

Frankfurt University of Applied Sciences

Fachbereich 2 Informatik und Ingenieurwissenschaften

Entwicklung und Implementierung

praxisorientierter KI-Beispiele auf dem Raspberry

Pi 5 und dem AI-HAT+

Abschlussarbeit zur Erlangung des akademischen Grades

Bachelor of Science (B.Sc.)

Vorgelegt von:

Hai Anh Tran

Studiengang: Informatik (B.Sc.)

Matrikelnummer: 1347788

Referent: Prof. Dr. Christian Baun

Korreferent: Prof. Dr. Thomas Gabel

Begonnen am: 20.11.2025

Beendet am: 22.01.2026

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine

anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Quellen entnommen sind, sind

als solche kenntlich gemacht.

Die Zeichnungen und Abbildungen sind von mir erstellt worden oder mit einem

entsprechenden Quellennachweis versehen.

Diese Arbeit wurde noch nicht in gleicher oder ähnlicher Form bei keiner anderen

Prüfungsbehörde eingereicht.

Unterschrift

Zusammenfassung

Diese Arbeit untersucht die Entwicklung und Implementierung praxisorientierter KI-Beispiele

auf dem Raspberry Pi 5 in Kombination mit dem AI-HAT+. Das Ziel dieser Arbeit ist es zu

zeigen, wie sich moderne KI-Verfahren mit begrenzten Ressourcen einsetzen lassen und welche

Herausforderungen dabei in Bezug auf Leistung, Echtzeitfähigkeit und Entwicklungsaufwand

auftreten.

Auf einer Plattform, bestehend aus dem Raspberry Pi 5, dem Raspberry Pi Camera Module 2

und dem KI-Beschleuniger AI-HAT+, wurden mehrere Anwendungen umgesetzt: eine

Posenerkennung auf Basis von Körperposen, eine Anwendung zur Fahrzeugdetektion und -

zählung sowie eine Anwendung zur automatischen Maskierung von Gesichtern. Für diese

Beispiele werden passende KI-Modelle ausgewählt und mithilfe von Python, GStreamer und

Hailo-Werkzeugen in eine Videoverarbeitungskette integriert.

Die Arbeit beschreibt den vollständigen Entwicklungsprozess der Auswahl der Modelle, bis hin

zur Implementierung der Datenverarbeitungsketten und der Evaluation der Prototypen

hinsichtlich Genauigkeit, Bildrate und Latenz. Die Ergebnisse zeigen, dass der Raspberry Pi 5

in Verbindung mit dem AI-HAT+ eine leistungsfähige und zugleich kostengünstige Plattform

für praxisorientierte KI-Anwendungen darstellt.

Abstract

This thesis researches the development and implementation of practical AI examples on the

Raspberry Pi 5 in combination with the AI-HAT+. The aim of this work is to demonstrate how

modern AI methods can be used with limited resources and which challenges arise in terms of

performance, real-time capability and implementation effort.

The platform consists of the Raspberry Pi 5, the Raspberry Pi Camera Module 2 and the AI

accelerator AI-HAT+. Several applications were implemented on this platform: an application

for pose detection, for vehicle detection and counting and for automatic blurring of faces.

Suitable AI models are selected and integrated into real-time video pipelines using Python,

GStreamer and the Hailo tools.

The thesis describes the complete development process, from the selection of the models

through to the implementation of the data processing pipelines and the evaluation of the

prototypes with respect to accuracy, frame rate, and latency. The results show that the Raspberry

Pi 5 in combination with the AI-HAT+ represents a powerful yet cost-effective platform for

practical AI applications.

Inhaltsverzeichnis

1. Einführung .. 11

1.1 Motivation und Hintergrund ... 11

1.2 Problemstellung und Forschungsfrage ... 12

1.3 Zielsetzung der Arbeit .. 12

2. Grundlagen ... 13

2.1 Künstliche Intelligenz ... 13

2.2 Maschinelles Lernen ... 13

2.3 Neuronale Netze und Deep Learning ... 15

2.4 Training und Inferenz ... 16

2.5 Edge-KI .. 16

3. Aktueller Stand von Edge-KI-Plattformen ... 18

3.1 Bewertungskriterien .. 18

3.2 Bestehende Edge-KI-Plattformen ... 19

3.2.1 NVIDIA Jetson .. 19

3.2.2 Google Coral / Edge TPU .. 20

3.2.3 Raspberry Pi mit AI-HAT+ ... 21

3.3 Untersuchung der Plattformen anhand der Kriterien .. 22

3.4 Verwendete Hardwareplattform ... 24

3.4.1 Raspberry Pi 5 .. 24

3.4.2 AI-HAT+ .. 25

3.4.3 Kamera und weitere Peripherie .. 25

4. Anforderungen und Design der KI-Beispiele ... 26

4.1 Überblick über die umgesetzten KI-Anwendungen ... 26

4.2 Funktionale Anforderungen .. 27

4.2.1 Posenerkennung ... 27

4.2.2 Fahrzeugzählung .. 27

4.2.3 Gesichtsmaskierung ... 28

4.3 Nicht-funktionale Anforderungen .. 28

4.4 Zielsetzung des Systemdesign .. 29

4.5 Konzeption der gemeinsamen Systemarchitektur .. 30

4.6 Auswahl der KI-Modelle .. 33

4.7 Annahmen und Abgrenzungen ... 34

5. Implementierung .. 35

5.1 Entwicklungsumgebung und verwendete Technologien .. 35

5.1.1 GStreamer als Videopipeline ... 35

5.1.2 Hailo-Softwareumgebung .. 36

5.1.3 Python-Bibliotheken für Bildverarbeitung und Numerik .. 37

5.2 Gemeinsame Basisimplementierung .. 38

5.3 Implementierung der Gestenerkennung .. 43

5.4 Implementierung Fahrzeugzählung .. 47

5.5 Implementierung der Gesichtsmaskierung ... 49

5.5.1 Abgrenzung der Gesichtsmaskierung gegenüber den anderen Anwendungen 49

5.5.2 Implementierung .. 51

5.6 Zusammenfassung .. 54

6. Evaluation ... 55

6.1 Zielsetzung der Evaluation ... 55

6.2 Versuchsaufbau .. 55

6.3 Bewertungsmetriken ... 56

6.4 Ergebnisse der Posenerkennung ... 58

6.5 Ergebnisse der Fahrzeugzählung .. 60

6.6 Ergebnisse der Gesichtsmaskierung ... 62

6.7 Diskussion und Bewertung der Ergebnisse .. 64

7. Zusammenfassung und Ausblick ... 66

7.1 Zusammenfassung der Arbeit ... 66

7.2 Weiterentwicklungsmöglichkeiten und offene Fragen ... 67

Abbildungsverzeichnis

Abbildung 1: Aufbau von neuronalen Netzen ... 15

Abbildung 2: NVIDIA Jetson Orin Nano Developer Kit [... 19

Abbildung 3: Google Coral Dev Board ... 20

Abbildung 4: Raspberry Pi 5 mit AI-HAT+ .. 21

Abbildung 5: Aktivitätsdiagramm der Videoverarbeitungskette .. 32

Abbildung 6: GStreamer, Elemente, Pads, Pipeline .. 35

Abbildung 7: Aktivitätsdiagramm Ablauf der Videopipeline ... 42

Abbildung 8: Architekturdiagramm der Gesichtsmaskierung Pipeline 50

Abbildung 9: Videobild Posenerkennung ... 59

Abbildung 10: Videobild Fahrzeugzählung .. 61

Abbildung 11: Videobild Gesichtsmaskierung ... 63

Tabellenverzeichnis

Tabelle 1: Überblick Edge-KI-Plattformen .. 23

Tabelle 2: Metriken des Testlaufs für Posenerkennung .. 58

Tabelle 3: Metriken des Testlaufs für Fahrzeugzählung ... 60

Tabelle 4: Metriken des Testlaufs für Gesichtsmaskierung .. 62

Quell- und Pseudocodeverzeichnis

Codeblock 1: Quellcode Pipeline bauen .. 38

Codeblock 2: Quellcode Hailo-Elemente holen und konfigurieren ... 39

Codeblock 3: Quellcode Callback-Funktion .. 40

Codeblock 4: Quellcode identity-Element holen und anhängen .. 40

Codeblock 5: Quellcode Main-Funktion .. 41

Codeblock 6: Quellcode Umrechnung der Gelenkpunkte in Bildpixel 44

Codeblock 7: Quellcode HANDS_UP Regeln ... 44

Codeblock 8: Quellcode T_POSE Regeln .. 45

Codeblock 9: Quellcode ARMS_DOWN Regeln .. 46

Codeblock 10: Quellcode Callback-Funktion Posenerkennung ... 46

Codeblock 11: Pseudocode Callback-Funktion Fahrzeugzählung ... 48

Codeblock 12: Pseudocode Callback-Funktion on_preview_sample 51

Codeblock 13: Pseudocode worker_loop Thread ... 52

Codeblock 14: Quellcode map_net_to_preview_letterbox Funktion 53

Codeblock 15: Pseudocode Bildmanipulation Funktion .. 53

Abkürzungsverzeichnis

AI Artificial Intelligence

ca. circa

CNNs Convolutional Neural Networks

CPU Central Processing Unit

CSI Camera Serial Interface

CV Computer Vision

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

HAT Hardware Attached on Top

HDMI High-Definition Multimedia Interface

HEF Hailo Executable Format

ID Identification

KI Künstliche Intelligenz

MB Megabyte

ML Machine Learning

ms. milliseconds

NPU Neural Processing Unit

OS Operating System

PCIe Peripheral Component Interconnect Express

RAM Random Memory Access

ROI Region Of Interest

RT Runtime

SDK Software Development Kit

TOPS Tera Operation Per Second

TPU Tensor Processing Unit

USB Universal Serial Bus

z. B. zum Beispiel

11

1. Einführung

Im ersten Kapitel wird das Thema der Arbeit eingeführt und in einen übergeordneten Kontext

eingeordnet. Zunächst werden Motivation und Hintergrund von Künstlicher Intelligenz auf

eingebetteten Systemen erläutert. Anschließend werden die Problemstellung und die zentrale

Forschungsfrage formuliert, bevor die Zielsetzung der Arbeit beschrieben wird.

1.1 Motivation und Hintergrund

In den vergangenen Jahren hat der Einsatz von Künstlicher Intelligenz im Alltag deutlich an

Bedeutung gewonnen. KI-basierte Systeme sind längst nicht mehr nur in großen Rechenzentren

zu finden, sondern begegnen uns in Smartphones, Haushaltsgeräten, Fahrzeugen und

zunehmend auch in eingebetteten Systemen. Als „Edge-KI“ werden Systeme bezeichnet, die

Daten direkt am Gerät verarbeiten und eine Echtzeitanwendung ermöglichen, ohne einen

Umweg über die Cloud.

Parallel dazu hat sich der Markt für kompakte, leistungsfähige Einplatinencomputer

weiterentwickelt. Der Raspberry Pi 5 verfügt über eine leistungsstarke Hardwarebasis, die in

Kombination mit spezialisierten KI-Beschleunigern, wie dem AI-HAT+, ein attraktives

Gesamtpaket für die Umsetzung von praxisnahen KI-Anwendungen bietet.

Ein wesentlicher Vorteil solcher Edge-KI-Plattformen ist die Möglichkeit, komplexe Aufgaben

wie Bildverarbeitung oder Objekterkennung auf kostengünstiger Hardware auszuführen. Wo

früher leistungsstarke Desktop-Rechner oder Cloud-Server erforderlich waren, genügen heute

kompakte Module, die sich problemlos in bestehende Systeme integrieren lassen. Der AI-HAT+

erweitert den Raspberry Pi 5 dabei um einen dedizierten KI-Beschleuniger, der speziell für KI-

Aufgaben optimiert ist und gleichzeitig einen geringen Energieverbrauch ermöglicht. Dadurch

werden Anwendungen realisierbar, die sowohl interaktiv als auch echtzeitfähig sind.

12

1.2 Problemstellung und Forschungsfrage

Im Rahmen dieser Forschung stellt sich die Frage, wie sich eine praxisnahe Kombination aus

Einplatinenrechner und KI-Beschleuniger für typische Bildverarbeitungsaufgaben eignet. Es

existieren zwar zahlreiche Beispielanwendungen, jedoch konzentrieren sie sich häufig auf

einzelne Szenarien und nicht auf den kompletten Entwicklungsprozess. Für den Raspberry Pi 5

mit dem AI-HAT+ ist bisher begrenzt dokumentiert, wie sich mehrere verschiedene

Anwendungen auf einer gemeinsamen Grundlage realisieren und im Hinblick auf Bildrate und

Latenz bewerten lassen.

Vor diesem Hintergrund ergibt sich die zentrale Frage dieser Arbeit: Inwieweit eignet sich die

Kombination aus Raspberry Pi 5 und AI-HAT+ als Plattform für die Entwicklung von

praxisorientierten KI-Anwendungen?

1.3 Zielsetzung der Arbeit

Im Rahmen dieser Arbeit werden auf Basis des Raspberry Pi 5 und des AI-HAT+ mehrere

praxisorientierte KI-Beispiele entwickelt und implementiert. Diese Beispiele decken

unterschiedliche Anwendungsfelder ab. Von Mensch-Maschine-Interaktion über Datenschutz

bis hin zur einfachen Verkehrsüberwachung.

Das Ziel der Arbeit ist es, den gesamten Entwicklungsprozess dieser Anwendungen

nachvollziehbar darzustellen. Der Prozess fängt bei der Auswahl geeigneter Modelle und

Frameworks an und geht weiter zur Umsetzung der Videoverarbeitungskette, bis hin zur

Evaluation hinsichtlich Bildrate und Latenz. Damit soll aufgezeigt werden, welches Potenzial

der Raspberry Pi 5 in Verbindung mit dem AI-HAT+ als Plattform für praxisnahe KI-Beispiele

bietet und welche Chancen und Grenzen sich beim Einsatz solcher Systeme ergeben.

13

2. Grundlagen

In diesem Kapitel werden die theoretischen und technischen Grundlagen vorgestellt, die

erforderlich sind, um die im Rahmen dieser Arbeit entwickelten KI-Anwendungen zu

verstehen. Als Erstes werden zentrale Begriffe aus dem Bereich Künstliche Intelligenz und

Maschinelles Lernen erläutert. Daraufhin wird auf neuronale Netze eingegangen und der

Unterschied zwischen Training und Inferenz wird erklärt. Abschließend wird das Konzept der

Edge-KI vorgestellt, welches für den Einsatz des Raspberry Pi 5 in Kombination mit dem AI-

HAT+ eine zentrale Rolle spielt.

2.1 Künstliche Intelligenz

Unter Künstlicher Intelligenz (KI) werden Verfahren verstanden, die es Computersystemen

ermöglichen, Aufgaben zu lösen, welche typischerweise menschliche Intelligenz erfordern

würden. Anwendungen und Geräte, die mit KI ausgestattet sind, können unter anderem Bilder

und Sprachen erkennen, sowie Entscheidungen treffen und aus Erfahrungen lernen [1].

In der Praxis wird der Begriff KI häufig als Oberbegriff für verschiedene Methoden verwendet.

Diese reichen von einfachen regelbasierten Systemen bis hin zu komplexen lernenden

Systemen. In dieser Arbeit steht insbesondere der Bereich des maschinellen Lernens im

Vordergrund, bei dem Systeme nicht für einen expliziten Einzelfall programmiert werden,

sondern selbstständig Muster in Daten erkennen und daraus ein Modell ableiten [2].

Im Bereich der Künstlichen Intelligenz wird zwischen „schwacher KI“ und „starker KI“

unterschieden. „Starke KI“ ist in der Lage, jede intellektuelle Aufgabe zu lösen. Im Gegensatz

dazu löst „schwache KI“ konkrete Aufgaben. [3]

Die in dieser Arbeit entwickelten Anwendungen basieren auf lernenden Modellen und werden

dem Bereich der „schwachen KI“ zugeordnet.

