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Zusammenfassung 

Diese Arbeit untersucht die Entwicklung und Implementierung praxisorientierter KI-Beispiele 

auf dem Raspberry Pi 5 in Kombination mit dem AI-HAT+. Das Ziel dieser Arbeit ist es zu 

zeigen, wie sich moderne KI-Verfahren mit begrenzten Ressourcen einsetzen lassen und welche 

Herausforderungen dabei in Bezug auf Leistung, Echtzeitfähigkeit und Entwicklungsaufwand 

auftreten.  

Auf einer Plattform, bestehend aus dem Raspberry Pi 5, dem Raspberry Pi Camera Module 2 

und dem KI-Beschleuniger AI-HAT+, wurden mehrere Anwendungen umgesetzt: eine 

Posenerkennung auf Basis von Körperposen, eine Anwendung zur Fahrzeugdetektion und -

zählung sowie eine Anwendung zur automatischen Maskierung von Gesichtern. Für diese 

Beispiele werden passende KI-Modelle ausgewählt und mithilfe von Python, GStreamer und 

Hailo-Werkzeugen in eine Videoverarbeitungskette integriert. 

Die Arbeit beschreibt den vollständigen Entwicklungsprozess der Auswahl der Modelle, bis hin 

zur Implementierung der Datenverarbeitungsketten und der Evaluation der Prototypen 

hinsichtlich Genauigkeit, Bildrate und Latenz. Die Ergebnisse zeigen, dass der Raspberry Pi 5 

in Verbindung mit dem AI-HAT+ eine leistungsfähige und zugleich kostengünstige Plattform 

für praxisorientierte KI-Anwendungen darstellt. 

  



 
 

Abstract 

This thesis researches the development and implementation of practical AI examples on the 

Raspberry Pi 5 in combination with the AI-HAT+. The aim of this work is to demonstrate how 

modern AI methods can be used with limited resources and which challenges arise in terms of 

performance, real-time capability and implementation effort. 

The platform consists of the Raspberry Pi 5, the Raspberry Pi Camera Module 2 and the AI 

accelerator AI-HAT+. Several applications were implemented on this platform: an application 

for pose detection, for vehicle detection and counting and for automatic blurring of faces. 

Suitable AI models are selected and integrated into real-time video pipelines using Python, 

GStreamer and the Hailo tools. 

The thesis describes the complete development process, from the selection of the models 

through to the implementation of the data processing pipelines and the evaluation of the 

prototypes with respect to accuracy, frame rate, and latency. The results show that the Raspberry 

Pi 5 in combination with the AI-HAT+ represents a powerful yet cost-effective platform for 

practical AI applications. 
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1. Einführung 

Im ersten Kapitel wird das Thema der Arbeit eingeführt und in einen übergeordneten Kontext 

eingeordnet. Zunächst werden Motivation und Hintergrund von Künstlicher Intelligenz auf 

eingebetteten Systemen erläutert. Anschließend werden die Problemstellung und die zentrale 

Forschungsfrage formuliert, bevor die Zielsetzung der Arbeit beschrieben wird.  

 

1.1 Motivation und Hintergrund 

In den vergangenen Jahren hat der Einsatz von Künstlicher Intelligenz im Alltag deutlich an 

Bedeutung gewonnen. KI-basierte Systeme sind längst nicht mehr nur in großen Rechenzentren 

zu finden, sondern begegnen uns in Smartphones, Haushaltsgeräten, Fahrzeugen und 

zunehmend auch in eingebetteten Systemen. Als „Edge-KI“ werden Systeme bezeichnet, die 

Daten direkt am Gerät verarbeiten und eine Echtzeitanwendung ermöglichen, ohne einen 

Umweg über die Cloud. 

Parallel dazu hat sich der Markt für kompakte, leistungsfähige Einplatinencomputer 

weiterentwickelt. Der Raspberry Pi 5 verfügt über eine leistungsstarke Hardwarebasis, die in 

Kombination mit spezialisierten KI-Beschleunigern, wie dem AI-HAT+, ein attraktives 

Gesamtpaket für die Umsetzung von praxisnahen KI-Anwendungen bietet.  

