosink

angezeigt.

THREAD worker loop():
SOLANGE programm lauft:
frame —~ warte blockierend auf neues frame aus warteschlange

(dets, timestamp) ~ hole zuletzt gespeicherte detektionen
WENN dets zu alter als 0.7s:
dets — leere liste

FUR jede detection in dets:
box net « koordinaten im netz-system (net w, net h)
box preview — rechne box net auf 1280x720 um
box preview « vergréBere box leicht
box preview « begrenze box auf bildrander

verpixle den bildbereich innerhalb box preview im frame

schiebe bearbeitetes frame in ausgabe (appszrc)

Codeblock 13: Pseudocode worker loop Thread

Damit die Maskierung des Gesichts an der richtigen Stelle des Bildes erscheint, miissen die
Boxen in die Vorschau-Auflosung zuriickgerechnet werden. In den anderen Anwendungen
passiert dieser Schritt durch die Funktion filter letterbox. Diese Funktion ist jedoch
oft in YOLO-Nachverarbeitungsbibliotheken zu finden. Da es sich hierbei um ein SCRFD-
Modell handelt, wird die libscrfd.so-Bibliothek genutzt und eine eigene Funktion muss dafiir
definiert werden. Im Codeblock 14 tibernimmt die Funktion
map net to preview letterbox das Entfernen der Randbereiche und das

Riickskalieren der urspriinglichen Auflosung.

52




def map net to preview letterbox(xln, yln, x2n, y2n, prev w, prev h,
net w, net h):

scale = min(net w / prev_w, net h / prev h)
new w = prev w * scale
new h = prev h * scale

pad x = (net w
pad y = (net h

new w) / 2.0
new h) / 2.0

xl = (x1ln - pad x) / scale
x2 = (x2n - pad x) / scale
yl = (yln - pad y) / scale
y2 = (y2n - pad y) / scale

return x1, yl, x2, y2

Codeblock 14: Quellcode map net to preview_letterbox Funktion

Bei der Maskierung des Gesichts handelt es sich um eine Block-Pixelung. Zunéchst wird der
erkannte Gesichtsbereich (,,ROI“, also ,,Region Of Interest) aus dem Bild ausgeschnitten.
AnschlieBend wird dieser Ausschnitt in gleich grof3e Blocke unterteilt. Fiir jeden Block wird
eine einheitliche Farbe bestimmt, die sich aus dem Mittelwert der Pixel-Farben im Block ergibt.
Die Blocke werden mit den Farben gefiillt und das Gesicht wird unerkennbar. Im Anschluss
wird der Ausschnitt des Gesichtes zuriick ins das Originalbild geschrieben. Die Stéirke der

Verpixelung lésst sich iiber die BlockgroBe steuern.

Funktion VERPIXELN(bild, gesichts box, blockgrole) :
(x1, yl, x2, y2) = gesichts box

roi = bild[yl:y2, x1:x2]

Fir y von 0 bis roi.hoéhe in Schritten von blockgroesse:
Fir x von 0 bis roi.breite in Schritten von blockgroesse:

block roi[y : y+blockgroesse, x : x+blockgroesse]
farbe MITTELWERT (block)
block[:] = farbe

bild[yl:y2, x1:x2] = roi

Codeblock 15: Pseudocode Bildmanipulation Funktion

53




5.6 Zusammenfassung

Die Implementierung setzt das entworfene Systemdesign konsequent um und zeigt, dass auf
der gemeinsamen Plattform Raspberry Pi 5 mit AI-HAT+ unterschiedliche KI-Anwendungen
realisiert werden konnen, ohne die Architektur jedes Mal neu zu erfinden. Alle Anwendungen
folgen demselben Grundprinzip aus Kamerazugriff, Vorverarbeitung, Inferenz,
Nachverarbeitung und Darstellung. Die Unterschiede konzentrieren sich auf das jeweils

verwendete Modell und auf die Anwendungslogik in der Nachverarbeitung.

Bei der Anwendung zur Gesichtsmaskierung, trat jedoch ein spezielles Problem auf. Die
Bildmanipulation erwies sich als deutlich empfindlicher als die reine Auswertungslogik der
anderen Anwendungen. Sie erforderte eine unterschiedliche Pipeline-Architektur, wéhrend bei

den anderen KI-Beispielen die Verarbeitung direkt iiber die Riickruf-Funktion erfolgte.

Insgesamt wird es bestdtigt, dass es moglich ist, eine &hnliche Grundstruktur zu
implementieren. Gleichzeitig wird aber klar, dass bestimmte Aufgaben wie Bildmanipulation
eine Anpassung der Pipeline-Architektur erfordern, um eine robuste und fliissige Darstellung

zu gewihrleisten.

54



6. Evaluation

In diesem Kapitel wird untersucht, wie leistungsfahig die entwickelten Anwendungen auf der
Plattform aus Raspberry Pi 5 und AI-HAT+ sind. Das Ziel der Evaluation ist es, die
Leistungsfahigkeit der Systeme im Hinblick auf Echtzeitfahigkeit, Erkennungsqualitdt und
Ressourcenauslastung zu bewerten und die urspriinglichen Ziele aus der Einfithrung zu
iberpriifen. Die Betrachtung erfolgt aus quantitativer Sicht, {iiber Bildraten und
CPU-Auslastung, sowie aus qualitativer Sicht durch das Beobachten des Verhaltens in

typischen Szenarien.