2.2 Maschinelles Lernen

Maschinelles Lernen (ML) ist ein Teilgebiet der KI und befasst sich mit Algorithmen, die aus

Beispieldaten lernen, anstatt feste Regeln vorzugeben. Daraus ergibt sich ein Modell. Das

14

System erhält dabei Trainingsdaten, die aus Eingaben (z. B. Bildern) und oft auch zugehörigen

Zielwerten (z. B. Klassenbeschriftungen wie „Auto“ oder „Person“) bestehen. Im

Trainingsprozess werden interne Parameter der Modelle angepasst, damit es neue, bisher

unbekannte Daten möglichst korrekt verarbeiten kann [2].

Je nach Art der verfügbaren Daten und Zielsetzung wird zwischen verschiedenen

Lernparadigmen unterschieden:

Überwachtes Lernen:

Beim überwachten Lernen werden Modelle mit gekennzeichneten Datensätzen trainiert, zum

Beispiel ein Bild mit der Beschriftung „Fahrzeug“. Das Modell passt während des Trainings

seine Gewichtungen so an, dass es Daten klassifizieren oder Ergebnisse möglichst präzise

vorhersagen kann [2]. Typische Verfahren sind Klassifikation, wie die Erkennung einer

bestimmten Körperpose, und Regression, also die Vorhersage eines kontinuierlichen Werts.

Unüberwachtes Lernen:

Bei dem unüberwachten Lernen liegen nur Eingabedaten ohne explizite Zielwerte vor. Das

Modell versucht, Strukturen oder Cluster (Gruppierungen) in den Daten zu finden, die nicht

offensichtlich sind. Typische Aufgaben sind das Gruppieren von ähnlichen Daten (Clustering),

Assoziationen in den Daten zu finden und die Dimensionsreduktion, also Daten zu

komprimieren und zu visualisieren [2].

Bestärkendes Lernen:

Ein Agent lernt durch Interaktion mit einer Umgebung und erhält Belohnungen oder Strafen.

Der Agent wählt Aktionen, bekommt eine Rückmeldung in Form von einer Belohnung oder

einer Strafe und passt sein Verhalten an. Das Ziel dabei ist nicht die Fehler-Minimierung,

sondern die maximale Belohnung [2]. Typische Anwendungsfälle sind in der Robotertechnik

oder in Videospielen zu finden.

In dieser Arbeit wurden Modelle verwendet, die im Rahmen des überwachten Lernens trainiert

worden sind. Das eigentliche Training der Modelle findet dabei nicht auf dem Raspberry Pi 5

statt, sondern wurde zuvor auf leistungsstärkeren Systemen durchgeführt. Auf dem Raspberry

Pi wird anschließend nur noch die sogenannte Inferenz ausgeführt (siehe Abschnitt 2.4).

15

2.3 Neuronale Netze und Deep Learning

Viele moderne KI-Anwendungen basieren auf künstlichen neuronalen Netzen. Neuronale Netze

sind Modelle des maschinellen Lernens, die aus vielen einfachen „Neuronen“ bestehen. Sie

orientieren sich grob an der Arbeitsweise biologischer Nervenzellen und führen einfache

Rechenoperationen durch. Durch das Zusammenschalten vieler solcher Neuronen entstehen

mehrere Schichten, die zusammen ein leistungsfähiges Modell darstellen und komplexe Muster

erkennen können [4].

Neuronale Netze bilden laut der Quelle [4] die Basis von Deep Learning. Die Eingabeschicht

nimmt Daten auf, während mehrere versteckte Schichten die Daten verarbeiten. Im Anschluss

liefert die Ausgabeschicht das Ergebnis. Jede Verbindung hat ein Gewicht, um abzuwägen, wie

wichtig ein Eingangssignal ist. Zusätzlich hat jeder Knoten einen Schwellenwert, um

abzustimmen, wann er anspringt. Wenn das Ergebnis über dem Schwellenwert liegt, wird der

Knoten aktiviert und das Signal wird an die nächste Schicht weitergeleitet. Somit können

neuronale Netze hierarchische Merkmale aus Rohdaten lernen. Im Kontext der

Bildverarbeitung werden häufig Convolutional Neural Networks eingesetzt (CNNs). Diese

nutzen Faltungsoperationen (Convolutions), um Bildstrukturen wie Kanten, Formen oder

Texturen zu erkennen. Typische Aufgaben, die mit CNN-basierten Modellen gelöst werden,

sind Bildklassifizierung und Objekterkennung.

Abbildung 1: Aufbau von neuronalen Netzen [4]

16

2.4 Training und Inferenz

Im Lebenszyklus eines neuronalen Netzes wird zwischen zwei Phasen unterschieden: Training

und Inferenz.

Training:

In der Trainingsphase wird das Modell mit großen Mengen von beschrifteten Daten trainiert.

Dabei werden die Parameter des Netzes so angepasst, dass der Fehler zwischen den

Modellvorhersagen und den Zielwerten minimiert wird [5]. Dieser Prozess ist sehr

rechenintensiv und wird in der Regel auf leistungsfähiger Hardware durchgeführt.

Inferenz:

In der Inferenzphase ist das Training abgeschlossen. Das Modell wird mit neuen Eingabedaten

versorgt und berechnet die entsprechenden Ausgaben. Ein Beispiel wäre ein Bild einer Person

als Eingabe und die Erkennung (markierter Bildbereich) sowie die Klassifizierung der Person

als Ausgabe. Hier steht insbesondere die Effizienz im Vordergrund. Die Berechnungen müssen

schnell genug sein, um Echtzeit-Anforderungen zu erfüllen, und gleichzeitig auf der

verfügbaren Hardware ausführbar bleiben [5].

Die vorliegende Arbeit konzentriert sich ausschließlich auf die Inferenzphase. Die verwendeten

Modelle werden in einem bereits trainierten Zustand bereitgestellt, typischerweise in einem

geeigneten Format für den AI-HAT+. Der AI-HAT+ übernimmt dabei einen Großteil der

Rechenarbeit der Inferenz.

2.5 Edge-KI

Ein zentrales Konzept dieser Arbeit ist die Edge-KI. Sie bezeichnet das Ausführen der KI-

Algorithmen direkt auf dem Endgerät selbst oder in unmittelbarer Nähe der Datenquelle. Somit

wird eine Echtzeit-Datenverarbeitung und -analyse ermöglicht, ohne eine Abhängigkeit von

einer Cloud-Infrastruktur [6].

17

Edge-KI bietet mehrere Vorteile laut Quelle [6]:

• Geringe Latenz:

Da die Verarbeitung lokal erfolgt, entfallen Netzwerklaufzeiten. Dies ist besonders

wichtig für Anwendungen mit Echtzeitanforderungen, zum Beispiel bei einer

Fahrzeugerkennung bei selbstfahrenden Autos.

• Datenschutz:

Sensible Daten müssen nicht in ein anderes Netzwerk übertragen werden. Dies reduziert

das Risiko von Datenschutzverletzungen, da die Informationen direkt auf dem Gerät

verarbeitet werden.

• Echtzeitanalyse:

Die Anwendungen können ohne stabile Internetverbindung betrieben werden, was in

vielen Szenarien (z. B. mobile Systeme, abgelegene Orte) von Vorteil ist.

Edge-KI stehen auch Herausforderungen gegenüber [6, 7]:

• Viele Edge-Geräte verfügen im Vergleich zu Cloud-Servern noch deutlich weniger

Rechenleistung, Speicher und Energie. KI-Modelle müssen daher speziell optimiert und

angepasst werden, damit sie auf der Zielhardware benutzt werden können.

• Edge-KI eignet sich für lokale Echtzeitaufgaben direkt auf dem Gerät. Für

rechenintensive Aufgaben wie Training oder Datenaggregation, wird jedoch häufig

weiterhin die Cloud benötigt. Zudem ist die Verwaltung vieler verteilter Edge-Geräte

im großen Maßstab aufwendig.

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ ist ein typisches Beispiel einer Edge-

KI-Plattform. Die in dieser Arbeit entwickelten Anwendungen demonstrieren, wie sich

komplexe KI-Funktionen direkt auf dem Endgerät realisieren lassen, trotz begrenzter

Ressourcen.

18

3. Aktueller Stand von Edge-KI-Plattformen

Wie in den vorherigen Abschnitten genannt, hat sich der Bereich der Edge-KI weiterentwickelt.

Für typische KI‑Aufgaben wie Objekterkennung existieren inzwischen zahlreiche Hard- und

Softwarelösungen, die sich in Leistungsfähigkeit, Kosten und Entwicklungsaufwand

unterscheiden. Das Ziel dieses Kapitels ist es, den verwendeten Raspberry Pi 5 in Kombination

mit dem KI-Beschleuniger AI-HAT+ in diesen Kontext einzuordnen. Dazu werden Kriterien

definiert und anschließend bestehende Lösungen vorgestellt. Die Plattformen werden anhand

dieser Kriterien verglichen. Auf dieser Grundlage lässt sich begründen, warum der Raspberry

Pi mit dem AI-HAT für die angestrebten KI-Beispiele geeignet ist und wo weiterhin Bedarf für

eigene Entwicklungen und Untersuchungen besteht.

3.1 Bewertungskriterien

Ein zentrales Kriterium ist die Funktionalität, also ob und in welchem Umfang typische

Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung unterstützt werden.

Dazu sollten vorgefertigte Modelle oder Beispielanwendungen existieren, um die Funktionalität

der Plattform zu bestätigen.

Eng damit verbunden ist die Leistungsfähigkeit im Hinblick auf Echtzeitbetrieb. Es ist

relevant, ob eine Plattform die Bildraten im Bereich von mehreren zehn Bildern pro Sekunde

mit möglichst geringer Verzögerung erreichen kann. Die Hersteller der Plattformen geben die

Rechenleistung von KI-Beschleunigern häufig in „TOPS“ an, also in „Tera-Operationen pro

Sekunde“. Dieser Wert dient in dieser Arbeit als grobe Orientierung für die Rechenleistung.

Ein weiteres Kriterium sind die Anschaffungs- und Betriebskosten. Da sich die Arbeit an

einer typischen Lehr- und Entwicklungsumgebung orientiert, spielt die Verfügbarkeit als auch

die Kosten eine Rolle.

Schließlich ist der Entwicklungsaufwand von Bedeutung: Eine Lösung ist für den Rahmen

einer Bachelorarbeit nur dann praktikabel, wenn sie über eine nachvollziehbare

Dokumentation, Beispielprojekte und ein nutzbares Software-Entwicklungspaket (SDK)

verfügt.

19

3.2 Bestehende Edge-KI-Plattformen

Als repräsentative Beispiele aktueller Edge-KI-Lösungen werden im Folgenden drei Ansätze

betrachtet: NVIDIA Jetson, Google Coral mit Edge TPU sowie der Raspberry Pi 5 in

Kombination mit dem AI-HAT+.

3.2.1 NVIDIA Jetson

Plattformen der NVIDIA-Jetson-Reihe sind kompakte Rechnersysteme, die für rechenintensive

Bild- und KI-Anwendungen ausgelegt sind [8]. Eine Charakteristik der Jetson-Systeme ist die

Integration der Rechenkomponenten und Beschleunigereinheiten auf dem Gerät. Die Systeme

basieren auf einem Chip, der Prozessor, Grafikeinheit und weitere Komponenten auf einem

System kombiniert [9]. Für KI-Anwendungen ist der integrierte Grafikprozessor der Jetson-

Systeme relevant, um die Rechenoperationen der neuronalen Netze besser parallelisieren zu

können [10]. Aus der Sicht der Softwareentwicklung bieten Jetson-Systeme eine Vielzahl an

Bibliotheken und Werkzeugen an, die die Ausführung neuronaler Netze auf der GPU

beschleunigen. Diese Werkzeuge umfassen sowohl allgemeine Rechenbibliotheken als auch

Optimierungswerkzeuge für neuronale Netze [11]. Der Entwicklungsaufwand kann bei den

Systemen sinken, da viele Modelle ohne grundlegende Umformung lauffähig sind. In der Praxis

werden Jetson-Plattformen oft benutzt, wenn eine hohe Leistung oder anspruchsvollere

Modelle benötigt werden.

Abbildung 2: NVIDIA Jetson Orin Nano Developer Kit [41]

20

3.2.2 Google Coral / Edge TPU

Google-Coral-Plattformen enthalten als Zusatzhardware einen KI-Beschleuniger an einem

Einplatinenrechner. Die Kernkomponente ist die Edge TPU: ein spezialisierter KI-Chip für die

Ausführung neuronaler Netze [12]. Der Anschluss erfolgt dabei meist über die PCIe-

Schnittstelle. PCI Express ist eine interne Schnittstelle, die für hohe Datenraten ausgelegt ist

und sich besonders für den Transfer von großen Datenmengen eignet. Das zentrale Merkmal

dieses Ansatzes ist eine starke Spezialisierung auf die effiziente Inferenz. Für die Edge TPU

gelten jedoch strikte Anforderungen an die Modellform: Häufig müssen Modelle in einem

kompakten Format vorliegen (TensorFlow Lite) und als vollständig quantisierte

Ganzzahlmodelle bereitgestellt werden, damit sie vollständig auf dem Beschleuniger

ausgeführt werden können [13]. Laut Coral reduziert die Quantisierung die Zahlenpräzision

(von Fließkommazahl zu Ganzzahlen) im Modell und senkt dadurch den Speicherbedarf und

den Rechenaufwand, was zu einer verbesserten Geschwindigkeit und Energieeffizienz führt

[13].

Abbildung 3: Google Coral Dev Board [42]

21

3.2.3 Raspberry Pi mit AI-HAT+

Der in dieser Arbeit verwendete Raspberry Pi 5 ist ein weiterer Einplatinenrechner, der durch

Zusatzhardware für KI-Aufgaben erweitert werden kann. Der AI-HAT+ ist dabei eine

Aufsteckplatine, die einen dedizierten KI-Beschleuniger enthält. Technisch gesehen handelt es

sich hierbei um einen Hailo-basierten Beschleuniger, der über die PCIe-Schnittstelle

angebunden wird [14].

In einer typischen KI-Anwendung übernimmt der Raspberry Pi die Aufgaben der

Datenerfassung und Systemsteuerung, wie den Zugriff auf die Kamera und das Dateisystem.

Der AI-HAT+ führt dabei die rechenintensive Inferenz aus. Daraus ergibt sich eine

Arbeitsaufteilung, die die CPU des Raspberry Pi entlastet. Wie bei den Coral-Plattformen

müssen die Modelle in einem speziellen Format (HEF-Modelle) für den KI-Beschleuniger

vorbereitet werden. Dazu gehört die Anpassung der Rechenoperationen sowie die

Quantisierung. Im Abschnitt 3.4 werden der Raspberry Pi 5 und AI-HAT+ im Einzelnen

betrachtet.

Abbildung 4: Raspberry Pi 5 mit AI-HAT+ [14]

22

3.3 Untersuchung der Plattformen anhand der Kriterien

Die im Abschnitt 3.1 definierten Kriterien werden im Folgenden auf die drei betrachteten

Plattformansätze angewendet, um den Raspberry Pi 5 mit AI HAT+ in den Stand der Technik

einzuordnen.

In Hinsicht auf die Funktionalität unterstützen grundsätzlich alle drei Ansätze typische

Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung. Unterschiede ergeben

sich jedoch bei der Umsetzbarkeit. Bei Jetson-Systemen ist die Anzahl von lauffähigen

Modellen hoch, da die Beschleunigung über die integrierte GPU erfolgt und es wenige

Vorgaben an Modellformate gibt. Bei externen KI-Beschleunigern wie Coral und AI-HAT+ ist

die Funktionalität stärker davon abhängig, ob ein Modell in der geforderten Form bereitgestellt

werden kann. Dazu müssen die im Modell verwendeten Rechenoperationen vom jeweiligen

Beschleuniger unterstützt werden. Somit ist die Kompatibilität der konkreten Modelle ein

entscheidender Punkt.

Für die Echtzeitfähigkeit gilt, dass Jetson-Systeme in der Regel eine hohe Rechenleistung

erbringen, die für anspruchsvollere Modelle ein klarer Vorteil ist. Gleichzeitig sind hierfür

höhere Anforderungen an Energieversorgung und Wärmeabfuhr [15] zu berücksichtigen, was

die Einordnung als „kompaktes“ und „leichtgewichtiges“ Lehr- und Entwicklungssystem

relativiert. Bei Coral- und AI-HAT+-basierten Lösungen hängt die erreichbare Echtzeitfähigkeit

davon ab, ob das Modell vollständig auf dem KI-Beschleuniger ausgeführt werden kann.