Ein wesentlicher Vorteil solcher Edge-KI-Plattformen ist die Möglichkeit, komplexe Aufgaben 

wie Bildverarbeitung oder Objekterkennung auf kostengünstiger Hardware auszuführen. Wo 

früher leistungsstarke Desktop-Rechner oder Cloud-Server erforderlich waren, genügen heute 

kompakte Module, die sich problemlos in bestehende Systeme integrieren lassen. Der AI-HAT+ 

erweitert den Raspberry Pi 5 dabei um einen dedizierten KI-Beschleuniger, der speziell für KI-

Aufgaben optimiert ist und gleichzeitig einen geringen Energieverbrauch ermöglicht. Dadurch 

werden Anwendungen realisierbar, die sowohl interaktiv als auch echtzeitfähig sind. 
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1.2 Problemstellung und Forschungsfrage 

Im Rahmen dieser Forschung stellt sich die Frage, wie sich eine praxisnahe Kombination aus 

Einplatinenrechner und KI-Beschleuniger für typische Bildverarbeitungsaufgaben eignet. Es 

existieren zwar zahlreiche Beispielanwendungen, jedoch konzentrieren sie sich häufig auf 

einzelne Szenarien und nicht auf den kompletten Entwicklungsprozess. Für den Raspberry Pi 5 

mit dem AI-HAT+ ist bisher begrenzt dokumentiert, wie sich mehrere verschiedene 

Anwendungen auf einer gemeinsamen Grundlage realisieren und im Hinblick auf Bildrate und 

Latenz bewerten lassen. 

Vor diesem Hintergrund ergibt sich die zentrale Frage dieser Arbeit: Inwieweit eignet sich die 

Kombination aus Raspberry Pi 5 und AI-HAT+ als Plattform für die Entwicklung von 

praxisorientierten KI-Anwendungen? 

 

1.3 Zielsetzung der Arbeit 

Im Rahmen dieser Arbeit werden auf Basis des Raspberry Pi 5 und des AI-HAT+ mehrere 

praxisorientierte KI-Beispiele entwickelt und implementiert. Diese Beispiele decken 

unterschiedliche Anwendungsfelder ab. Von Mensch-Maschine-Interaktion über Datenschutz 

bis hin zur einfachen Verkehrsüberwachung.  

Das Ziel der Arbeit ist es, den gesamten Entwicklungsprozess dieser Anwendungen 

nachvollziehbar darzustellen. Der Prozess fängt bei der Auswahl geeigneter Modelle und 

Frameworks an und geht weiter zur Umsetzung der Videoverarbeitungskette, bis hin zur 

Evaluation hinsichtlich Bildrate und Latenz. Damit soll aufgezeigt werden, welches Potenzial 

der Raspberry Pi 5 in Verbindung mit dem AI-HAT+ als Plattform für praxisnahe KI-Beispiele 

bietet und welche Chancen und Grenzen sich beim Einsatz solcher Systeme ergeben. 
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2. Grundlagen 

In diesem Kapitel werden die theoretischen und technischen Grundlagen vorgestellt, die 

erforderlich sind, um die im Rahmen dieser Arbeit entwickelten KI-Anwendungen zu 

verstehen. Als Erstes werden zentrale Begriffe aus dem Bereich Künstliche Intelligenz und 

Maschinelles Lernen erläutert. Daraufhin wird auf neuronale Netze eingegangen und der 

Unterschied zwischen Training und Inferenz wird erklärt. Abschließend wird das Konzept der 

Edge-KI vorgestellt, welches für den Einsatz des Raspberry Pi 5 in Kombination mit dem AI-

HAT+ eine zentrale Rolle spielt. 

 

2.1 Künstliche Intelligenz 

Unter Künstlicher Intelligenz (KI) werden Verfahren verstanden, die es Computersystemen 

ermöglichen, Aufgaben zu lösen, welche typischerweise menschliche Intelligenz erfordern 

würden. Anwendungen und Geräte, die mit KI ausgestattet sind, können unter anderem Bilder 

und Sprachen erkennen, sowie Entscheidungen treffen und aus Erfahrungen lernen [1]. 