6.1 Zielsetzung der Evaluation

Die Evaluation verfolgt zwei zentrale Fragestellungen. Zum einen soll anhand von definierten
Kriterien gepriift werden, ob die entwickelte Plattform in der Lage ist, die KI-Anwendungen in
einer fliissig wahrgenommenen Geschwindigkeit auszufiihren (Bildrate). Zum anderen soll
untersucht werden, ob die Ergebnisse der Modelle in den gewéhlten Szenarien ausreichend
robust und zuverléssig sind (Latenz, CPU-Auslastung), um die jeweiligen Anwendungsfille

sinnvoll abzudecken.

Dartiber hinaus dient die Evaluation dazu, Unterschiede zwischen den Anwendungen sichtbar
zu machen. Einige Szenarien, wie die Posenerkennung, sind naturgemill komplexer und
ressourcenintensiver als andere. Die gewonnenen Messwerte und Beobachtungen liefern somit
auch Hinweise darauf, welche Art von Edge-KI-Anwendungen sich besonders gut fiir den
Einsatz auf dem Raspberry Pi 5 mit AI-HAT+ eignet und wo Grenzen der Plattform erkennbar

werden.

6.2 Versuchsaufbau

Die Messungen wurden direkt auf dem Raspberry Pi 5 durchgefiihrt, auf dem auch die
Anwendungen implementiert wurden. Der AI-HAT+ war wihrend aller Tests eingebunden und
fiihrte die Inferenz aus. Die Kamera war in fester Position, um reproduzierbare Bedingungen

zu schaffen. Die Videobilder wurden von der Kamera aufgenommen.

55



Fiir die Posenerkennung fanden die Tests in einem Innenraum mit gleichméBiger Beleuchtung
statt. Die Testperson positionierte sich in variierender Distanz zur Kamera und fiihrte
unterschiedliche Korpergesten vor. Der Zweck bestand darin, die vorgegebenen Gesten sowie

Grenzfille wie zum Teil verdeckte Handgelenke oder schnelle Bewegungen hervorzurufen.

Die Erkennung von Fahrzeugen wurde anhand von Videosequenzen untersucht, in denen
Fahrzeuge eine festgelegte Linie im Bild {iberqueren. Je nach Aufbau konnten hierfiir entweder
reale Aufnahmen oder aufgenommene Videos mit der Kamera abgespielt werden. Entscheidend
war, dass Fahrzeuge in verschiedenen Abstinden, Geschwindigkeiten und Blickwinkeln die

virtuelle Linie iberquerten, um das Verhalten des Zahlers nachvollziehen zu kdnnen.

Die Gesichtsmaskierung wurde ebenfalls in einem Innenraum getestet. Hier lag der Fokus
darauf, ob das Gesicht zuverlédssig erkannt und maskiert wird, auch wenn sich die Person

bewegt oder teilweise seitlich zur Kamera steht.

6.3 Bewertungsmetriken

Fiir die Bewertung wurden mehrere Kennzahlen herangezogen. Eine zentrale Rolle spielt die
Bildrate, also die Anzahl von verarbeiteten Bildern pro Sekunde. Sie gibt einen direkten
Hinweis darauf, ob eine Anwendung als ,,echtzeitnah* wahrgenommen wird. ,,Etwa 16 bis 18
Bilder pro Sekunde kann unser Gehirn fiir ein fliissiges Zusammenspiel der Bilder verarbeiten
[38], wahrend Kinofilme oder Videoportale bis zu 30 Bilder die Sekunde liefern [38]. Laut der
Quelle [39] kann das menschliche Auge 14 bis 16 Bilder pro Sekunde wahrnehmen. Der
Zielwert liegt somit bei 15 bis 30 Bildern pro Sekunde bei einer Auflosung von 1280x720

Pixeln, um ein fliissiges Videobild darzustellen.

Ein weiterer Indikator fiir eine ,,echtzeitnahe* Wahrnehmung ist die Latenz der Pipeline. Sie
gibt an, wie lange es durchschnittlich dauert, bis das néchste fertige Bild durch die Schleife

kommt. Eine steigende Latenz zeigt, dass die Pipeline stockt.

Ergénzend wurde die Auslastung der CPU und des RAM beobachtet, um abzuschitzen,
inwieweit der Raspberry Pi 5 noch Reserven fiir weitere Aufgaben hitte oder bereits an seine
Grenzen sto3t. Eine CPU-Auslastung von iiber 80% ist grundsétzlich nicht kritisch, jedoch kann

es bei lingeren Laufzeiten zu hoheren Temperaturen kommen.

56



Als Letztes wurde noch die CPU-Temperatur gemessen, um zu schauen, ob sich die Temperatur
trotz hoherer Auslastung in einem normalen Bereich bewegt. Der Raspberry Pi beginnt laut

Hersteller ab 80 °C zu drosseln [40], um eine Uberhitzung zu vermeiden.