Insbesondere Arbeitsschritte wie Bildskalierung, Filterung oder die Ausgabe von Ergebnissen

können die Gesamtlatenz beeinflussen.

Das Kriterium Anschaffungs- und Betriebskosten ist für den Kontext einer Lehr- und

Entwicklungsumgebung relevant, da es die Verfügbarkeit und den Einsatz in typischen

Projektszenarien beeinflusst. Da die Jetson-Systeme leistungsorientiert sind und als

Gesamtsystem eingeordnet werden, liegen sie meist in höheren Anschaffungsklassen. Die

Einplatinenrechner sind als Basis weit verbreitet und bieten damit eine eher kostengünstige

Lehr- und Entwicklungsumgebung.

Ergänzend dazu wird der Entwicklungsaufwand minimiert, wenn nachvollziehbare

Dokumentation, Beispielprojekte und Software-Entwicklungspakete verfügbar sind. Die

Jetson-Systeme verfügen über eine Anzahl von umfangreichen Entwicklungswerkzeugen,

jedoch erfordern sie dadurch auch eine stärkere Einarbeitung in die Systemumgebung. Bei

Coral-Systemen ergibt sich der Aufwand aus den Modellvorgaben und möglichen Prüfungen

23

für die Modellkompatibilität. Der AI-HAT+ ist in die Raspberry-Pi-Umgebung integriert und

es stehen Dokumentationen und Beispielprojekte zur Verfügung. Allerdings werden Werkzeuge

benötigt, um Modelle in ein geeignetes Ausführungsformat zu überführen.

Die Tabelle 1 gibt einen zusammenfassenden Überblick über die drei betrachteten Edge-KI-

Plattformen und ordnet sie den Kriterien zu. Herstellerzahlen der TOPS [16, 17, 14] können nur

als grobe Orientierung verwendet werden, da sie von der Modellstruktur und Rechenart

abhängen.

Plattform Funktionalität Echtzeitfähigkeit Anschaffungs-

/Betriebskosten

Entwicklungs

aufwand

NVIDIA

Jetson

(Orin

Nano)

Breites

Spektrum für

Bild-

verarbeitung

Hohe Leistung,

höherer

Energiebedarf,

bis zu 67 TOPS

höhere

Anschaffung,

höherer Betrieb,

Viele

Bibliotheken,

hoher Einstieg

Google

Coral/

Edge TPU

Effiziente

Bildmodelle

Schnell, nur bei

Kompatibilität,

4 TOPS

niedriger,

Einplatinenrechner-

basiert

Modellhürden

Raspberry

Pi 5 mit AI-

HAT+

Echtzeit-

Inferenz auf

dem Pi

Hoch, CPU-

Vor/Nachverarbei-

tung, 13/26 TOPS

niedriger,

Einplatinenrechner-

basiert

Pi-Integration,

Werkzeugkette

erforderlich

Tabelle 1: Überblick Edge-KI-Plattformen

Zusammenfassend verfügen die drei betrachteten Ansätze alle über die Kapazität, um typische

KI-Aufgaben zu bewältigen. Dabei unterscheiden sie sich primär im Systemkonzept. Die

Jetson-Systeme sind als integrierte Gesamtsysteme konzipiert und bieten eine hohe

Rechenleistung. Jedoch erfordern sie auch eine abgestimmte Systemumgebung, um effizient zu

funktionieren. Zwar sind sowohl Coral- als auch AI-HAT-Systeme modellabhängig, jedoch

unterscheiden sie sich in der Art der Abhängigkeit. Bei Coral ergeben sich Einschränkungen

aus strikten Modellvorgaben, während bei dem AI-HAT+ das erforderliche Ausführungsformat

im Vordergrund steht. Für die vorliegende Arbeit ist dabei entscheidend, dass der Raspberry Pi

5 eine verbreitete und nachvollziehbare Basis für Kamera- und Videodatenverarbeitung bietet

und der AI HAT+ die rechenintensive Inferenz auslagert. Durch die Nutzung vorgefertigter

24

Modelle kann der Entwicklungsfokus auf die Umsetzung gelegt werden sowie auf die

Evaluation der Anwendungen. Damit eignet sich der Raspberry Pi 5 mit AI-HAT+, um

praxisnahe KI-Beispiele zu implementieren und die Grenzen unter realistischen Bedingungen

zu untersuchen.

3.4 Verwendete Hardwareplattform

In diesem Abschnitt wird die in dieser Arbeit verwendete Hardwareplattform vorgestellt. Der

Raspberry Pi 5 in Kombination mit dem KI-Beschleuniger AI-HAT+ bilden die Basis für alle

entwickelten Anwendungen. Ergänzend kommen eine Kamera sowie weitere Peripheriegeräte

zum Einsatz, um Videoeingaben zu erfassen und die Ergebnisse der KI-Verarbeitung

darzustellen.

3.4.1 Raspberry Pi 5

Der Raspberry Pi 5 ist die fünfte Generation der weitverbreiteten Einplatinencomputer der

Raspberry-Pi-Familie. Er ist für einen kostengünstigen, zugleich aber leistungsfähigen Einsatz

in Lehrumgebungen, Prototypen und eingebetteten Anwendungen konzipiert [18].

Zentrale Merkmale [19, 20], die für diese Arbeit relevant sind, sind insbesondere:

• eine mehrkernfähige CPU, die die Ausführung der Steuerlogik, der Videoverarbeitung

sowie der Ansteuerung des KI-Beschleunigers übernimmt

• ausreichend Hauptspeicher, um Videodaten, Puffer und die zur Inferenz benötigten

Datenstrukturen im Arbeitsspeicher zu halten

• eine leistungsfähige Videoeinheit (GPU) zur Beschleunigung von Grafik- und

Videoaufgaben

• standardisierte Schnittstellen wie HDMI, GPIO-Pins sowie CSI- oder USB-

Schnittstellen für den Anschluss von Kameras und anderen Geräten

Der Raspberry Pi 5 übernimmt in dieser Arbeit die Rolle der zentralen Steuereinheit. Er

initialisiert die Kamera, konfiguriert die Datenverarbeitungskette, übergibt Bilddaten an den

AI-HAT+ und führt die Nachverarbeitung der Inferenzresultate durch.

25

3.4.2 AI-HAT+

Der AI-HAT+ ist ein Aufsteckmodul (HAT) für den Raspberry Pi 5, welcher einen „Neural-

Network-Accelerator“ (NPU) integriert. Dieser ist darauf ausgelegt, neuronale Netze effizient

auszuführen, und übernimmt einen Großteil der rechenintensiven Operationen, die bei der

Inferenz von Deep-Learning-Modellen anfallen. „Die NPU erlaubt es, die beschleunigten KI-

Modelle lokal auszuführen, sodass keine Daten zur Verarbeitung an einen Cloud-Server

übertragen werden müssen.“ (eigene Übersetzung) [14].

Je nach Variante des Hailo-Chips bietet das System 13 TOPS (Hailo-8L) oder 26 TOPS (Hailo-

8). Die Kommunikation zwischen Raspberry Pi 5 und AI-HAT+ erfolgt über die definierte

PCIe-Schnittstelle des HATs [14].

Der Vorteil des AI-HAT+ liegt insbesondere in der deutlich höheren Inferenzleistung im

Vergleich zu einer reinen CPU-Inferenz. Dadurch werden Bildraten im Echtzeitbereich

ermöglicht, die für Anwendungen wie Personenerkennung erforderlich sind. Der AI-HAT+

übernimmt in dieser Arbeit den Inferenzteil der Anwendungen.

3.4.3 Kamera und weitere Peripherie

Für die Erfassung der Bilddaten wird das Raspberry Pi Camera Module 2 verwendet. Diese ist

mit dem Raspberry Pi 5 verbunden. Wichtig ist dabei, dass die Kamera eine ausreichende

Bildauflösung und Bildrate liefert, um die im Rahmen dieser Arbeit untersuchten Anwendungen

sinnvoll zu betreiben. Typischerweise wird mit der Auflösung von 720p und Bildraten zwischen

15 und 30 Bildern pro Sekunde gearbeitet.

Neben der Kamera kommen weitere Peripheriegeräte zum Einsatz, unter anderem:

• einen Monitor zur Darstellung des Videobildes und der KI-Ergebnisse

• Eingabegeräte wie Tastatur und Maus zur Bedienung des Systems

Die Gesamtplattform aus Raspberry Pi 5, AI-HAT+, Kamera und Peripherie bildet eine

kompakte Edge-KI-Plattform, ohne dass eine externe Cloud-Infrastruktur angebunden werden

muss. Sie dient in dieser Arbeit als Referenzplattform für die Untersuchung, wie

praxisorientierte KI-Anwendungen unter realistischen Randbedingungen auf einer

ressourcenbegrenzten Hardware umgesetzt werden können.

26

4. Anforderungen und Design der KI-Beispiele

In diesem Kapitel werden die Anforderungen der entwickelten KI-Anwendungen beschrieben

und das darauf aufbauende Design der Systemarchitektur vorgestellt. Im Fokus stehen drei KI-

Beispiele, die auf Bild- bzw. Videodaten operieren und in Echtzeit ausgeführt werden sollen.

Die Architektur soll dabei die begrenzten Hardware-Ressourcen der Plattform berücksichtigen

und gleichzeitig genügend Flexibilität für die verschiedenen Anwendungsfälle bieten.

4.1 Überblick über die umgesetzten KI-Anwendungen

Im Rahmen dieser Arbeit werden folgende KI-Anwendungen realisiert:

Posenerkennung:

In dieser Anwendung wird die Körperhaltung einer Person im Kamerabild analysiert. Ein

Modell zur Schätzung von Körperposen erkennt sogenannte „Schlüsselpunkte“. Diese Punkte

sind Positionen von bestimmten Gelenkpunkten wie Schultern, Ellenbogen oder Handgelenken.

Aus diesen Angaben lassen sich diskrete Posen wie „Arme gehoben“ oder „Arme unten“

mithilfe einfacher Regeln ableiten. Diese Anwendung eignet sich insbesondere zur

Demonstration von Mensch-Maschine-Interaktion über Körperbewegungen.

Gesichtsmaskierung:

Diese Anwendung detektiert das Gesicht im Kamerabild und maskiert es durch Verpixelung

oder Unschärfe der entsprechenden Bildbereiche in Echtzeit. Ein Gesichtsdetektionsmodell

liefert den Bildbereich des erkannten Gesichts. Auf dieser Basis wird entschieden, welche

Bildbereiche maskiert werden sollen. Sie adressiert den Aspekt des Datenschutzes und zeigt,

wie KI-basierte Erkennung mit anschließender Bildmanipulation kombiniert werden kann.

Fahrzeugzählung:

In dieser Anwendung werden Fahrzeuge im Bild erkannt und gezählt, sobald sie eine im Bild

definierte virtuelle Linie überqueren. Ein Objekterkennungsmodell erkennt Fahrzeuge im Bild

und markiert die Position der Bildbereiche. Aus dieser Position wird abgeleitet, ob sich der

Mittelpunkt einer Fahrzeugbox bewegt hat und ob sie sich von einer Seite der Linie auf die

27

andere bewegt hat. Die Anwendung demonstriert ein einfaches Szenario der

Verkehrsüberwachung und eignet sich, um die Kombination aus Objektverfolgung und

Ereignislogik („Linienkreuzung“) zu zeigen.

Die drei Beispiele decken damit unterschiedliche Anwendungsfelder ab: Mensch-Maschine-

Interaktion, Datenschutz und Videoanalyse im Verkehrsbereich. Gleichzeitig nutzen sie

ähnliche technische Bausteine wie Kamera, Inferenz, Nachverarbeitung, die eine gemeinsame

Systemarchitektur ermöglichen.

4.2 Funktionale Anforderungen

Im Folgenden werden die funktionalen Anforderungen an die einzelnen Anwendungen

beschrieben. Sie legen fest, welche Funktionen die Prototypen bereitstellen sollen.

4.2.1 Posenerkennung

Die Anwendung soll einen Videostream erfassen können über eine angeschlossene Kamera.

Dabei soll es möglich sein, mindestens eine Person zu erkennen und die Körpergeste über

Schlüsselpunkte zu berechnen. Durch vordefinierte Regeln soll die Anwendung die Körperpose

erkennen und die erkannte Pose im Videobild oder im Terminal in Echtzeit anzeigen. Dabei

liegt die Verarbeitung eines einzelnen Benutzers im Vordergrund, während der Umgang mit

mehreren Personen optional ist.

4.2.2 Fahrzeugzählung

Die Anwendung soll Fahrzeuge im Videostream erkennen können, mithilfe eines

Objekterkennungsmodells. Es soll eine virtuelle Linie im Bild definiert werden, welche relativ

zur Fahrstrecke der Fahrzeuge liegt (horizontal oder vertikal). Die Position der erkannten

Fahrzeuge soll verfolgt werden und ein Zähler wird erhöht, sobald ein Fahrzeug die Linie in

einer definierten Richtung überquert.

28

4.2.3 Gesichtsmaskierung

Die Anwendung soll Gesichter im Videostream erkennen können. Um erkannte Gesichter

deutlich sichtbar zu machen, wird eine Box um das erkannte Objekt gezeichnet. Danach folgt

die Maskierung der Gesichter durch Verpixelung oder Weichzeichnen der entsprechenden

Bildbereiche. Die Darstellung des maskierten Videostreams erfolgt dabei in Echtzeit. Die

Anwendung soll dabei mindestens ein Gesicht erkennen und maskieren können.

4.3 Nicht-funktionale Anforderungen

Neben den funktionalen Anforderungen spielen nicht-funktionale Anforderungen eine wichtige

Rolle. Sie legen grob fest, wie gut die Anwendungen ihre Aufgaben erfüllen sollen. Genauere

Zielwerte für Bildrate oder Latenz werden in Kapitel 6 „Evaluation“ festgelegt (Siehe 6.3).

Die folgenden Anforderungen gelten für alle Anwendungen:

Echtzeitfähigkeit und Latenz:

Alle Programme sollen reibungslos funktionieren und mindestens 15 Bilder pro Sekunde

anzeigen. Die Bildrate sollte bei normaler Belastung konstant bleiben, ohne dass es zu starken

Einbrüchen kommt. Die Verzögerung zwischen Kameraaufnahme und Darstellung der

Ergebnisse soll minimal sein. Der Nutzer soll die Resultate in Echtzeit wahrnehmen, ohne dass

sich Verzögerungen oder Inkonsistenzen bemerkbar machen.

Ressourcennutzung:

Es sollte sichergestellt werden, dass die CPU- und Speicherauslastung in einem Bereich bleibt,

der für einen dauerhaften Betrieb ohne Instabilität sorgt. Dabei soll der Raspberry Pi nach

längerer Zeit nicht überhitzen oder in eine CPU-Drosselung geraten. Ressourcen bleiben bei

mehreren Prozessen ordnungsgemäß verteilt und blockieren nicht das System.

Robustheit:

Die Anwendungen sollen über eine längere Zeit stabil funktionieren, ohne dass sie abstürzen.

Außerdem sollen sie in alltäglichen Situationen (normale Beleuchtung, mäßige Bewegung,

unterschiedliche Hintergründe) verlässliche Ergebnisse erzielen. Darüber hinaus sollte die

Erkennung gegenüber Verdeckungen, leichtem Wackeln und unterschiedlichen Distanzen

tolerant sein.

29

Bedienbarkeit:

Alle Programme sollen mit nur wenigen Schritten gestartet werden können, etwa mit einem

Skript oder einem Befehl. Die Ergebnisse werden verständlich dargestellt, durch gezeichnete

Boxen, Schlüsselpunkte und Statusanzeigen im Videobild oder im Terminal.

Datenschutz:

Die Daten sollen lokal verarbeitet werden und keine Cloudanbindung haben. Eine Speicherung

von Bildern ist nur bewusst möglich und klar gekennzeichnet. Insbesondere sollen die

Ergebnisse der Maskierung zuverlässig sein.

4.4 Zielsetzung des Systemdesign

Das Systemdesign verfolgt drei zentrale Ziele, die im Folgenden erläutert werden:

Echtzeitverarbeitung des Videostreams:

Als Erstes soll der Videostream der Kamera in Echtzeit verarbeitet werden können, sodass der

Benutzer eine direkte Rückmeldung seiner Bewegung oder der Ereignisse im Video erhält.

Dazu ist ein durchgängiger „Pipeline“-Ansatz erforderlich, der Bildaufnahme, Vorverarbeitung,

Inferenz, Nachverarbeitung und Darstellung sinnvoll verbindet.

Auslagerung der KI-Inferenz auf den AI-HAT+:

Als Zweites wird es angestrebt, dass die rechenintensive Ausführung der neuronalen Netze auf

den AI-HAT+ ausgelagert wird. Der Raspberry Pi 5 dient lediglich als Steuereinheit und

übernimmt Vor- und Nachverarbeitungsaufgaben, sowie die Darstellung der Ergebnisse.

Dadurch sollen die Ressourcen der CPU geschont werden, um höhere Bildraten zu ermöglichen.

Gemeinsame Architektur für alle Anwendungen:

Das dritte Ziel ist es, die Architektur so zu gestalten, dass alle Anwendungen auf einer ähnlichen

Datenverarbeitungskette basieren, welche aus Kameraeingang, Vorverarbeitung, Inferenz,

Nachverarbeitung und Darstellung besteht. Die Unterschiede zwischen den Anwendungen

sollen in der Auswahl des Modells und der Auswertung des Modells liegen, nicht in den

verschiedenen Strukturen. Dadurch werden die Entwicklung, Vergleichbarkeit und

Wiederverwendung von Komponenten erleichtert.

30

4.5 Konzeption der gemeinsamen Systemarchitektur

Obwohl die drei Anwendungen unterschiedliche Aufgaben lösen, sollen sie auf einer

gemeinsamen Systemarchitektur basieren. Wie im vorherigen Abschnitt genannt, erleichtert es

die Entwicklung, den Vergleich und eine mögliche Wiederverwendung der Komponenten. Der

Kern ist eine „Videopipeline“ (Videoverarbeitungskette). Dabei wird jedes einzelne Bild in

einer gleichen Abfolge von Verarbeitungsschritten durchlaufen. Auf hoher Abstraktionsebene

lässt sich die Architektur folgendermaßen beschreiben:

1. Videoaufnahme: Die Kamera liefert einen kontinuierlichen Videostream an den Raspberry

Pi. Es werden die aktuellen Bilder des Videostreams ausgelesen, welche die Kamera liefert. Die

einzelnen Bilder dienen als Eingang für weitere Verarbeitung.

2. Vorverarbeitung: Die Rohbilder liegen zunächst im kameraspezifischen Ausgangsformat

vor. Je nach KI-Modell gibt es Anforderungen zur Auflösung und zum Farbraum. Der Schritt

der Vorverarbeitung passt die Bilder an diese Anforderungen. Die Bilder werden auf die

geeignete Eingangsauflösung skaliert (1280 × 720 Pixel, sofern das Modell keine anderen

Vorgaben macht). Als Nächstes folgt die Umwandlung in den benötigten Farbraum (RGB, falls

keine Vorgaben existieren). Gegebenenfalls ist auch eine Normalisierung der Pixelwerte nötig.

3. KI-Inferenz auf dem AI-HAT+: Das vorbereitete Bild wird nun an den AI-HAT+

übertragen. In diesem Schritt wird das zuvor geladene Modell ausgeführt und das vorbereitete

Bild eingegeben. Dabei ist wichtig zu verstehen, dass die Anwendung keine Details über die

interne Funktionsweise des AI-HAT+ kennen soll. Die Schnittstelle soll modellunabhängig

einheitlich sein. Die Bilder werden analysiert und der AI-HAT+ erzeugt strukturierte Ausgaben

wie Klasseninformationen, Schlüsselpunkte oder Rahmenboxen (Bounding Boxes).

4. Nachverarbeitung: Die Roh-Ausgaben des Modells werden interpretiert und in nutzbare

Informationen umgewandelt. Die Rahmenboxen und Schlüsselpunkte werden in das Bild

gezeichnet. Eine Skalierung in die ursprüngliche Auflösung soll hier geschehen.

Gleichzeitig wird hier die anwendungsspezifische Logik eingebaut:

• Gestenerkennung: Die vom Modell gelieferten Schlüsselpunkte enthalten die benötigten

Informationen, um anhand von vordefinierten Regeln eine diskrete Pose zu bestimmen.

• Gesichtsmaskierung: Das Modell liefert den Bildbereich des erkannten Gesichts, der

anschließend verpixelt oder weichgezeichnet wird.

31

• Fahrzeugdetektion und -zählung: Das Modell erkennt die verschiedenen Fahrzeuge im

Bild. Aus den Positionen wird abgeleitet, ob das Fahrzeug die virtuelle Linie

überquert. In dem Fall wird der Zähler erhöht.

5. Darstellung: Die Ergebnisse der Nachverarbeitung werden je nach Anwendung im Videobild

dargestellt, beispielsweise durch Skelett- und Schlüsselpunktdarstellungen, maskierte

Bildbereiche und Rahmenboxen. Zusätzlich werden Textinformationen wie Pose, Zählerstand

oder Debug-Ausgaben im Terminal ausgegeben. Das erzeugte Bild wird auf dem Monitor

sichtbar und bildet die sichtbare Rückmeldung des Systems.

Die Architektur ist bewusst so ausgelegt, dass Kameraeingang, Vorverarbeitung, Inferenz,

Nachverarbeitung und Bildausgabe in allen Anwendungen in ähnlicher Weise realisiert werden.

Die Unterschiede ergeben sich hauptsächlich im verwendeten Modell und im jeweiligen

Nachverarbeitungsschritt. Dadurch entsteht eine modulare Systemarchitektur, welche die

Wiederverwendung von Komponenten ermöglicht.

32

Abbildung 5: Aktivitätsdiagramm der Videoverarbeitungskette

33

4.6 Auswahl der KI-Modelle

Für die Umsetzung der Anwendungen wurden bewusst vortrainierte Modelle aus dem Hailo-

Model-Zoo [21] ausgewählt. Der Model-Zoo bietet eine reichliche Anzahl an vortrainierten

Modellen an, die im Zielformat für Hailo-Beschleuniger liegen. Zudem bietet er Umgebungen

und Werkzeuge an, um eigene Modelle zu trainieren. Das Training von eigenen Modellen wäre

im Rahmen dieser Arbeit zeitlich und organisatorisch nicht sinnvoll gewesen, da die

Datenaufbereitung und das Modelltraining zeitintensiv sind und das eigentliche Ziel der Arbeit

verschoben hätte. Die Auswahlkriterien waren daher die Verfügbarkeit als vorkompilierte HEF-

Datei, die Kompatibilität mit dem AI-HAT+, sowie eine ausreichende Laufzeitperformance für

Echtzeitanwendungen.

Für die Posenerkennung wurde das „YOLO8s Pose“-Modell [22] verwendet. Dieser schätzt

Körperposen und liefert pro Person mehrere Gelenkpunkte. Das Modell eignet sich besonders

gut, da es keine fertigen Klassen ausgibt, sondern nur die Positionen der Körperpunkte. Dadurch

bleibt die Logik anpassbar, während das Modell die Schätzung übernimmt.

Die Fahrzeugdetektion und -zählung verwendet das „YOLOv8s“-Objekterkennungsmodell

[23]. Dieser kann 80 verschiedene Klassen erkennen und klassifizieren. Da in der Anwendung

mehrere Objekte erkannt werden sollen, wie zum Beispiel Autos, Motorräder oder Fahrräder,

deckt das Modell die benötigten Klassen ab.

Das Gesichtserkennungsmodell „SCRFD_10G“ [24] wurde für die Gesichtsmaskierung

verwendet. Das Modell ist für den Anwendungsfall besser geeignet als ein

Gesichtsidentifikationsmodell, da nur die Gesichtsregion benötigt wird. Eine Identität des

Gesichtes würde nicht das Datenschutz-Ziel dieser Anwendung verfolgen.

Insgesamt wurde die Modellauswahl so getroffen, dass sich alle drei Anwendungen mit der

konzipierten Architektur implementieren lassen. Dabei liefern die Modelle strukturierte

Ausgaben, die sich in der Nachverarbeitung weiterverarbeiten lassen. Die Unterschiede der

Modelle liegen somit in den Ausgaben und weniger in der Systemintegration, wodurch ein

Vergleich in der entwickelten Architektur möglich ist.

34

4.7 Annahmen und Abgrenzungen

Für die Konzeption der Anwendungen werden einige Annahmen getroffen und bewusste

Abgrenzungen vorgenommen:

• Die Anwendungen sind als Prototypen zu verstehen und nicht als produktive Systeme.

Bestimmte Aspekte wie umfassende Fehlerbehandlung werden nicht betrachtet.

• Das Training der verwendeten Modelle ist nicht Bestandteil dieser Arbeit. Es wird

vorausgesetzt, dass geeignete, vortrainierte Modelle zur Verfügung stehen und in das

für den AI-HAT+ notwendige Format vorkompiliert sind (Hailo-Model-Zoo).

• Die Anwendungen werden unter kontrollierten Bedingungen entwickelt und getestet,

zum Beispiel mit einer einzelnen Person vor der Kamera oder einem definierten

Kamerawinkel bei der Fahrzeugzählung. Extreme Szenarien wie schlechte

Beleuchtung, starke Bewegungsunschärfe oder sehr viele Objekte im Bild werden nur

eingeschränkt betrachtet.

• Die Arbeit konzentriert sich auf die bildbasierte KI-Verarbeitung. Weitere Sensoren

werden nicht einbezogen.

Durch diese Abgrenzungen bleibt der Umfang der Arbeit überschaubar, während die gewählten

Beispiele dennoch ein breites Spektrum typischer Edge-KI-Anwendungen abdecken.

35

5. Implementierung

In diesem Kapitel wird beschrieben, wie das im vorherigen Abschnitt entwickelte Design

konkret in Software umgesetzt wurde. Für das Verständnis werden als Erstes die technischen

Grundlagen erläutert. Im Anschluss wird auf die gemeinsame Basisimplementierung

eingegangen, bevor die Besonderheiten der einzelnen Anwendungen erläutert werden.

5.1 Entwicklungsumgebung und verwendete Technologien

Die Implementierung erfolgt in Python, da diese Sprache eine gute Unterstützung für

Bildverarbeitung, Skripting und die Anbindung externer Bibliotheken bietet. Auf der untersten

Ebene stellt das Betriebssystem Raspberry Pi OS die notwendigen Gerätetreiber zur Verfügung,

um die Kamera und den AI-HAT+ anzusprechen. Die Treiber, Multimedia-Frameworks und

Bibliotheken werden im Folgenden besprochen.

5.1.1 GStreamer als Videopipeline

GStreamer ist ein Multimedia-Framework [25], mit dem sich Videodaten in Pipelines

verarbeiten lassen. Eine Pipeline besteht aus einer Reihe von Elementen [26, 27], die jeweils

eine klar definierte Aufgabe übernehmen. Somit können Datenverarbeitungsschritte

miteinander verbunden. Jedes Element besitzt sogenannte „Pads“ [28]. Das sind Eingangs- und

Ausgangsanschlüsse (src und sink), über die Daten von einem Element zum nächsten fließen.

Somit entsteht eine durchgehende Datenstrecke.

Abbildung 6: GStreamer, Elemente, Pads, Pipeline [26]

Die Pipeline wird in Python aufgebaut und gesteuert. Die einzelnen Elemente werden zu einer

festen Reihenfolge miteinander verbunden. Die Kamerabilder fließen kontinuierlich durch

36

diese Kette. In den Hailo-Referenzanwendungen wird der AI-HAT+ über herstellerspezifische

GStreamer-Elemente in die Pipelines integriert [29]. Ein Element (hailonet) übernimmt in der

Regel die Inferenz und ein weiteres Element (hailooverlay) kann die Visualisierung der

Erkennungsergebnisse unterstützen. Diese Hailo-Elemente fügen sich wie normale GStreamer-

Bausteine in die Pipeline ein, sodass Kamera, Inferenz und Ausgabe in einem durchgehenden

Datenfluss verbunden werden können.

Für die anwendungsspezifische Logik müssen die Anwendungen Zugriff auf die

Modellausgaben haben. Dafür benutzt diese Arbeit das Konzept der „Pad-Probe“ [30] in

GStreamer. Eine Pad-Probe ist ein „Abhörpunkt“ an einem Pad eines Elements. Somit kann

eine Callback-Funktion an einem bestimmten Pad registriert werden. Typischerweise liegt dies

am Ausgangspad des Elements, das die Modellausgaben bereitstellt. Das heißt, dass die

Callback-Funktion aufgerufen wird, sobald ein Bild dieses Pad passiert. Somit kann bei jedem

Bild die Funktion aufgerufen werden und die benötigten Informationen abrufen.

5.1.2 Hailo-Softwareumgebung

Damit der AI-HAT+ als KI-Beschleuniger genutzt werden kann, wird eine spezifische Hailo-

Softwareumgebung benötigt. Im Wesentlichen besteht die Umgebung aus drei Bausteinen:

Der Hailo-Treiber [31] sorgt dafür, dass der AI-HAT+ vom Betriebssystem erkannt wird und

als Gerät zur Verfügung steht. Der Treiber übernimmt den Datentransfer zwischen dem

Arbeitsspeicher des Raspberry Pi und dem Speicher des Hailo-Chips. In der Implementierung

wird der Treiber nicht direkt angesprochen, jedoch ist er die Voraussetzung, damit andere

Bibliotheken auf den Beschleuniger zugreifen können.

Die HailoRT-Runtime [32, 33] ist die Laufzeitumgebung, die direkt mit dem Hailo-Chip

kommuniziert. Sie lädt die HEF-Modelle in den Chip und führt die Inferenz durch. In den

Anwendungen dieser Arbeit wird HailoRT überwiegend indirekt über GStreamer-Elemente

genutzt, da die Hailo-Plugins intern auf HailoRT zurückgreifen.

Das Hailo-SDK [34] ist das Entwicklerpaket und stellt verschiedene Werkzeuge bereit (z. B.

Modellkonvertierungswerkzeuge). Die Referenzbeispiele [35] aus dem SDK dienten als

Vorlage für den Aufbau der eigenen GStreamer-Pipeline.

37

5.1.3 Python-Bibliotheken für Bildverarbeitung und Numerik

In den Anwendungen kamen mehrere Python-Bibliotheken zum Einsatz.

Open Source Computer Vision Library (OpenCV) [36] ist eine verbreitete Bibliothek für

Bildverarbeitung und Computer Vision. Für die entwickelten Anwendungen stellt sie

Funktionen zur Skalierung, Filterung, Farbkonvertierung und mehr bereit.

NumPy [37] ist die Standardbibliothek für numerische Berechnungen in Python. Für die

Anwendungen stellt sie Datenstrukturen für Vektor- und Matrixoperationen zur Verfügung.

Die Kombination aus GStreamer, Hailo-Softwareumgebung und Python-Bibliotheken bildet

die technische Grundlage für die folgenden Abschnitte der Implementierung.

38

5.2 Gemeinsame Basisimplementierung

In der gemeinsamen Basisimplementierung wird in der Funktion build_pipeline die Pipeline

gebaut. Es wird eine Kette aus Kameraquelle (rpicamsrc für den Raspberry-Pi-Kamerastack

oder alternativ v4l2src für Video4Linux2), Konvertierungs- und Skalierungsschritten, einem

Hailo-Inferenz-Element und einem Video-Sink erstellt. Dabei werden Breite, Höhe und Bildrate

der Frames zentral festgelegt (1280×720 Pixel). Nach dem Aufbau werden die Hailo-

spezifischen Elemente (hailonet, hailooverlay und hailofilter) aus der Pipeline

geholt und bei Bedarf weiter konfiguriert.