Zur Beurteilung der Erkennungsqualitét wurden je nach Anwendung unterschiedliche Kriterien
herangezogen. Bei der Posenerkennung wurde betrachtet, ob die vom System ausgegebene Pose
mit der tatsidchlich gezeigten Pose iibereinstimmt und wie stabil die Erkennung bei Bewegungen
oder leichten Verdanderungen der Position ist. Bei der Gesichtsmaskierung war relevant, ob die
Gesichter im Bild erkannt und anonymisiert wurden und wie hdufig Fehl- oder Nicht-
Erkennungen auftraten. In der Fahrzeugdetektion und -zéhlung wurden die gez&hlte Anzahl der

Fahrzeuge mit der tatsdchlichen Anzahl der Linieniiberquerungen verglichen.

Neben diesen quantitativen Metriken flossen auch subjektive Eindriicke in die Bewertung ein,

zum Beispiel, ob das System trige wirkt oder ob der Liifter deutlich lauter wird.

57



6.4 Ergebnisse der Posenerkennung

In den Tests zur Posenerkennung zeigte sich, dass das System bei einer Auflosung von
1280x720 Pixeln in der Lage ist, den Videostream kontinuierlich zu verarbeiten und die
Korperpose der im Vordergrund stehenden Person zu schétzen. Die Bildrate lag im Durchschnitt
bei 30 Bildern pro Sekunde. Somit konnten Bewegungen nahezu in Echtzeit nachvollzogen
werden. Die Pipeline-Latenz lag konstant bei rund 35 Millisekunden und zeigt, dass die Pipeline
stabil ist. Die Auslastung der CPU lag durchschnittlich bei 71%, obwohl der Hailo-Chip die KI-
Berechnung iibernimmt. Durch Vor- und Nachverarbeitungsschritte muss der Raspberry Pi viel
Arbeit leisten und l4sst durch die Auslastung wenig Raum fiir andere Programme. Eine RAM-
Nutzung von ca. 270MB bedeutet, dass die Anwendung sehr speicherschonend ist. Die CPU
des Raspberry Pi erreicht eine Temperatur von 73°C. Das ist warm, aber im Regelfall noch

sicher. Mit 72 °C ist der CPU nah an der Drosselungsgrenze, wodurch der Liifter deutlich horbar

ist.

Zeit in Bilder pro Pipeline- CPU-Temp. (°C) | CPU-Auslastung (%) | RAM

Minuten | Sekunde Latenz (ms) (MB)
10 30 34.7 72.15 74.20 271.89
20 30 35.2 71.33 74.10 271.56
30 30 35.0 71.05 74.17 271.28
40 30 34.7 71.05 74.17 271.28
50 30 35.1 71.60 74.12 270.85
60 29.99 35.1 71.71 74.02 270.45

Tabelle 2: Metriken des Testlaufs fiir Posenerkennung

Die Skelettdarstellung im Videobild machte die Arbeit des Modells gut sichtbar. Die
Anwendung lieferte in typischen Situationen sinnvolle Ergebnisse. Deutlich angehobene Arme
wurden zuverldssig erkannt, und neutrale Haltungen wurden korrekt von den anderen Posen
unterschieden. Schwichen traten hauptsichlich in Randbereichen auf, etwa bei ziigigen
Bewegungen, seitlichen Perspektiven oder wenn der Korper teilweise aus dem Bild herausragte.

In einigen Fillen traten instabile Klassifizierungen oder kurzzeitige Fehlanzeigen auf.

58



DOWN
DOWN
DOWN
MS_DOWN
S_DOWN
S_DOWN
5_DOWN
DOWN
DOWN

DOWN
DOWN
DOWN
DOWN

DOWN
DOWN
DOWN
DOWN
DOWN
DOWN
S_DOWN
5__DOWN
DOWN
DOWN

\

\
|
\
\
\
\
|
\
\
\
\
\
\
\
|
\
\
\

Abbildung 9: Videobild Posenerkennung

59



6.5 Ergebnisse der Fahrzeugzihlung

Bei Tests zur fahrzeugbasierten Detektion und Zdhlung arbeitete das System stabil im
Echtzeitbereich. Die mittlere Bildrate lag konstant bei 30 Bildern pro Sekunde. Die gemessene
Pipeline-Latenz betrug etwa 30 Millisekunden iiber die ganze Testzeit. Damit reagierte die
Zahl-Logik sichtbar fliissig. Die Systemlast blieb niedrig. Die CPU-Auslastung bewegte sich
zwischen 27-28%. Das deutet darauf hin, dass die rechenintensive Objektdetektion effektiv auf
den Hailo-Beschleuniger ausgelagert ist. In der Praxis bleibt somit Raum fiir ergénzende
Aufgaben wie Protokollierung oder Export der Zdhldaten. Die CPU-Temperatur lag bei etwa
67°Cund bleibt somit deutlich unter dem Drosselwert von 80°C. Beim Arbeitsspeicher zeigt
sich wie bei den anderen Anwendungen ein unauffilliges Bild. Die Auslastung liegt bei rund
252 MB und bleibt konstant. Das spricht gegen unbeabsichtigtes Anwachsen von Puffern und
lasst gentigend RAM fiir Erweiterungen.

Zeit in Bilder pro Pipeline- CPU-Temp. (°C) | CPU-Auslastung (%) | RAM

Minuten | Sekunde Latenz (ms) (MB)
10 30.00 31.1 66.65 26.70 256.28
20 30.00 304 67.20 26.50 253.95
30 30.00 30.6 66.83 26.40 253.17
40 29.99 29.7 66.65 26.35 252.76
50 30.00 30.2 66.54 26.30 252.39
60 30.00 31.0 66.56 26.37 252.14

Tabelle 3: Metriken des Testlaufs fiir Fahrzeugzéhlung

Die Darstellung der Boxen und der Linie macht die Arbeitsweise des Systems nachvollziehbar.
In typischen Verkehrsszenen mit moderater Perspektive und stabilem Bild liefert die
Anwendung robuste Ergebnisse. Die vorbeifahrenden Fahrzeuge werden zuverldssig erkannt
und der Zihler inkrementiert, sobald ein erkanntes Fahrzeug die Linie iiberquert. Einige
Schwiéchen zeigen sich in Randbereichen. Kleine oder weit entfernte Fahrzeuge werden
manchmal nicht erkannt und dadurch nicht gezéhlt. Starke Teilverdeckungen durch das
Uberholen oder dichtes Auffahren erschweren die Zuordnung der Boxen. Zudem kann es bei
extremen Kamerawinkeln oder bei schnellen Spurwechseln zu einem instabilen Seitenwechsel

kommen.

60



| \ F N
B \ ;

Cars now: 6 | Passed LR: 8 R0

Abbildung 10: Videobild Fahrzeugzihlung [43]

61



6.6 Ergebnisse der Gesichtsmaskierung

In den Tests zur Gesichtsmaskierung zeigte sich, dass das System den Videostream, bei einer
Auflésung von 1280x720 Pixel, stabil verarbeitet. Wahrend des Tests traten keine Fehler oder
erkennbare Abbriiche auf. Die Bildrate lag im Mittel bei 28 Bildern pro Sekunde, wodurch die
Maskierung im laufenden Bild weitgehend fliissig wirkte. Die gemessene Pipeline-Latenz blieb
im Durchschnitt bei 52 Millisekunden, was fiir eine Echtzeit-Maskierung ausreichend ist. Die
CPU-Auslastung des Raspberry Pi lag im Mittel bei 60%. Ursache hierfiir sind auch wieder die
Vor- und Nachverarbeitungsschritte, wie Farbkonvertierung, Skalierung und die Maskierung
der Bildbereiche. Damit beansprucht die Anwendung einen spiirbaren Teil der Rechenleistung,
jedoch ldsst sie im Vergleich zur Posenerkennung etwas mehr Reserven fiir weitere Prozesse.
Die RAM-Nutzung lag im Durchschnitt bei 158 MB, wodurch die Anwendung auch als
speicherschonend zéhlt. Die CPU-Temperatur erreichte im Mittel etwa 72°C. Damit arbeitet

das System im warmen Bereich, bleibt noch unterhalb der Drosselgrenze von 80°C.

Zeit in Bilder pro Pipeline- CPU-Temp. (°C) | CPU-Auslastung (%) | RAM

Minuten | Sekunde Latenz (ms) (MB)
10 27.80 51.9 73.80 60.20 159.20
20 27.76 51.0 72.97 60.15 159.20
30 27.79 51.9 72.70 60.13 158.46
40 27.82 51.7 72.42 60.17 158.09
50 27.81 51.9 72.26 60.26 157.86
60 27.80 51.9 72.15 60.38 158.08

Tabelle 4: Metriken des Testlaufs fiir Gesichtsmaskierung

Die Maskierung im Videobild machte die Funktion der Gesichtserkennung sichtbar. Sobald ein
Gesicht im Bild lag, wurde der entsprechende Bereich maskiert. In typischen Situationen
wurden die Gesichter in Echtzeit erkannt und die Maskierung lag zuverldssig auf den
Bildbereichen. Auch bei schnellen Kopfbewegungen oder teilweiser Verdeckung kam es selten
zu Fehleranzeigen. Schwichen wurden nur in Momenten erkannt, in denen die Gesichtsregion

kurzfristig abgegrenzt wurde.

62



Abbildung 11: Videobild Gesichtsmaskierung

63



6.7 Diskussion und Bewertung der Ergebnisse

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ hat sich im Rahmen dieser Arbeit als
grundsétzlich geeignete Plattform fiir die Umsetzung von praxisorientierten KI-Anwendungen
erwiesen. Die Evaluation hat gezeigt, dass in allen drei Anwendungen die Kamerabilder
verarbeitet werden konnten und die Inferenz in nahezu Echtzeit durchgefiihrt werden konnte.
Dazu waren die erzielten Bildraten und Reaktionszeiten ausreichend, um die Anwendung aus
einer Benutzersicht als fliissig wahrzunehmen. Damit erfiillt die Plattform das Ziel, typische
Aufgaben der Bildverarbeitung mit KI auf einem kompakten Edge-Gerdt demonstrieren zu

konnen.