FRAME_WIDTH = 1280

FRAME_HEIGHT = 720

FRAMERATE = 30

def build_pipeline(app_name: str = "name", use_rpicam: bool = True):

 if use_rpicam:

 source = (

 "rpicamsrc name=src "

 f"! video/x-raw,width={FRAME_WIDTH},height={HEIGHT},"

 f"framerate={FRAMERATE}/1"

)

 else:

 source = (

 "v4l2src device=/dev/video0 name=src "

 f"! video/x-raw,width={WIDTH},height={HEIGHT},"

 f"framerate={FRAMERATE}/1"

)

 pipeline_desc = f"""

 {source}

 ! videoconvert

 ! videoscale

 ! video/x-raw,format=RGB

 ! queue

 ! hailonet name=hnet hef-path={hef_path}

 ! queue

 ! hailofilter name= hfilter so-path={so_path}

 ! queue

 ! hailooverlay name=overlay

 ! queue

 ! identity name=identity_callback

 ! autovideosink sync=false

 """

 return Gst.parse_launch(pipeline_desc)

Codeblock 1: Quellcode Pipeline bauen

39

def configure_hailo_elements(pipeline):

 hnet = pipeline.get_by_name("hnet")

 overlay = pipeline.get_by_name("overlay")

 # Beispiel: Eigenschaften könnten hier gesetzt werden

 # hnet.set_property("batch-size", 1)

 # overlay.set_property("draw-scores", True)

Codeblock 2: Quellcode Hailo-Elemente holen und konfigurieren

Die eigentliche KI-Inferenz wird mit der Hilfe der GStreamer-Elemente hailonet und

hailooverlay realisiert. Die Elemente, sowie Hailo-Runtime werden als dynamische

Bibliotheken (.so-Dateien) von der Hailo-SDK bereitgestellt und in das System eingebunden.

Das Element hailonet übernimmt das Laden des jeweiligen HEF-Modells in den Hailo-Chip

sowie die Ausführung der Inferenz. Die vorverarbeiteten Bilder werden als Eingabe an

hailonet übergeben. Dort werden sie verarbeitet und die Modell-Ausgaben, wie zum

Beispiel Rahmenboxen oder Schlüsselpunkte, werden als Metadaten an den jeweiligen

Videobuffer gehängt (hailofilter). Nun liest das Element hailooverlay die

Metadaten aus und zeichnet die entsprechenden Informationen direkt in das Videobild ein, z.

B. Rahmen um erkannte Fahrzeuge oder Gesichter.

Am Ende der GStreamer-Pipeline steht ein Video-Sink-Element wie autovideosink oder

waylandsink. Diese Elemente sind dafür zuständig, um den resultierenden Videostream im

Anzeigefenster des Raspberry Pi auszugeben. Außerdem wird in allen Anwendungen eine Pad-

Probe am Ausgabepad (src-Pad) angehangen. Diese Pad-Probe ruft pro Bild eine Rückruf-

Funktion (app_callback) auf. In dieser Funktion ist der Zugriff auf den aktuellen

Videobuffer und die angehängten Metadaten möglich. Die anwendungsspezifische Logik, wie

zum Beispiel die Posenklassifikation, wird auf Grundlage dieser Information in der Rückruf-

Funktion umgesetzt. Gleichzeitig wird hier eine Funktion eingebaut, um die Metriken wie

Bildrate, Latenz und CPU-Auslastung aufzuzeichnen.

40

def app_callback(pad, info, user_data):

 buffer = info.get_buffer()

 if buffer is None:

 return Gst.PadProbeReturn.OK

 detections = []

 try:

 roi = hailo.get_roi_from_buffer(buffer)

 detections = roi.get_objects_typed(hailo.HAILO_DETECTION)

 except Exception:

 detections = []

 #Anwendungsspezifische Logik hier

 #Metriken

 return Gst.PadProbeReturn.OK

Codeblock 3: Quellcode Callback-Funktion

Die Pipeline erhält ein identity-Element, damit die Pad-Probe sicher platziert werden kann.

Das identity-Element gibt die Bilder neutral weiter, ohne sie zu verändern. Sie dient dem

Zweck, einen stabilen Ankerpunkt für die Pad-Probe bereitzustellen. Da Sink-Elemente von

Pipeline zu Pipeline unterschiedlich sein können, wäre es ohne das Element schwieriger, die

Probe zuverlässig an derselben Stelle zu platzieren. Nachdem die Pipeline erstellt wurde, wird

das identity-Element über seinen Namen identity_callback gesucht. Anschließend

wird das src-Pad ausgelesen und dort eine Pad-Probe registriert, die bei jedem Bild die Funktion

app_callback ausführt. Im Codeblock 4 wurde dieses Vorgehen implementiert.

def build_pipeline(app_name: str = "name", use_rpicam: bool = True):

 (...)

 pipeline = Gst.parse_launch(pipeline_desc)

 identity = pipeline.get_by_name("identity_callback")

 src_pad = identity.get_static_pad("src")

 src_pad.add_probe(Gst.PadProbeType.BUFFER, app_callback,

None)

 return pipeline

Codeblock 4: Quellcode identity-Element holen und anhängen

41

Der eigentliche Programmstart erfolgt über die main-Funktion. In der Funktion wird die

Videopipeline aufgebaut und eine GLib-Mainloop gestartet, sodass die Pipeline kontinuierlich

ausgeführt wird. Die eigentliche Struktur der Pipeline wird in einer eigenen Funktion gekapselt,

sodass die drei Anwendungen jeweils als eigenständige Programme umgesetzt sind, jedoch alle

dem gleichen grundlegenden Pipeline-Aufbau folgen.

import gi

from gi.repository import Gst, GObject

def main():

 Gst.init(None)

 loop = GObject.MainLoop()

 pipeline = build_pipeline()

 pipeline.set_state(Gst.State.PLAYING)

 try:

 loop.run()

 except KeyboardInterrupt:

 pass

 finally:

 pipeline.set_state(Gst.State.NULL)

 (...)

if __name__ == "__main__":

 main()

Codeblock 5: Quellcode Main-Funktion

Durch die Kombination aus Hailo-SDK und GStreamer können Kamerabilder eingelesen, auf

den AI-HAT+ verarbeitet und das Ergebnis angezeigt werden. In den folgenden

Unterabschnitten wird auf die anwendungsspezifischen Unterschiede eingegangen.

42

Die Abbildung 7 zeigt noch einmal die Pipeline mit ihren Elementen:

Abbildung 7: Aktivitätsdiagramm Ablauf der Videopipeline

43

5.3 Implementierung der Gestenerkennung

Die Gestenerkennung auf Basis der Körperpose verwendet das Modell „YOLO8s Pose“, das

für jede erkannte Person im Bild eine Menge von Gelenkpunkten liefert. In der

Implementierung werden diese Schlüsselpunkte zunächst in Pixelkoordinaten des

ursprünglichen Kamerabildes zurückgerechnet. Anschließend werden sie so miteinander

verbunden, dass eine einfache Skelettdarstellung entsteht, die im Video visualisiert wird.

Als Erstes werden die Rohdaten von der Kamera geliefert. Das Modell erwartet jedoch eine

Eingabegröße von 640×640 Pixel. Das Bild wird proportional skaliert, sodass das

Seitenverhältnis gleich bleibt und die fehlenden Bereiche mit Rändern aufgefüllt werden

(Padding). Ein „Strecken“ des Bildes würde es verzerren und die Erkennung verschlechtern.

 Im hailonet-Element wird das Modell geladen und der Hailo-Chip führt die Inferenz aus.

Danach dekodiert das hailofilter-Element die Tensors und führt die Koordinaten vom

Netzraum zurück in den Bildraum mithilfe der Funktion filter_letterbox (aus der

Nachverarbeitungsbibliothek libyolov8pose_postprocess.so). Die fertigen Metadaten

HAILO_DETECTION und HAILO_LANDMARKS werden an den GStreamer-Buffer angehängt

und können mit der Funktion hailo.get_roi_from_buffer(buffer) gelesen

werden.

Am Ende zeichnet hailooverlay noch die Boxen und die Schlüsselpunkte, um ein Skelett

zu erhalten. Aus dem GStreamer-Buffer wird nun die beste Person und deren Schlüsselpunkte

genommen, um die Pose zu klassifizieren. Da die Punkte noch relativ zur Rahmenbox

normalisiert sind, müssen sie in Bildpixel umgerechnet werden:

1. Relativ in Rahmenbox → relativ im Bild

𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 = 𝑝. 𝑥() ⋅ 𝑏𝑏𝑜𝑥. 𝑤𝑖𝑑𝑡ℎ() + 𝑏𝑏𝑜𝑥. 𝑥𝑚𝑖𝑛()

𝑦𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 = 𝑝. 𝑥() ⋅ 𝑏𝑏𝑜𝑥. 𝑤𝑖𝑑𝑡ℎ() + 𝑏𝑏𝑜𝑥. 𝑥𝑚𝑖𝑛()

2. Relativ im Bild → Bildpixel

𝑥𝐵𝑖𝑙𝑑𝑝𝑖𝑥𝑒𝑙 = 𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 ∙ 𝑊

𝑦𝐵𝑖𝑙𝑑𝑝𝑖𝑥𝑒𝑙 = 𝑦𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 ∙ 𝐻

44

roi = hailo.get_roi_from_buffer(buffer)

detections = roi.get_objects_typed(hailo.HAILO_DETECTION)

best_kps, best_conf = None, 0.0

for det in detections:

 if det.get_label() != "person":

 continue

 bbox = det.get_bbox()

 conf = det.get_confidence()

 lmarks = det.get_objects_typed(hailo.HAILO_LANDMARKS)

 if not lmarks:

 continue

 pts = lmarks[0].get_points()

 kps_xyc = []

 for p in pts:

 x = (p.x()*bbox.width() + bbox.xmin()) * W

 y = (p.y()*bbox.height()+ bbox.ymin()) * H

 kps_xyc.append((x, y, conf))

 if conf > best_conf:

 best_conf, best_kps = conf, kps_xyc

Codeblock 6: Quellcode Umrechnung der Gelenkpunkte in Bildpixel

Um die Posen zu klassifizieren, müssen einige Regeln programmiert werden. Für HANDS_UP

müssen die Handgelenke deutlich über der Nase und Schulterhöhe liegen. Für die erste Regel

benötigen wir die y-Koordinaten der Handgelenke. In Bildkoordinaten liegt der Ursprung oben

links. Das heißt, dass für die Handgelenke ein höherer Wert zurückgegeben wird, obwohl sie

im Bild tief liegen (neutrale Position). Für die Programmierung der Regeln heißt das, dass der

Wert der Handgelenke kleiner sein muss als der Nasen Wert. Dies gilt auch für die zweite Regel,

die besagt, dass die Handgelenke über den Schultern sein müssen. Damit sichergestellt werden

kann, dass die Handgelenke deutlich über der Nase und den Schultern sind, werden die

Koordinaten jeweils um 10% der Bildhöhe erhöht.

#lwy: y-Wert des linken Handgelenks

#rwy: y-Wert des rechten Handgelenks

#nose_y: y-Wert der Nase

#mean_sh: Mittelwert der Schultern

up_margin = 0.10*H

if (lwy < nose_y - up_margin and rwy < nose_y - up_margin) or \

 (lwy < mean_sh - up_margin and rwy < mean_sh - up_margin):

 return "HANDS_UP"

Codeblock 7: Quellcode HANDS_UP Regeln

45

T_POSE wird erkannt, sobald Handgelenke und Ellenbogen auf Schulterhöhe sind oder weit

nach außen gehen. Um sicherzugehen, dass die Handgelenke nicht exakt auf der Schulterhöhe

liegen müssen, wird ein vertikales Toleranzband definiert. Das Band lässt Abweichungen von

bis zu 18% der Bildhöhe zu. Zudem wird verglichen, ob die Höhe der Handgelenke auf der

Höhe der Schultern liegt (innerhalb des Toleranzbands). Um zu schauen, ob die Arme

ausgestreckt sind, wird das Maximum aus 60% der Schulterbreite und 15% der Bildbreite

genommen. Dieser Wert wird mit den x-Werten der Handgelenke verglichen, um zu schauen,

ob sie seitlich weit genug von den Schultern entfernt sind.

#lwy/rwy: y-Wert des linken/rechten Handgelenks

#torso_w: Breite des Torsos (ungefähre Schulterbreite)

#lsy/rsy: y-Wert der linken/rechten Schulter

#lsx/rsx: x-Wert der linken/rechten Schulter

tol_y_level = 0.18*H

out_min_x = max(0.6*torso_w, 0.15*W)

left_lvl = abs(lwy - lsy) < tol_y_level

right_lvl = abs(rwy - rsy) < tol_y_level

left_out = abs(lwx - lsx) > out_min_x

right_out = abs(rwx - rsx) > out_min_x

if left_lvl and right_lvl and (left_out or right_out):

 return "T_POSE"

Codeblock 8: Quellcode T_POSE Regeln

 Als Letztes wird ARMS_DOWN erkannt, sobald die Handgelenke deutlich unter der

Schulterhöhe liegen. Um herauszufinden, ob die Handgelenke unter der Schulterhöhe sind,

werden die jeweiligen Handgelenke mit dem Mittelwert der Schultern verglichen. Ein

Schwellwert wurde auf 35% der Torsohöhe unterhalb der mittleren Schulterhöhe definiert, da

dies die besten Ergebnisse in den Tests erzielte. Die Regel erwies sich trotzdem als zu

großzügig, da seitlich ausgestreckte Arme teilweise als ARMS_DOWN erkannt wurden. Daher

wurde eine zweite Bedingung ergänzt, die die seitliche Nähe der Arme zum Körper prüft. Ein

Handgelenk gilt als nah am Körper, wenn der horizontale Abstand zur jeweiligen Schulter

kleiner ist als ein neu definierter Schwellwert, der sich aus dem Maximum aus 50%

Schulterbreite und 10% Bildbreite zusammensetzt.

46

below_sh_thr = mean_sh + 0.35*torso_h

hands_below = (lwy > below_sh_thr) and (rwy > below_sh_thr)

near_body_max_x= max(0.5*torso_w, 0.10*W)

hands_near = (abs(lwx - lsx) < near_body_max_x) and (abs(rwx -

rsx) < near_body_max_x)

if hands_below and hands_near:

 return "ARMS_DOWN"

Codeblock 9: Quellcode ARMS_DOWN Regeln

Die app_callback-Funktion ist das Herzstück der Anwendung. Sie wird für jedes

ankommende Bild aufgerufen und führt die Auswertung aus. Vereinfacht lässt sich der Ablauf

so beschreiben: Die Kamera liefert als Erstes ein Videobild. Das Hailo-Modul führt auf dem

Bild die Inferenz aus und in der Nachverarbeitung werden die Metadaten wie „Person“ und

Schlüsselpunkte der Pose an das Bild angehängt. Nun wird app_callback aufgerufen, liest

die Daten aus und klassifiziert die Pose. Im Anschluss werden die letzten Bilder geglättet, um

Flackern zu vermeiden. Das Bild läuft weiter durch die Pipeline und hailooverlay zeichnet

das Skelett. So bleibt app_callback leichtgewichtig und kann die Daten analysieren, ohne

sie selbst zu rendern.

def app_callback(pad, info, user_state):

 (...)

 best_kps = extract_best_person_keypoints(detections, W, H)

 pose = classify_pose(best_kps, W, H)

 user_state.pose_hist.append(pose)

 smoothed = Counter(user_state.pose_hist).most_common(1)[0][0]

 user_state.current_pose = smoothed

 if PRINT_EVERY_FRAME:

 print(smoothed)

 return Gst.PadProbeReturn.OK

Codeblock 10: Quellcode Callback-Funktion Posenerkennung

47

5.4 Implementierung Fahrzeugzählung

Die Implementierung des Fahrzeugzählers besteht aus der Objektdetektion mit dem Modell

„YOLOv8s“ und der GStreamer-Pipeline. Wie bei den anderen Anwendungen lädt hailonet

das HEF-Modell. Auf der Modellebene wird damit eine robuste Mehrklassen-Detektion

erreicht. Die Anwendung erkennt ausschließlich die Fahrzeugklassen „car“, „bus“, „truck“ und

„motorcycle“.

In der GStreamer-Pipeline gelangt das Bild als Erstes zur Farbkonvertierung und Skalierung.

Das Modell erwartet dabei ein Seitenverhältnis von 640×640 Pixel im RGB-Farbraum. Auch

hier bleibt das Seitenverhältnis bei der Skalierung erhalten und die Ränder werden aufgefüllt

(Padding). Das Element hailonet lädt das Bild für die Inferenz und danach zu

hailofilter für die Nachverarbeitung. Die Ausgabe des Modells sind Klassen und die

dazugehörigen Box-Koordinaten. Als Nachverarbeitungsbibliothek wird

libyolo_hailortpp_postprocess.so genutzt, die auch mit der Funktion filter_letterbox

die Boxen zurück ins Originalbild rechnet. Da das Modell insgesamt 80 Klassen erkennen kann,

wird das Standardvisualisierungselement hailooverlay deaktiviert, da ausschließlich

Rahmenboxen für Fahrzeuge gezeichnet werden. Das Darstellen der Linie, Boxen und Texte

übernimmt cairooverlay und textoverlay (bereitgestellte GStreamer Elemente).

Ein wesentlicher Punkt für die Zählgenauigkeit ist die Stolperfallen-Logik in der Rückruf-

Funktion. Der Rückruf app_callback wird pro Bild aufgerufen und ist die zentrale

Komponente in der Anwendung. Als Erstes werden die gewünschten Klassen gefiltert. Somit

wird sichergegangen, dass ausschließlich die Fahrzeugklassen „car“, „bus“, „truck“ und

„motorcycle“ erkannt werden. Danach werden Rahmenboxen in Pixelkoordinaten

gerechnet und ein Ankerpunkt definiert. Der Ankerpunkt ist wichtig, um die Position des

Fahrzeugs zu ermitteln. Anstatt die Mitte der Box zu verwenden, nutzt die Zähllogik die untere

Mitte der Box (Bodenkontaktpunkt). Bei mehreren Versuchen stellte sich heraus, dass dieser

Ankerpunkt Zählfehler bei hohen Fahrzeugen minimiert und eine stabilere Überquerung der

Linie liefert. Danach wird geprüft, auf welcher Seite der Linie sich der Ankerpunkt befindet.

Die Punkte des aktuellen Bildes werden mit dem vorherigen Bild verglichen und es wird

geschaut, ob ein Seitenwechsel mit derselben Objekt-ID erfolgt ist. Ein Wechsel von links nach

rechts wird als „LR“ gezählt und umgekehrt als „RL“.

48

CALLBACK app_callback(pad, info, state):

 (...)

 carsnow ← 0

 FÜR jede detektion IN dets:

 klasse ← detektion.klasse

 WENN klasse ∉ {car, bus, truck, motorcycle}:
 WEITER

 (x1, y1, x2, y2) ← rechne Rahmenbox in Pixel

 ankerpunkt ← (cx = (x1+x2)/2, cy = y2)

 s_prev ← state.last_side[tid]

 s_now ← seite_relativ_zur_tripline(cx, cy)

 WENN s_prev existiert UND s_prev ≠ s_now UND

 (jetzt − state.last_cross_ts[tid]) ≥ MIN_CROSS_INTERVAL:

 WENN s_prev < s_now: state.passed_LR += 1

 SONST: state.passed_RL += 1

 state.last_cross_ts[tid] ← jetzt

 state.last_side[tid] ← s_now

 state.last_seen[tid] ← jetzt

 füge (x1,y1,x2,y2, klasse) zu state.draw_boxes hinzu

 carsnow += 1

 aktualisiere Textoverlay mit:

 "Cars: carsnow | Passed LR: state.passed_LR RL:

state.passed_RL"

 RETURN OK

Codeblock 11: Pseudocode Callback-Funktion Fahrzeugzählung

49

5.5 Implementierung der Gesichtsmaskierung

Das Ziel dieser Implementierung ist die Echtzeitmaskierung von Gesichtern in einem

Videostream. Aufgrund praktischer Probleme bei der Bildmanipulation, musste die GStreamer-

Struktur angepasst werden.

5.5.1 Abgrenzung der Gesichtsmaskierung gegenüber den anderen Anwendungen

Während die anderen Anwendungen die Programmlogik über eine Pad-Probe an einem

identity-Element realisieren, wird in dieser Anwendung bewusst auf eine einzelne

Rückruffunktion (app_callback pro Bild) verzichtet. Der Grund ist, dass eine Verpixelung

eine direkte Veränderung der Bilddaten erfordert und das „Verdecken“ des Gesichts mit

cairooverlay nicht ausreicht. Allerdings werden Buffer von GStreamern oft als

unveränderliche Zero-Copy-Buffer zur Verfügung gestellt, was bei Manipulationen zu

Instabilitäten führen kann. In der Praxis traten bei Versuchen, den Buffer direkt zu verändern,

Fehler wie „write map requested on non-writable buffer“ auf. Auch extreme Verzögerungen

oder niedrige Bildraten traten bei vorherigen Versionen des Prototyps auf.

Der zentrale Entwurfspunkt der neuen Architektur ist die Trennung zwischen der Verarbeitung

der Pipeline und der Bildmanipulation. In der überarbeiteten Pipeline wird ein tee-Element

hinzugefügt. Dieser agiert wie ein Verteiler und trennt den Videostrom in zwei Datenpfade. Ein

Pfad dient zur Darstellung des Kamerabildes, während der andere Pfad die KI-Inferenz auf dem

Hailo-Chip hat. Dadurch wird verhindert, dass aufwendige Bildoperationen die Videopipeline

blockieren. Würde die Maskierung direkt im GStreamer-Rückruf (app_callback)

ausgeführt werden, könnte es im Video schnell zu Stau, Aussetzern oder „Einfrieren“ kommen.

Um dies zu vermeiden, wird das Kamerabild über ein appsink-Element an die Anwendung

übergeben und dort in einem eigenen, schreibbaren Speicherbereich bearbeitet. Das Ergebnis

wird anschließend über appsrc wieder in eine Ausgabe-Pipeline geführt. Die KI-Inferenz

über den Hailo-Chip bleibt dabei unverändert und liefert weiterhin die Metadaten, welche über

die Pad-Probe ausgelesen werden.

50

Die Abbildung 8 beschreibt die überarbeitete Pipeline mit allen Elementen:

Abbildung 8: Architekturdiagramm der Gesichtsmaskierung Pipeline

51

5.5.2 Implementierung

Zu Beginn wird die Eingangsgröße des Gesichtsmodells „SCRFD_10g“ bestimmt. Die

Gesichtserkennung liefert ihre Rahmenboxen im Koordinatensystem des Modell-Eingangs.

Damit die Boxen korrekt auf die von uns vorgegebene Auflösung (1280×720 Pixel) übertragen

werden können, liest das Programm die Netzgröße aus dem HEF-Format aus (640×640 Pixel).

Der Anzeige-Zweig der Pipeline führt die Kamerabilder in ein appsink-Element, damit die

Anwendung die Bilddaten übernehmen kann. Die Bilder werden somit nicht in der Pipeline

verarbeitet, sondern an die Anwendung übergeben. Mit der Rückruf-Funktion

on_preview_sample kann ausschließlich das aktuelle Bild aus dem Buffer ausgelesen

werden. Das Bild wird als NumPy-Array in eine kleine Warteschlange gelegt. Wie in der

Abgrenzung erwähnt, findet in diesem Rückruf keine aufwendige Bildbearbeitung statt. Somit

wird der Rückruf absichtlich so kurz gehalten wie möglich: das Bild übernehmen, das alte Bild

verwerfen und ein neues Bild ablegen.

CALLBACK on_preview_sample(sample):

 frame ← lese aktuelles RGB-Bild aus sample

 frame ← kopiere Bild in lokales Array

 WENN warteschlange_voll:

 verwerfe altes Bild

 lege frame in Warteschlange

 RETURN OK

Codeblock 12: Pseudocode Callback-Funktion on_preview_sample

Der Inferenz-Zweig der Pipeline skaliert das Bild proportional auf die Eingangsgröße des

Netzes (640×640) und die fehlenden Bildbereiche werden mit Rändern aufgefüllt (Padding).

Anschließend wird es zum hailonet- und hailofilter-Element weitergeleitet. Die

Rahmenboxen der erkannten Gesichter werden als Metadaten an den jeweiligen Buffer gehängt.

Wie in den anderen Anwendungen wird eine Pad-Probe an das scr-Pad des identity-

Elements registriert. Die Pad-Probe liest pro Buffer die Metadaten aus und speichert nur die

aktuelle Liste der Rahmenboxen mit Zeitstempel. Auch hier gilt das gleiche Prinzip wie im

Anzeige-Zweig: Die Pad-Probe soll nur Daten abgreifen und nicht blockieren.

Die tatsächliche Maskierung findet dann nicht im Rückruf statt, sondern im sogenannten

Worker-Thread. Dieser funktioniert wie ein zusätzlicher Ausführungsstrang, der parallel zum

Hauptprogramm läuft. Der Thread worker_loop wartet auf ein neues Kamerabild aus der

52

Warteschlange. Sobald ein neues Bild vorliegt, werden die gespeicherten Rahmenboxen

genommen, und von den Netz-Koordinaten zurück in die Vorschau-Auflösung umgerechnet.

Falls die Detektionen älter als 0,7 Sekunden sind, wird die Liste der Rahmenboxen geleert. Um

das Gesicht zu maskieren, wird ein für die erkannte Gesichtsbox ein leicht vergrößerter Bereich

berechnet und der Bildbereich im NumPy-Array verpixelt. Anschließend wird das bearbeitete

Bild in einen neuen GStreamer-Buffer kopiert und über appsrc in eine separate

Ausgabepipeline eingespeist. Das Ergebnis wird über waylandsink oder autovideosink

angezeigt.

THREAD worker_loop():

 SOLANGE programm_läuft:

 frame ← warte blockierend auf neues frame aus warteschlange

 (dets, timestamp) ← hole zuletzt gespeicherte detektionen

 WENN dets zu älter als 0.7s:

 dets ← leere liste

 FÜR jede detection in dets:

 box_net ← koordinaten im netz-system (net_w, net_h)

 box_preview ← rechne box_net auf 1280x720 um

 box_preview ← vergrößere box leicht

 box_preview ← begrenze box auf bildränder

 verpixle den bildbereich innerhalb box_preview im frame

 schiebe bearbeitetes frame in ausgabe (appsrc)

Codeblock 13: Pseudocode worker_loop Thread

Damit die Maskierung des Gesichts an der richtigen Stelle des Bildes erscheint, müssen die

Boxen in die Vorschau-Auflösung zurückgerechnet werden. In den anderen Anwendungen

passiert dieser Schritt durch die Funktion filter_letterbox. Diese Funktion ist jedoch

oft in YOLO-Nachverarbeitungsbibliotheken zu finden. Da es sich hierbei um ein SCRFD-

Modell handelt, wird die libscrfd.so-Bibliothek genutzt und eine eigene Funktion muss dafür

definiert werden. Im Codeblock 14 übernimmt die Funktion

map_net_to_preview_letterbox das Entfernen der Randbereiche und das

Rückskalieren der ursprünglichen Auflösung.

53

def map_net_to_preview_letterbox(x1n, y1n, x2n, y2n, prev_w, prev_h,

net_w, net_h):

 scale = min(net_w / prev_w, net_h / prev_h)

 new_w = prev_w * scale

 new_h = prev_h * scale

 pad_x = (net_w - new_w) / 2.0

 pad_y = (net_h - new_h) / 2.0

 x1 = (x1n - pad_x) / scale

 x2 = (x2n - pad_x) / scale

 y1 = (y1n - pad_y) / scale

 y2 = (y2n - pad_y) / scale

 return x1, y1, x2, y2

Codeblock 14: Quellcode map_net_to_preview_letterbox Funktion

Bei der Maskierung des Gesichts handelt es sich um eine Block-Pixelung. Zunächst wird der

erkannte Gesichtsbereich („ROI“, also „Region Of Interest“) aus dem Bild ausgeschnitten.

Anschließend wird dieser Ausschnitt in gleich große Blöcke unterteilt. Für jeden Block wird

eine einheitliche Farbe bestimmt, die sich aus dem Mittelwert der Pixel-Farben im Block ergibt.

Die Blöcke werden mit den Farben gefüllt und das Gesicht wird unerkennbar. Im Anschluss

wird der Ausschnitt des Gesichtes zurück ins das Originalbild geschrieben. Die Stärke der

Verpixelung lässt sich über die Blockgröße steuern.

Funktion VERPIXELN(bild, gesichts_box, blockgröße):

 (x1, y1, x2, y2) = gesichts_box

 roi = bild[y1:y2, x1:x2]

 Für y von 0 bis roi.höhe in Schritten von blockgroesse:

 Für x von 0 bis roi.breite in Schritten von blockgroesse:

 block = roi[y : y+blockgroesse, x : x+blockgroesse]

 farbe = MITTELWERT(block)

 block[:] = farbe

 bild[y1:y2, x1:x2] = roi

Codeblock 15: Pseudocode Bildmanipulation Funktion

54

5.6 Zusammenfassung

Die Implementierung setzt das entworfene Systemdesign konsequent um und zeigt, dass auf

der gemeinsamen Plattform Raspberry Pi 5 mit AI-HAT+ unterschiedliche KI-Anwendungen

realisiert werden können, ohne die Architektur jedes Mal neu zu erfinden. Alle Anwendungen

folgen demselben Grundprinzip aus Kamerazugriff, Vorverarbeitung, Inferenz,

Nachverarbeitung und Darstellung. Die Unterschiede konzentrieren sich auf das jeweils

verwendete Modell und auf die Anwendungslogik in der Nachverarbeitung.

Bei der Anwendung zur Gesichtsmaskierung, trat jedoch ein spezielles Problem auf. Die

Bildmanipulation erwies sich als deutlich empfindlicher als die reine Auswertungslogik der

anderen Anwendungen. Sie erforderte eine unterschiedliche Pipeline-Architektur, während bei

den anderen KI-Beispielen die Verarbeitung direkt über die Rückruf-Funktion erfolgte.

Insgesamt wird es bestätigt, dass es möglich ist, eine ähnliche Grundstruktur zu

implementieren. Gleichzeitig wird aber klar, dass bestimmte Aufgaben wie Bildmanipulation

eine Anpassung der Pipeline-Architektur erfordern, um eine robuste und flüssige Darstellung

zu gewährleisten.

55

6. Evaluation

In diesem Kapitel wird untersucht, wie leistungsfähig die entwickelten Anwendungen auf der

Plattform aus Raspberry Pi 5 und AI-HAT+ sind. Das Ziel der Evaluation ist es, die

Leistungsfähigkeit der Systeme im Hinblick auf Echtzeitfähigkeit, Erkennungsqualität und

Ressourcenauslastung zu bewerten und die ursprünglichen Ziele aus der Einführung zu

überprüfen. Die Betrachtung erfolgt aus quantitativer Sicht, über Bildraten und

CPU‑Auslastung, sowie aus qualitativer Sicht durch das Beobachten des Verhaltens in

typischen Szenarien.

6.1 Zielsetzung der Evaluation

Die Evaluation verfolgt zwei zentrale Fragestellungen. Zum einen soll anhand von definierten

Kriterien geprüft werden, ob die entwickelte Plattform in der Lage ist, die KI-Anwendungen in

einer flüssig wahrgenommenen Geschwindigkeit auszuführen (Bildrate). Zum anderen soll

untersucht werden, ob die Ergebnisse der Modelle in den gewählten Szenarien ausreichend

robust und zuverlässig sind (Latenz, CPU-Auslastung), um die jeweiligen Anwendungsfälle

sinnvoll abzudecken.

Darüber hinaus dient die Evaluation dazu, Unterschiede zwischen den Anwendungen sichtbar

zu machen. Einige Szenarien, wie die Posenerkennung, sind naturgemäß komplexer und

ressourcenintensiver als andere. Die gewonnenen Messwerte und Beobachtungen liefern somit

auch Hinweise darauf, welche Art von Edge-KI-Anwendungen sich besonders gut für den

Einsatz auf dem Raspberry Pi 5 mit AI-HAT+ eignet und wo Grenzen der Plattform erkennbar

werden.

6.2 Versuchsaufbau

Die Messungen wurden direkt auf dem Raspberry Pi 5 durchgeführt, auf dem auch die

Anwendungen implementiert wurden. Der AI-HAT+ war während aller Tests eingebunden und

führte die Inferenz aus. Die Kamera war in fester Position, um reproduzierbare Bedingungen

zu schaffen. Die Videobilder wurden von der Kamera aufgenommen.

56

Für die Posenerkennung fanden die Tests in einem Innenraum mit gleichmäßiger Beleuchtung

statt. Die Testperson positionierte sich in variierender Distanz zur Kamera und führte

unterschiedliche Körpergesten vor. Der Zweck bestand darin, die vorgegebenen Gesten sowie

Grenzfälle wie zum Teil verdeckte Handgelenke oder schnelle Bewegungen hervorzurufen.