Ein wesentlicher Vorteil der Plattform liegt in der klaren Aufgabenteilung zwischen dem
Raspberry Pi und dem AI-HAT+. Der Raspberry Pi tibernimmt die Steuerung der Anwendung,
sowie die Anbindung der Kamera und die Auswertung der Modell-Ausgaben. Die
rechenintensive Ausfiihrung der neuronalen Netze ibernimmt dabei der AI-HAT+. Durch die
Auslagerung der Inferenz wird gezeigt, dass die CPU-Auslastung des Raspberry Pi moderat
bleibt und somit weiterhin in der Lage ist, die restlichen Aufgaben wie Vorverarbeitung,
Nachverarbeitung und Darstellung zuverlédssig zu iibernehmen. Die Tests zeigen auch, dass
selbst bei ldngerem Betrieb, keine kritischen Einbriiche der Bildrate auftreten. Fiir Lehr- und
Demonstrationszwecke, sowie fiir erste Prototypen im Bereich Edge-KI ist dies ein deutlicher

Pluspunkt.

Ein weiterer positiver Aspekt ist, dass zwei der drei Anwendungen auf derselben technischen
Grundlage aufgebaut werden konnten. Von der Kameraanbindung bis zur Inferenz und Ausgabe
wurde die Basisstruktur der Anwendungen wiederverwendet. Dies vereinfacht die Entwicklung
deutlich und erleichtert die Wiederverwendung der Struktur bei verschiedenen KI-Szenarien
auf derselben Plattform. Die Gesichtserkennung bildet hier die Ausnahme, da sie aufgrund der
Bildmanipulation von der einheitlichen Struktur abweicht. Jedoch zeigt die Pipeline-Latenz,
dass die komplexere Struktur nur einen geringen Unterschied macht, und dass die Anwendung
praxistauglich ist. Aus der Sicht einer Abschlussarbeit mit praxisorientiertem Schwerpunkt war
die gemeinsame Basisstruktur trotzdem wertvoll, da keine Anwendung vollstindig neu

aufgebaut werden musste.

Gleichzeitig werden in den Tests aber Grenzen der Plattform sichtbar. Zum einen sind die
verfligbaren Rechenressourcen trotz KI-Beschleuniger begrenzt. Komplexere Modelle, hohere

Auflosungen oder zusétzliche Verarbeitungsschritte konnen die Bildrate schnell reduzieren. Die

64



Modellwahl und die Konfiguration der Videopipeline miissen daher aufeinander abgestimmt
sein, um einen Kompromiss zwischen Erkennungsqualitdt und Echtzeitfahigkeit zu erreichen.
Zudem hingen Ergebnisse von den Rahmenbedingungen ab. Eine schlechte Beleuchtung oder

eine sehr komplexe Szene fiihren schneller zu instabilen Erkennungen.

Auch aus der Entwicklersicht gibt es bei der Plattform einige Einschrankungen. Die Nutzung
des AI-HAT+ setzt die bereitgestellte Softwareumgebung von Hailo voraus, und viele Schritte
kénnen nur innerhalb dieses Okosystems erfolgen. Fiir die vorliegende Arbeit wurde auf
vortrainierte und bereits kompilierte Modelle zuriickgegriffen, die den Aufwand deutlich
erleichterten. Fiir andere Modelle ist die Konvertierung zum HEF-Modell nétig und wére

zusétzlicher Aufwand, der liber den Rahmen dieser Arbeit hinausgeht.

Insgesamt lasst sich die Plattform aus Raspberry Pi 5 mit AI-HAT+ dennoch als passend fiir die
in dieser Arbeit verfolgten Ziele bewerten. Sie bietet geniigend Rechenleistung, um

unterschiedliche KI-Anwendungen in Echtzeit zu demonstrieren.

65



7. Zusammenfassung und Ausblick

Zum Abschluss werden die Ergebnisse zusammengefasst und im Hinblick auf die Ziele dieser
Arbeit bewertet. Zundchst werden die Schritte des Entwicklungsprozesses sowie die
Erkenntnisse zusammengefasst. Dazu gehort die Eignung des Raspberry Pi 5 mit AI-HAT+ als
Plattform fiir praxisnahe KI-Beispiele. AnschlieBend werden mdogliche Weiterentwicklungen

und offene Fragen aufgezeigt, die sich fiir zukiinftige Arbeiten und Projekte ergeben.

7.1 Zusammenfassung der Arbeit

In dieser Arbeit wurde die Entwicklung und Implementierung praxisorientierter KI-Beispiele
auf dem Raspberry Pi 5 mit dem AI-HAT+ untersucht. Der Ausgangspunkt dieser Arbeit war
die Frage, inwieweit sich die Plattform fiir die Entwicklung von praxisorientierten KI-
Anwendungen eignet. Um diese Frage zu beantworten, wurden drei unterschiedliche
Anwendungen realisiert: eine Posenerkennung auf Basis der Korperpose, eine
Gesichtserkennung zur Maskierung von Gesichtern sowie eine Fahrzeugerkennung zur

Fahrzeugzéhlung.