Die Erkennung von Fahrzeugen wurde anhand von Videosequenzen untersucht, in denen

Fahrzeuge eine festgelegte Linie im Bild überqueren. Je nach Aufbau konnten hierfür entweder

reale Aufnahmen oder aufgenommene Videos mit der Kamera abgespielt werden. Entscheidend

war, dass Fahrzeuge in verschiedenen Abständen, Geschwindigkeiten und Blickwinkeln die

virtuelle Linie überquerten, um das Verhalten des Zählers nachvollziehen zu können.

Die Gesichtsmaskierung wurde ebenfalls in einem Innenraum getestet. Hier lag der Fokus

darauf, ob das Gesicht zuverlässig erkannt und maskiert wird, auch wenn sich die Person

bewegt oder teilweise seitlich zur Kamera steht.

6.3 Bewertungsmetriken

Für die Bewertung wurden mehrere Kennzahlen herangezogen. Eine zentrale Rolle spielt die

Bildrate, also die Anzahl von verarbeiteten Bildern pro Sekunde. Sie gibt einen direkten

Hinweis darauf, ob eine Anwendung als „echtzeitnah“ wahrgenommen wird. „Etwa 16 bis 18

Bilder pro Sekunde kann unser Gehirn für ein flüssiges Zusammenspiel der Bilder verarbeiten“

[38], während Kinofilme oder Videoportale bis zu 30 Bilder die Sekunde liefern [38]. Laut der

Quelle [39] kann das menschliche Auge 14 bis 16 Bilder pro Sekunde wahrnehmen. Der

Zielwert liegt somit bei 15 bis 30 Bildern pro Sekunde bei einer Auflösung von 1280×720

Pixeln, um ein flüssiges Videobild darzustellen.

Ein weiterer Indikator für eine „echtzeitnahe“ Wahrnehmung ist die Latenz der Pipeline. Sie

gibt an, wie lange es durchschnittlich dauert, bis das nächste fertige Bild durch die Schleife

kommt. Eine steigende Latenz zeigt, dass die Pipeline stockt.

Ergänzend wurde die Auslastung der CPU und des RAM beobachtet, um abzuschätzen,

inwieweit der Raspberry Pi 5 noch Reserven für weitere Aufgaben hätte oder bereits an seine

Grenzen stößt. Eine CPU-Auslastung von über 80% ist grundsätzlich nicht kritisch, jedoch kann

es bei längeren Laufzeiten zu höheren Temperaturen kommen.

57

Als Letztes wurde noch die CPU-Temperatur gemessen, um zu schauen, ob sich die Temperatur

trotz höherer Auslastung in einem normalen Bereich bewegt. Der Raspberry Pi beginnt laut

Hersteller ab 80 °C zu drosseln [40], um eine Überhitzung zu vermeiden.

Zur Beurteilung der Erkennungsqualität wurden je nach Anwendung unterschiedliche Kriterien

herangezogen. Bei der Posenerkennung wurde betrachtet, ob die vom System ausgegebene Pose

mit der tatsächlich gezeigten Pose übereinstimmt und wie stabil die Erkennung bei Bewegungen

oder leichten Veränderungen der Position ist. Bei der Gesichtsmaskierung war relevant, ob die

Gesichter im Bild erkannt und anonymisiert wurden und wie häufig Fehl- oder Nicht-

Erkennungen auftraten. In der Fahrzeugdetektion und -zählung wurden die gezählte Anzahl der

Fahrzeuge mit der tatsächlichen Anzahl der Linienüberquerungen verglichen.

Neben diesen quantitativen Metriken flossen auch subjektive Eindrücke in die Bewertung ein,

zum Beispiel, ob das System träge wirkt oder ob der Lüfter deutlich lauter wird.

58

6.4 Ergebnisse der Posenerkennung

In den Tests zur Posenerkennung zeigte sich, dass das System bei einer Auflösung von

1280×720 Pixeln in der Lage ist, den Videostream kontinuierlich zu verarbeiten und die

Körperpose der im Vordergrund stehenden Person zu schätzen. Die Bildrate lag im Durchschnitt

bei 30 Bildern pro Sekunde. Somit konnten Bewegungen nahezu in Echtzeit nachvollzogen

werden. Die Pipeline-Latenz lag konstant bei rund 35 Millisekunden und zeigt, dass die Pipeline

stabil ist. Die Auslastung der CPU lag durchschnittlich bei 71%, obwohl der Hailo-Chip die KI-

Berechnung übernimmt. Durch Vor- und Nachverarbeitungsschritte muss der Raspberry Pi viel

Arbeit leisten und lässt durch die Auslastung wenig Raum für andere Programme. Eine RAM-

Nutzung von ca. 270MB bedeutet, dass die Anwendung sehr speicherschonend ist. Die CPU

des Raspberry Pi erreicht eine Temperatur von 73°C. Das ist warm, aber im Regelfall noch

sicher. Mit 72 °C ist der CPU nah an der Drosselungsgrenze, wodurch der Lüfter deutlich hörbar

ist.

Zeit in

Minuten

Bilder pro

Sekunde

Pipeline-

Latenz (ms)

CPU-Temp. (°C) CPU-Auslastung (%) RAM

(MB)

10 30 34.7 72.15 74.20 271.89

20 30 35.2 71.33 74.10 271.56

30 30 35.0 71.05 74.17 271.28

40 30 34.7 71.05 74.17 271.28

50 30 35.1 71.60 74.12 270.85

60 29.99 35.1 71.71 74.02 270.45

Tabelle 2: Metriken des Testlaufs für Posenerkennung

Die Skelettdarstellung im Videobild machte die Arbeit des Modells gut sichtbar. Die

Anwendung lieferte in typischen Situationen sinnvolle Ergebnisse. Deutlich angehobene Arme

wurden zuverlässig erkannt, und neutrale Haltungen wurden korrekt von den anderen Posen

unterschieden. Schwächen traten hauptsächlich in Randbereichen auf, etwa bei zügigen

Bewegungen, seitlichen Perspektiven oder wenn der Körper teilweise aus dem Bild herausragte.

In einigen Fällen traten instabile Klassifizierungen oder kurzzeitige Fehlanzeigen auf.

59

Abbildung 9: Videobild Posenerkennung

60

6.5 Ergebnisse der Fahrzeugzählung

Bei Tests zur fahrzeugbasierten Detektion und Zählung arbeitete das System stabil im

Echtzeitbereich. Die mittlere Bildrate lag konstant bei 30 Bildern pro Sekunde. Die gemessene

Pipeline-Latenz betrug etwa 30 Millisekunden über die ganze Testzeit. Damit reagierte die

Zähl-Logik sichtbar flüssig. Die Systemlast blieb niedrig. Die CPU-Auslastung bewegte sich

zwischen 27-28%. Das deutet darauf hin, dass die rechenintensive Objektdetektion effektiv auf

den Hailo-Beschleuniger ausgelagert ist. In der Praxis bleibt somit Raum für ergänzende

Aufgaben wie Protokollierung oder Export der Zähldaten. Die CPU-Temperatur lag bei etwa

67°Cund bleibt somit deutlich unter dem Drosselwert von 80°C. Beim Arbeitsspeicher zeigt

sich wie bei den anderen Anwendungen ein unauffälliges Bild. Die Auslastung liegt bei rund

252 MB und bleibt konstant. Das spricht gegen unbeabsichtigtes Anwachsen von Puffern und

lässt genügend RAM für Erweiterungen.

Zeit in

Minuten

Bilder pro

Sekunde

Pipeline-

Latenz (ms)

CPU-Temp. (°C) CPU-Auslastung (%) RAM

(MB)

10 30.00 31.1 66.65 26.70 256.28

20 30.00 30.4 67.20 26.50 253.95

30 30.00 30.6 66.83 26.40 253.17

40 29.99 29.7 66.65 26.35 252.76

50 30.00 30.2 66.54 26.30 252.39

60 30.00 31.0 66.56 26.37 252.14

Tabelle 3: Metriken des Testlaufs für Fahrzeugzählung

Die Darstellung der Boxen und der Linie macht die Arbeitsweise des Systems nachvollziehbar.

In typischen Verkehrsszenen mit moderater Perspektive und stabilem Bild liefert die

Anwendung robuste Ergebnisse. Die vorbeifahrenden Fahrzeuge werden zuverlässig erkannt

und der Zähler inkrementiert, sobald ein erkanntes Fahrzeug die Linie überquert. Einige

Schwächen zeigen sich in Randbereichen. Kleine oder weit entfernte Fahrzeuge werden

manchmal nicht erkannt und dadurch nicht gezählt. Starke Teilverdeckungen durch das

Überholen oder dichtes Auffahren erschweren die Zuordnung der Boxen. Zudem kann es bei

extremen Kamerawinkeln oder bei schnellen Spurwechseln zu einem instabilen Seitenwechsel

kommen.

61

Abbildung 10: Videobild Fahrzeugzählung [43]

62

6.6 Ergebnisse der Gesichtsmaskierung

In den Tests zur Gesichtsmaskierung zeigte sich, dass das System den Videostream, bei einer

Auflösung von 1280×720 Pixel, stabil verarbeitet. Während des Tests traten keine Fehler oder

erkennbare Abbrüche auf. Die Bildrate lag im Mittel bei 28 Bildern pro Sekunde, wodurch die

Maskierung im laufenden Bild weitgehend flüssig wirkte. Die gemessene Pipeline-Latenz blieb

im Durchschnitt bei 52 Millisekunden, was für eine Echtzeit-Maskierung ausreichend ist. Die

CPU-Auslastung des Raspberry Pi lag im Mittel bei 60%. Ursache hierfür sind auch wieder die

Vor- und Nachverarbeitungsschritte, wie Farbkonvertierung, Skalierung und die Maskierung

der Bildbereiche. Damit beansprucht die Anwendung einen spürbaren Teil der Rechenleistung,

jedoch lässt sie im Vergleich zur Posenerkennung etwas mehr Reserven für weitere Prozesse.

Die RAM-Nutzung lag im Durchschnitt bei 158 MB, wodurch die Anwendung auch als

speicherschonend zählt. Die CPU-Temperatur erreichte im Mittel etwa 72°C. Damit arbeitet

das System im warmen Bereich, bleibt noch unterhalb der Drosselgrenze von 80°C.

Zeit in

Minuten

Bilder pro

Sekunde

Pipeline-

Latenz (ms)

CPU-Temp. (°C) CPU-Auslastung (%) RAM

(MB)

10 27.80 51.9 73.80 60.20 159.20

20 27.76 51.0 72.97 60.15 159.20

30 27.79 51.9 72.70 60.13 158.46

40 27.82 51.7 72.42 60.17 158.09

50 27.81 51.9 72.26 60.26 157.86

60 27.80 51.9 72.15 60.38 158.08

Tabelle 4: Metriken des Testlaufs für Gesichtsmaskierung

Die Maskierung im Videobild machte die Funktion der Gesichtserkennung sichtbar. Sobald ein

Gesicht im Bild lag, wurde der entsprechende Bereich maskiert. In typischen Situationen

wurden die Gesichter in Echtzeit erkannt und die Maskierung lag zuverlässig auf den

Bildbereichen. Auch bei schnellen Kopfbewegungen oder teilweiser Verdeckung kam es selten

zu Fehleranzeigen. Schwächen wurden nur in Momenten erkannt, in denen die Gesichtsregion

kurzfristig abgegrenzt wurde.

63

Abbildung 11: Videobild Gesichtsmaskierung

64

6.7 Diskussion und Bewertung der Ergebnisse

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ hat sich im Rahmen dieser Arbeit als

grundsätzlich geeignete Plattform für die Umsetzung von praxisorientierten KI-Anwendungen

erwiesen. Die Evaluation hat gezeigt, dass in allen drei Anwendungen die Kamerabilder

verarbeitet werden konnten und die Inferenz in nahezu Echtzeit durchgeführt werden konnte.

Dazu waren die erzielten Bildraten und Reaktionszeiten ausreichend, um die Anwendung aus

einer Benutzersicht als flüssig wahrzunehmen. Damit erfüllt die Plattform das Ziel, typische

Aufgaben der Bildverarbeitung mit KI auf einem kompakten Edge-Gerät demonstrieren zu

können.

Ein wesentlicher Vorteil der Plattform liegt in der klaren Aufgabenteilung zwischen dem

Raspberry Pi und dem AI-HAT+. Der Raspberry Pi übernimmt die Steuerung der Anwendung,

sowie die Anbindung der Kamera und die Auswertung der Modell-Ausgaben. Die

rechenintensive Ausführung der neuronalen Netze übernimmt dabei der AI-HAT+. Durch die

Auslagerung der Inferenz wird gezeigt, dass die CPU-Auslastung des Raspberry Pi moderat

bleibt und somit weiterhin in der Lage ist, die restlichen Aufgaben wie Vorverarbeitung,

Nachverarbeitung und Darstellung zuverlässig zu übernehmen. Die Tests zeigen auch, dass

selbst bei längerem Betrieb, keine kritischen Einbrüche der Bildrate auftreten. Für Lehr- und

Demonstrationszwecke, sowie für erste Prototypen im Bereich Edge-KI ist dies ein deutlicher

Pluspunkt.

Ein weiterer positiver Aspekt ist, dass zwei der drei Anwendungen auf derselben technischen

Grundlage aufgebaut werden konnten. Von der Kameraanbindung bis zur Inferenz und Ausgabe

wurde die Basisstruktur der Anwendungen wiederverwendet. Dies vereinfacht die Entwicklung

deutlich und erleichtert die Wiederverwendung der Struktur bei verschiedenen KI-Szenarien

auf derselben Plattform. Die Gesichtserkennung bildet hier die Ausnahme, da sie aufgrund der

Bildmanipulation von der einheitlichen Struktur abweicht. Jedoch zeigt die Pipeline-Latenz,

dass die komplexere Struktur nur einen geringen Unterschied macht, und dass die Anwendung

praxistauglich ist. Aus der Sicht einer Abschlussarbeit mit praxisorientiertem Schwerpunkt war

die gemeinsame Basisstruktur trotzdem wertvoll, da keine Anwendung vollständig neu

aufgebaut werden musste.

Gleichzeitig werden in den Tests aber Grenzen der Plattform sichtbar. Zum einen sind die

verfügbaren Rechenressourcen trotz KI-Beschleuniger begrenzt. Komplexere Modelle, höhere

Auflösungen oder zusätzliche Verarbeitungsschritte können die Bildrate schnell reduzieren. Die

65

Modellwahl und die Konfiguration der Videopipeline müssen daher aufeinander abgestimmt

sein, um einen Kompromiss zwischen Erkennungsqualität und Echtzeitfähigkeit zu erreichen.

Zudem hängen Ergebnisse von den Rahmenbedingungen ab. Eine schlechte Beleuchtung oder

eine sehr komplexe Szene führen schneller zu instabilen Erkennungen.

Auch aus der Entwicklersicht gibt es bei der Plattform einige Einschränkungen. Die Nutzung

des AI-HAT+ setzt die bereitgestellte Softwareumgebung von Hailo voraus, und viele Schritte

können nur innerhalb dieses Ökosystems erfolgen. Für die vorliegende Arbeit wurde auf

vortrainierte und bereits kompilierte Modelle zurückgegriffen, die den Aufwand deutlich

erleichterten. Für andere Modelle ist die Konvertierung zum HEF-Modell nötig und wäre

zusätzlicher Aufwand, der über den Rahmen dieser Arbeit hinausgeht.

Insgesamt lässt sich die Plattform aus Raspberry Pi 5 mit AI-HAT+ dennoch als passend für die

in dieser Arbeit verfolgten Ziele bewerten. Sie bietet genügend Rechenleistung, um

unterschiedliche KI-Anwendungen in Echtzeit zu demonstrieren.

66

7. Zusammenfassung und Ausblick

Zum Abschluss werden die Ergebnisse zusammengefasst und im Hinblick auf die Ziele dieser

Arbeit bewertet. Zunächst werden die Schritte des Entwicklungsprozesses sowie die

Erkenntnisse zusammengefasst. Dazu gehört die Eignung des Raspberry Pi 5 mit AI-HAT+ als

Plattform für praxisnahe KI-Beispiele. Anschließend werden mögliche Weiterentwicklungen

und offene Fragen aufgezeigt, die sich für zukünftige Arbeiten und Projekte ergeben.