Ein zentrales Ergebnis der Arbeit ist, dass diese Plattformarchitektur sich in der Praxis bewéhrt.
Die drei umgesetzten Anwendungen konnten weitgehend alle auf derselben Grundlage realisiert
werden. Auch wenn die Anwendung der Gesichtsmaskierung von der entworfenen
Grundarchitektur abweicht, wurden mehrere Bausteine der Grundarchitektur wiederverwendet,
um die Anwendung erfolgreich zu realisieren. Unterschiede ergaben sich sonst nur im

eingesetzten Modell und in der Logik der Nachverarbeitung.

Die Evaluation hat gezeigt, dass die Anwendungen mit Bildraten arbeiten, die vom Benutzer
als fliissig wahrgenommen werden. Die Transition von Pose zu Pose wird in typischen
Situationen nahezu in Echtzeit vom System wahrgenommen. Die Gesichtsmaskierung ist in der
Lage, Gesichter in einem Videobild zu erkennen und unmittelbar zu maskieren. Die
Fahrzeugerkennung kann Fahrzeuge zdhlen, die eine virtuell definierte Linie im Bild
tiberqueren. Die Umsetzung praxisorientierter KI-Beispiele auf dem Raspberry Pi 5 mit Al-

HAT+ wurde somit erreicht.

Allerdings wurden im Rahmen der Evaluation auch Grenzen deutlich. Die Erkennungsqualitét

héngt stark von den Rahmenbedingungen ab. Eine schlechte Beleuchtung, verdeckte Objekte,

66



stark seitliche Ansichten oder sehr komplexe Szenen fiihren zu instabileren Ergebnissen. Dies
betrifft sowohl die Robustheit der Posenerkennung als auch die Fahrzeugzihlung und die
Gesichtsmaskierung. Hier zeigt sich der typische Konflikt von Edge-KI: Einerseits sollen
Modelle klein und effizient genug sein, um auf beschriankter Hardware zu laufen, andererseits

wird dadurch die maximale Erkennungsleistung begrenzt.

Insgesamt kann festgehalten werden, dass die entwickelte Plattform fiir den Einsatz in Lehre,
Demonstration und prototypischer Entwicklung geeignet ist. Sie macht es moglich,
verschiedene KI-Anwendungen direkt auf einem kleinen, kostengiinstigen System ausfiihrbar
zu machen, ohne auf eine Cloud-Infrastruktur angewiesen zu sein. Die entwickelten
Anwendungen bilden somit nicht nur ein Ergebnis dieser Arbeit, sondern auch eine Grundlage,

auf der zukiinftige Projekte und Erweiterungen aufbauen konnen.

7.2 Weiterentwicklungsmdglichkeiten und offene Fragen

Aus den Ergebnissen der Arbeit ergeben sich mehrere Ansatzpunkte fiir zukiinftige
Erweiterungen. Eine Moglichkeit besteht darin, robustere oder speziell angepasste Modelle zu
integrieren, die besser mit schwierigen Beleuchtungssituationen oder komplexeren Szenen

zurechtkommen.

Ein weiterer Schritt wire die Weiterentwicklung der bestehenden Anwendungen. Anstatt Posen
zu erkennen, konnte die Anwendung um Gesten erweitert werden, wie zum Beispiel ,, Winken*.
Ebenso wire es sinnvoll, die Erkennung der Posen auf mehrere Personen auszuweiten und
Strategien zu entwickeln, wie mit iiberlappenden Personen umgegangen wird. Fiir die
Fahrzeugzéhlung wire eine manuelle Definition der virtuellen Linie innerhalb der Anwendung
interessant. Die Gesichtsmaskierung ist ein spezieller Fall, da die Verarbeitungskette von der
urspriinglichen Struktur abweicht. Es wire sinnvoll, die Maskierung weiter in die
Verarbeitungskette einzubinden oder nach Alternativen zu suchen, die eine Verpixelung direkt

in der Pipeline ermdglicht, ohne dass Leistungsverluste entstehen.

Auf der Plattformebene ergeben sich technische Fragen, da sich die vorliegende Arbeit auf eine
einzelne Kamera und einen KI-Beschleuniger konzentriert. Eine interessante Erweiterung wire
die Verarbeitung von mehreren Videostreams oder der Einsatz von weiteren Sensoren. Somit

konnte die Plattform extremer auf ihre Grenzen testen. Auch die Frage, ob sich mehrere KI-

67



Anwendungen gleichzeitig ausfiihren lassen, ohne die Echtzeitfdhigkeit zu verlieren, bleibt

offen.

Weiterhin wére eine datengetriebene Evaluation denkbar, um die Modelle quantitativ zu
bewerten, zum Beispiel in Form von Prizisions- und Recall-Messungen. Auch ein Vergleich
mit alternativen Edge-KI-Plattformen oder KI-Beschleunigern konnte spannend sein, um die

Leistungsfahigkeit des Raspberry Pi 5 mit AI-HAT besser einordnen zu konnen.

AbschlieBend kann festgehalten werden, dass die Plattform fiir die Entwicklung und
Implementierung von praxisorientierten KI-Beispielen geeignet ist, jedoch auch
Entwicklungsmoglichkeiten bietet, die im Rahmen dieser Arbeit nicht moglich waren. Die
Abschlussarbeit bietet jedoch einen Ausgangspunkt, auf dem zukiinftige Projekte aufbauen

konnen, um die genannten Entwicklungsmoglichkeiten zu realisieren.

68



Literaturverzeichnis

[1] Cole Stryker und Eda Kavlakoglu. IBM. Was ist kiinstliche Intelligenz (KI)? (besucht am 03.12.2025). URL:
https://www.ibm.com/de-de/think/topics/artificial-intelligence

[2] Dave Bergmann. IBM. Was ist maschinelles Lernen? (besucht am 03.12.2025). URL:
https://www.ibm.com/de-de/think/topics/machine-learning

[3] dogado. Starke KI. (besucht am 05.12.2025). URL: https://www.dogado.de/ki-lexikon/starke-ki

[4] Fangfang Lee. IBM. Was sind neuronale Netzwerke? (besucht am 03.12.2025). URL:
https://www.ibm.com/de-de/think/topics/neural-networks

[5] Mesh Flinders und lan Smalley. IBM. Was ist KI-Inferenz? (besucht am 04.12.2025). URL:
https://www.ibm.com/de-de/think/topics/ai-inference

[6] IBM. Was ist Edge KI? (besucht am 04.12.2025). URL: https://www.ibm.com/de-de/think/topics/edge-ai

[7] Imagination Technologies. What is Edge AI? (besucht am 04.12.2025). URL:
https://www.imaginationtech.com/what-is-edge-ai/

[8] NVIDIA. Entwickler-Kits und Module fiir eingebettete Systeme von NVIDIA Jetson. (besucht am
07.12.2025). URL: https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/

[9] Connect Tech Inc. Jetson TX2 Datasheet. (besucht am 07.12.2025). URL:
https://connecttech.com/ftp/pdf/jetson_tx2 datasheet.pdf

[10] NVIDIA. Jetson TX1: A New Low-Power CUDA Platform for Deep Learning and Computer Vision.
(besucht am 08.12.2025). URL: https://www.nvidia.com/content/tegra/embedded-
systems/pdf/jetson_tx1 whitepaper.pdf

[11] NVIDIA. JetPack SDK. (besucht am 07.12.2025). URL: https://developer.nvidia.com/embedded/jetpack

[12] Coral (Google). Coral Accelerator Module. (besucht am 08.12.2025). URL:
https://www.coral.ai/products/accelerator-module#description

[13] Coral (Google). Models and transfer learning. (besucht am 08.12.2025). URL:
https://www.coral.ai/docs/edgetpu/models-intro#transfer-learning

[14] Raspberry Pi Ltd. Al HAT+. (besucht am 27.11.2025). URL:
https://www.raspberrypi.com/documentation/accessories/ai-hat-plus.html

[15] Leela S. Karumbunathan. NVIDIA. NVIDIA Jetson AGX Orin Technical Brief. (besucht am 07.12.2025).
URL: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf2 1/jetson-orin/nvidia-jetson-agx-orin-technical-

brief.pdf

[16] NVIDIA. Jetson Modules. (besucht am 07.12.2025). URL: https://developer.nvidia.com/embedded/jetson-
modules

[17] Coral (Google). Edge TPU benchmarks. (besucht am 09.12 2025). URL:
https://www.coral.ai/docs/edgetpu/benchmarks/

[18] Eben Upton. Raspberry Pi Ltd. Introducing Raspberry Pi 5. (besucht am 29.11.2025). URL:
https://www.raspberrypi.com/news/introducing-raspberry-pi-5/

[19] Raspberry Pi Ltd. Raspberry Pi Documentation. (besucht am 04.12.2025). URL:
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

[20] Raspberry Pi Ltd. Processors BCM2712. (besucht am 04.12.2025). URL:
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712

[21] Hailo Al hailo_model zoo. (besucht am 26.11.2025). URL: https://github.com/hailo-ai/hailo_model zoo

69


https://www.ibm.com/de-de/think/topics/artificial-intelligence
https://www.ibm.com/de-de/think/topics/machine-learning
https://www.dogado.de/ki-lexikon/starke-ki
https://www.ibm.com/de-de/think/topics/neural-networks
https://www.ibm.com/de-de/think/topics/ai-inference
https://www.ibm.com/de-de/think/topics/edge-ai
https://www.imaginationtech.com/what-is-edge-ai/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/
https://connecttech.com/ftp/pdf/jetson_tx2_datasheet.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://developer.nvidia.com/embedded/jetpack
https://www.coral.ai/products/accelerator-module#description
https://www.coral.ai/docs/edgetpu/models-intro#transfer-learning
https://www.raspberrypi.com/documentation/accessories/ai-hat-plus.html
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://www.coral.ai/docs/edgetpu/benchmarks/
https://www.raspberrypi.com/news/introducing-raspberry-pi-5/
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://github.com/hailo-ai/hailo_model_zoo

[22] Hailo AI. HAILOSL Pose Estimation. (besucht am 26.11.2025). URL: https://github.com/hailo-
ai/hailo model zoo/blob/master/docs/public models/HAILOSL/HAILOSL pose estimation.rst2