7.1 Zusammenfassung der Arbeit

In dieser Arbeit wurde die Entwicklung und Implementierung praxisorientierter KI-Beispiele

auf dem Raspberry Pi 5 mit dem AI-HAT+ untersucht. Der Ausgangspunkt dieser Arbeit war

die Frage, inwieweit sich die Plattform für die Entwicklung von praxisorientierten KI-

Anwendungen eignet. Um diese Frage zu beantworten, wurden drei unterschiedliche

Anwendungen realisiert: eine Posenerkennung auf Basis der Körperpose, eine

Gesichtserkennung zur Maskierung von Gesichtern sowie eine Fahrzeugerkennung zur

Fahrzeugzählung.

Ein zentrales Ergebnis der Arbeit ist, dass diese Plattformarchitektur sich in der Praxis bewährt.

Die drei umgesetzten Anwendungen konnten weitgehend alle auf derselben Grundlage realisiert

werden. Auch wenn die Anwendung der Gesichtsmaskierung von der entworfenen

Grundarchitektur abweicht, wurden mehrere Bausteine der Grundarchitektur wiederverwendet,

um die Anwendung erfolgreich zu realisieren. Unterschiede ergaben sich sonst nur im

eingesetzten Modell und in der Logik der Nachverarbeitung.

Die Evaluation hat gezeigt, dass die Anwendungen mit Bildraten arbeiten, die vom Benutzer

als flüssig wahrgenommen werden. Die Transition von Pose zu Pose wird in typischen

Situationen nahezu in Echtzeit vom System wahrgenommen. Die Gesichtsmaskierung ist in der

Lage, Gesichter in einem Videobild zu erkennen und unmittelbar zu maskieren. Die

Fahrzeugerkennung kann Fahrzeuge zählen, die eine virtuell definierte Linie im Bild

überqueren. Die Umsetzung praxisorientierter KI-Beispiele auf dem Raspberry Pi 5 mit AI-

HAT+ wurde somit erreicht.

Allerdings wurden im Rahmen der Evaluation auch Grenzen deutlich. Die Erkennungsqualität

hängt stark von den Rahmenbedingungen ab. Eine schlechte Beleuchtung, verdeckte Objekte,

67

stark seitliche Ansichten oder sehr komplexe Szenen führen zu instabileren Ergebnissen. Dies

betrifft sowohl die Robustheit der Posenerkennung als auch die Fahrzeugzählung und die

Gesichtsmaskierung. Hier zeigt sich der typische Konflikt von Edge-KI: Einerseits sollen

Modelle klein und effizient genug sein, um auf beschränkter Hardware zu laufen, andererseits

wird dadurch die maximale Erkennungsleistung begrenzt.

Insgesamt kann festgehalten werden, dass die entwickelte Plattform für den Einsatz in Lehre,

Demonstration und prototypischer Entwicklung geeignet ist. Sie macht es möglich,

verschiedene KI-Anwendungen direkt auf einem kleinen, kostengünstigen System ausführbar

zu machen, ohne auf eine Cloud-Infrastruktur angewiesen zu sein. Die entwickelten

Anwendungen bilden somit nicht nur ein Ergebnis dieser Arbeit, sondern auch eine Grundlage,

auf der zukünftige Projekte und Erweiterungen aufbauen können.

7.2 Weiterentwicklungsmöglichkeiten und offene Fragen

Aus den Ergebnissen der Arbeit ergeben sich mehrere Ansatzpunkte für zukünftige

Erweiterungen. Eine Möglichkeit besteht darin, robustere oder speziell angepasste Modelle zu

integrieren, die besser mit schwierigen Beleuchtungssituationen oder komplexeren Szenen

zurechtkommen.

Ein weiterer Schritt wäre die Weiterentwicklung der bestehenden Anwendungen. Anstatt Posen

zu erkennen, könnte die Anwendung um Gesten erweitert werden, wie zum Beispiel „Winken“.

Ebenso wäre es sinnvoll, die Erkennung der Posen auf mehrere Personen auszuweiten und

Strategien zu entwickeln, wie mit überlappenden Personen umgegangen wird. Für die

Fahrzeugzählung wäre eine manuelle Definition der virtuellen Linie innerhalb der Anwendung

interessant. Die Gesichtsmaskierung ist ein spezieller Fall, da die Verarbeitungskette von der

ursprünglichen Struktur abweicht. Es wäre sinnvoll, die Maskierung weiter in die

Verarbeitungskette einzubinden oder nach Alternativen zu suchen, die eine Verpixelung direkt

in der Pipeline ermöglicht, ohne dass Leistungsverluste entstehen.

Auf der Plattformebene ergeben sich technische Fragen, da sich die vorliegende Arbeit auf eine

einzelne Kamera und einen KI-Beschleuniger konzentriert. Eine interessante Erweiterung wäre

die Verarbeitung von mehreren Videostreams oder der Einsatz von weiteren Sensoren. Somit

könnte die Plattform extremer auf ihre Grenzen testen. Auch die Frage, ob sich mehrere KI-

68

Anwendungen gleichzeitig ausführen lassen, ohne die Echtzeitfähigkeit zu verlieren, bleibt

offen.

Weiterhin wäre eine datengetriebene Evaluation denkbar, um die Modelle quantitativ zu

bewerten, zum Beispiel in Form von Präzisions- und Recall-Messungen. Auch ein Vergleich

mit alternativen Edge-KI-Plattformen oder KI-Beschleunigern könnte spannend sein, um die

Leistungsfähigkeit des Raspberry Pi 5 mit AI-HAT besser einordnen zu können.

Abschließend kann festgehalten werden, dass die Plattform für die Entwicklung und

Implementierung von praxisorientierten KI-Beispielen geeignet ist, jedoch auch

Entwicklungsmöglichkeiten bietet, die im Rahmen dieser Arbeit nicht möglich waren. Die

Abschlussarbeit bietet jedoch einen Ausgangspunkt, auf dem zukünftige Projekte aufbauen

können, um die genannten Entwicklungsmöglichkeiten zu realisieren.

69

Literaturverzeichnis

[1] Cole Stryker und Eda Kavlakoglu. IBM. Was ist künstliche Intelligenz (KI)? (besucht am 03.12.2025). URL:

https://www.ibm.com/de-de/think/topics/artificial-intelligence

[2] Dave Bergmann. IBM. Was ist maschinelles Lernen? (besucht am 03.12.2025). URL:

https://www.ibm.com/de-de/think/topics/machine-learning

[3] dogado. Starke KI. (besucht am 05.12.2025). URL: https://www.dogado.de/ki-lexikon/starke-ki

[4] Fangfang Lee. IBM. Was sind neuronale Netzwerke? (besucht am 03.12.2025). URL:

https://www.ibm.com/de-de/think/topics/neural-networks

[5] Mesh Flinders und Ian Smalley. IBM. Was ist KI-Inferenz? (besucht am 04.12.2025). URL:

https://www.ibm.com/de-de/think/topics/ai-inference

[6] IBM. Was ist Edge KI? (besucht am 04.12.2025). URL: https://www.ibm.com/de-de/think/topics/edge-ai

[7] Imagination Technologies. What is Edge AI? (besucht am 04.12.2025). URL:

https://www.imaginationtech.com/what-is-edge-ai/

[8] NVIDIA. Entwickler-Kits und Module für eingebettete Systeme von NVIDIA Jetson. (besucht am

07.12.2025). URL: https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/

[9] Connect Tech Inc. Jetson TX2 Datasheet. (besucht am 07.12.2025). URL:

https://connecttech.com/ftp/pdf/jetson_tx2_datasheet.pdf

[10] NVIDIA. Jetson TX1: A New Low-Power CUDA Platform for Deep Learning and Computer Vision.

(besucht am 08.12.2025). URL: https://www.nvidia.com/content/tegra/embedded-

systems/pdf/jetson_tx1_whitepaper.pdf

[11] NVIDIA. JetPack SDK. (besucht am 07.12.2025). URL: https://developer.nvidia.com/embedded/jetpack

[12] Coral (Google). Coral Accelerator Module. (besucht am 08.12.2025). URL:

https://www.coral.ai/products/accelerator-module#description

[13] Coral (Google). Models and transfer learning. (besucht am 08.12.2025). URL:

https://www.coral.ai/docs/edgetpu/models-intro#transfer-learning

[14] Raspberry Pi Ltd. AI HAT+. (besucht am 27.11.2025). URL:

https://www.raspberrypi.com/documentation/accessories/ai-hat-plus.html

[15] Leela S. Karumbunathan. NVIDIA. NVIDIA Jetson AGX Orin Technical Brief. (besucht am 07.12.2025).

URL: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-

brief.pdf

[16] NVIDIA. Jetson Modules. (besucht am 07.12.2025). URL: https://developer.nvidia.com/embedded/jetson-

modules

[17] Coral (Google). Edge TPU benchmarks. (besucht am 09.12 2025). URL:

https://www.coral.ai/docs/edgetpu/benchmarks/

[18] Eben Upton. Raspberry Pi Ltd. Introducing Raspberry Pi 5. (besucht am 29.11.2025). URL:

https://www.raspberrypi.com/news/introducing-raspberry-pi-5/

[19] Raspberry Pi Ltd. Raspberry Pi Documentation. (besucht am 04.12.2025). URL:

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html

[20] Raspberry Pi Ltd. Processors BCM2712. (besucht am 04.12.2025). URL:

https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712

[21] Hailo AI. hailo_model_zoo. (besucht am 26.11.2025). URL: https://github.com/hailo-ai/hailo_model_zoo

https://www.ibm.com/de-de/think/topics/artificial-intelligence
https://www.ibm.com/de-de/think/topics/machine-learning
https://www.dogado.de/ki-lexikon/starke-ki
https://www.ibm.com/de-de/think/topics/neural-networks
https://www.ibm.com/de-de/think/topics/ai-inference
https://www.ibm.com/de-de/think/topics/edge-ai
https://www.imaginationtech.com/what-is-edge-ai/
https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/
https://connecttech.com/ftp/pdf/jetson_tx2_datasheet.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://developer.nvidia.com/embedded/jetpack
https://www.coral.ai/products/accelerator-module#description
https://www.coral.ai/docs/edgetpu/models-intro#transfer-learning
https://www.raspberrypi.com/documentation/accessories/ai-hat-plus.html
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://www.coral.ai/docs/edgetpu/benchmarks/
https://www.raspberrypi.com/news/introducing-raspberry-pi-5/
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html
https://www.raspberrypi.com/documentation/computers/processors.html#bcm2712
https://github.com/hailo-ai/hailo_model_zoo

70

[22] Hailo AI. HAILO8L Pose Estimation. (besucht am 26.11.2025). URL: https://github.com/hailo-

ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_pose_estimation.rst2

[23] Hailo AI. HAILO8L Object Detection. (besucht am 26.11.2025). URL: https://github.com/hailo-

ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_object_detection.rst

[24] Hailo AI. HAILO8L Face Detection. (besucht am 26.11.2025). URL: https://github.com/hailo-

ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_face_detection.rst

[25] GStreamer Project. GStreamer. (besucht am. 26.12.2025). URL: https://gstreamer.freedesktop.org/

[26] GStreamer Project. Elements. (besucht am 26.12.2025). URL:

https://gstreamer.freedesktop.org/documentation/application-development/basics/elements.html?gi-language=c

[27] GStreamer Project. Dynamic pipelines. (besucht am 27. 12. 2025). URL:

https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html?gi-language=c

[28] GStreamer Project. Pads. (besucht am 26.12.2025). URL:

https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html?gi-language=c

[29] Hailo Technologies Ltd. TAPPAS User Guide. (besucht am 27.12.2025). URL:

https://f.hubspotusercontent30.net/hubfs/3383687/TAPPAS%20User%20Guide.pdf

[30] GStreamer Project. Probes. (besucht am 26.12.2025). URL:

https://gstreamer.freedesktop.org/documentation/additional/design/probes.html?gi-language=c

[31] OnLogic. Hailo-8 AI Accelerator Integration. (besucht am 25.11.2025). URL:

https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-

integration

[32] Hailo AI. hailort. (besucht am 25.11.2025). URL: https://github.com/hailo-ai/hailort

[33] Hailo AI. HailoRT v5.2.0 Documentation. (besucht am 27.11.2025). URL: https://hailo.ai/developer-

zone/documentation/hailort-v5-2-0/

[34] Raspberry Pi Ltd. How to set up the Raspberry Pi AI Kit with Raspberry Pi 5. (besucht am 22.11.2025).

URL: https://www.raspberrypi.com/news/how-to-set-up-the-raspberry-pi-ai-kit-with-raspberry-pi-5/

[35] Hailo AI. hailo-rpi5-examples. (besucht am 10.12.2026). URL: https://github.com/hailo-ai/hailo-rpi5-

examples

[36] GeeksforGeeks. OpenCV Overview. (besucht am 06.01.2026). URL:

https://www.geeksforgeeks.org/computer-vision/opencv-overview/

[37] Python Wiki. NumPy. (besucht am 06.01.2026). URL: https://wiki.python.org/moin/NumPy

[38] IONOS. FPS – Framerates im TV, Kino und FPS beim Gaming. (besucht am 07.01.2026). URL:

https://www.ionos.de/digitalguide/server/knowhow/fps/

[39] Wikipedia. Bildfrequenz. (besucht am 08.01.2026). URL: https://de.wikipedia.org/wiki/Bildfrequenz

[40] Alasdair Allan. Raspberry Pi Ltd. Heating and cooling Raspberry Pi 5. (besucht am 08.01.2026). URL:

https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/

[41] Conrad. Nvidia Super Developer Kit Jetson Orin Nano 8 GB 6 x 1.5 GHz. (besucht am 15.01.2026). URL:

https://www.conrad.de/de/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html

[42] Amazon. Google Coral Dev Board. (besucht am 15.01.2026). URL: https://www.amazon.de/Google-G950-

01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1

[42] Anuj Khandelwal. Vehicle Dataset Sample 2. (besucht am 15.01.2026). URL:

https://www.youtube.com/watch?v=JqhdBCCUVyQ

https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_pose_estimation.rst2
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_pose_estimation.rst2
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_object_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_object_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_face_detection.rst
https://github.com/hailo-ai/hailo_model_zoo/blob/master/docs/public_models/HAILO8L/HAILO8L_face_detection.rst
https://gstreamer.freedesktop.org/
https://gstreamer.freedesktop.org/documentation/application-development/basics/elements.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/application-development/basics/pads.html?gi-language=c
https://f.hubspotusercontent30.net/hubfs/3383687/TAPPAS%20User%20Guide.pdf
https://gstreamer.freedesktop.org/documentation/additional/design/probes.html?gi-language=c
https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-integration
https://support.onlogic.com/product-documentation/components-and-expansion/hailo-8-ai-accelerator-integration
https://github.com/hailo-ai/hailort
https://hailo.ai/developer-zone/documentation/hailort-v5-2-0/
https://hailo.ai/developer-zone/documentation/hailort-v5-2-0/
https://www.raspberrypi.com/news/how-to-set-up-the-raspberry-pi-ai-kit-with-raspberry-pi-5/
https://github.com/hailo-ai/hailo-rpi5-examples
https://github.com/hailo-ai/hailo-rpi5-examples
https://www.geeksforgeeks.org/computer-vision/opencv-overview/
https://wiki.python.org/moin/NumPy
https://www.ionos.de/digitalguide/server/knowhow/fps/
https://de.wikipedia.org/wiki/Bildfrequenz
https://www.raspberrypi.com/news/heating-and-cooling-raspberry-pi-5/
https://www.conrad.de/de/p/nvidia-super-developer-kit-jetson-orin-nano-8-gb-6-x-1-5-ghz-2998506.html
https://www.amazon.de/Google-G950-01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1
https://www.amazon.de/Google-G950-01455-01-Coral-Entwicklungsplatine/dp/B07QF582TG?th=1
https://www.youtube.com/watch?v=JqhdBCCUVyQ

71

Anhang

GitHub Repository des Projekts:

https://github.com/22anh03/ai-prototypes-raspberrypi5-aihat

https://github.com/22anh03/ai-prototypes-raspberrypi5-aihat