[23] Hailo AI. HAILOSL Object Detection. (besucht am 26.11.2025). URL: https://github.com/hailo-
ai/hailo_model_zoo/blob/master/docs/public_models/HAILOSL/HAILOSL _object_detection.rst

[24] Hailo AI. HAILOSL Face Detection. (besucht am 26.11.2025). URL: https://github.com/hailo-
ai/hailo_model_zoo/blob/master/docs/public_models/HAIL OSL/HAILOSL _face_detection.rst

[25] GStreamer Project. GStreamer. (besucht am. 26.12.2025). URL: https://gstreamer.freedesktop.org/

[26] GStreamer Project. Elements. (besucht am 26.12.2025). URL:
https://gstreamer.freedesktop.org/documentation/application-development/basics/elements.html?gi-language=c

[27] GStreamer Project. Dynamic pipelines. (besucht am 27. 12. 2025). URL:
https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html?gi-language=c

[28] GStreamer Project. Pads. (besucht am 26.12.2025). URL:
https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html?gi-language=c

[29] Hailo Technologies Ltd. TAPPAS User Guide. (besucht am 27.12.2025). URL:
https://f.hubspotusercontent30.net/hubfs/3383687/TAPPAS%20User%20Guide.pdf

[30] GStreamer Project. Probes. (besucht am 26.12.2025). URL:
https://gstreamer.freedesktop.org/documentation/additional/design/probes.html?gi-language=c

[31] OnLogic. Hailo-8 AI Accelerator Integration. (besucht am 25.11.2025). URL:
https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-

integration
[32] Hailo AL hailort. (besucht am 25.11.2025). URL: https://github.com/hailo-ai/hailort

[33] Hailo Al HailoRT v5.2.0 Documentation. (besucht am 27.11.2025). URL: https://hailo.ai/developer-
zone/documentation/hailort-v5-2-0/

[34] Raspberry Pi Ltd. How to set up the Raspberry Pi Al Kit with Raspberry Pi 5. (besucht am 22.11.2025).
URL: https://www.raspberrypi.com/news/how-to-set-up-the-raspberry-pi-ai-kit-with-raspberry-pi-5/

[35] Hailo Al hailo-rpi5S-examples. (besucht am 10.12.2026). URL: https://github.com/hailo-ai/hailo-rpi5-
examples

[36] GeeksforGeeks. OpenCV Overview. (besucht am 06.01.2026). URL:
https://www.geeksforgeeks.org/computer-vision/opencv-overview/

[37] Python Wiki. NumPy. (besucht am 06.01.2026). URL: https://wiki.python.org/moin/NumPy

[38] IONOS. FPS — Framerates im TV, Kino und FPS beim Gaming. (besucht am 07.01.2026). URL:
https://www.ionos.de/digitalguide/server/knowhow/{ps/

[39] Wikipedia. Bildfrequenz. (besucht am 08.01.2026). URL: https://de.wikipedia.org/wiki/Bildfrequenz

[40] Alasdair Allan. Raspberry Pi Ltd. Heating and cooling Raspberry Pi 5. (besucht am 08.01.2026). URL:
https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/

[41] Conrad. Nvidia Super Developer Kit Jetson Orin Nano 8 GB 6 x 1.5 GHz. (besucht am 15.01.2026). URL:
https://www.conrad.de/de/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html

[42] Amazon. Google Coral Dev Board. (besucht am 15.01.2026). URL: https://www.amazon.de/Google-G950-
01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1

[42] Anuj Khandelwal. Vehicle Dataset Sample 2. (besucht am 15.01.2026). URL:
https://www.youtube.com/watch?v=JghdBCCUVyQ

70


https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_pose_estimation.rst2
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_pose_estimation.rst2
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_object_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_object_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_face_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_face_detection.rst
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/documentation/application-development/basics/elements.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html?gi-language=c
https://f.hubspotusercontent30.net/hubfs/3383687/TAPPAS%20User%20Guide.pdf
https://gstreamer.freedesktop.org/documentation/additional/design/probes.html?gi-language=c
https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-integration
https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-integration
https://github.com/hailo-ai/hailort
https://hailo.ai/developer-zone/documentation/hailort-v5-2-0/
https://hailo.ai/developer-zone/documentation/hailort-v5-2-0/
https://www.raspberrypi.com/news/how-to-set-up-the-raspberry-pi-ai-kit-with-raspberry-pi-5/
https://github.com/hailo-ai/hailo-rpi5-examples
https://github.com/hailo-ai/hailo-rpi5-examples
https://www.geeksforgeeks.org/computer-vision/opencv-overview/
https://wiki.python.org/moin/NumPy
https://www.ionos.de/digitalguide/server/knowhow/fps/
https://de.wikipedia.org/wiki/Bildfrequenz
https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/
https://www.conrad.de/de/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html
https://www.amazon.de/Google-G950-01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1
https://www.amazon.de/Google-G950-01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1
https://www.youtube.com/watch?v=JqhdBCCUVyQ

Anhang

GitHub Repository des Projekts:

https://github.com/22anh03/ai-prototypes-raspberrypiS-aihat

71


https://github.com/22anh03/ai-prototypes-raspberrypi5-aihat