In der Praxis wird der Begriff KI häufig als Oberbegriff für verschiedene Methoden verwendet. 

Diese reichen von einfachen regelbasierten Systemen bis hin zu komplexen lernenden 

Systemen. In dieser Arbeit steht insbesondere der Bereich des maschinellen Lernens im 

Vordergrund, bei dem Systeme nicht für einen expliziten Einzelfall programmiert werden, 

sondern selbstständig Muster in Daten erkennen und daraus ein Modell ableiten [2]. 

Im Bereich der Künstlichen Intelligenz wird zwischen „schwacher KI“ und „starker KI“ 

unterschieden. „Starke KI“ ist in der Lage, jede intellektuelle Aufgabe zu lösen. Im Gegensatz 

dazu löst „schwache KI“ konkrete Aufgaben. [3] 

Die in dieser Arbeit entwickelten Anwendungen basieren auf lernenden Modellen und werden 

dem Bereich der „schwachen KI“ zugeordnet. 

 

2.2 Maschinelles Lernen 

Maschinelles Lernen (ML) ist ein Teilgebiet der KI und befasst sich mit Algorithmen, die aus 

Beispieldaten lernen, anstatt feste Regeln vorzugeben. Daraus ergibt sich ein Modell. Das 



14 

 

System erhält dabei Trainingsdaten, die aus Eingaben (z. B. Bildern) und oft auch zugehörigen 

Zielwerten (z. B. Klassenbeschriftungen wie „Auto“ oder „Person“) bestehen. Im 

Trainingsprozess werden interne Parameter der Modelle angepasst, damit es neue, bisher 

unbekannte Daten möglichst korrekt verarbeiten kann [2]. 

Je nach Art der verfügbaren Daten und Zielsetzung wird zwischen verschiedenen 

Lernparadigmen unterschieden: 

 

Überwachtes Lernen: 

Beim überwachten Lernen werden Modelle mit gekennzeichneten Datensätzen trainiert, zum 

Beispiel ein Bild mit der Beschriftung „Fahrzeug“. Das Modell passt während des Trainings 

seine Gewichtungen so an, dass es Daten klassifizieren oder Ergebnisse möglichst präzise 

vorhersagen kann [2]. Typische Verfahren sind Klassifikation, wie die Erkennung einer 

bestimmten Körperpose, und Regression, also die Vorhersage eines kontinuierlichen Werts. 

 

Unüberwachtes Lernen: 

Bei dem unüberwachten Lernen liegen nur Eingabedaten ohne explizite Zielwerte vor. Das 

Modell versucht, Strukturen oder Cluster (Gruppierungen) in den Daten zu finden, die nicht 

offensichtlich sind. Typische Aufgaben sind das Gruppieren von ähnlichen Daten (Clustering), 

Assoziationen in den Daten zu finden und die Dimensionsreduktion, also Daten zu 

komprimieren und zu visualisieren [2]. 

 

Bestärkendes Lernen: 

Ein Agent lernt durch Interaktion mit einer Umgebung und erhält Belohnungen oder Strafen. 

Der Agent wählt Aktionen, bekommt eine Rückmeldung in Form von einer Belohnung oder 

einer Strafe und passt sein Verhalten an. Das Ziel dabei ist nicht die Fehler-Minimierung, 

sondern die maximale Belohnung [2]. Typische Anwendungsfälle sind in der Robotertechnik 

oder in Videospielen zu finden. 

 

In dieser Arbeit wurden Modelle verwendet, die im Rahmen des überwachten Lernens trainiert 

worden sind. Das eigentliche Training der Modelle findet dabei nicht auf dem Raspberry Pi 5 

statt, sondern wurde zuvor auf leistungsstärkeren Systemen durchgeführt. Auf dem Raspberry 

Pi wird anschließend nur noch die sogenannte Inferenz ausgeführt (siehe Abschnitt 2.4).  



15 

 

2.3 Neuronale Netze und Deep Learning 

Viele moderne KI-Anwendungen basieren auf künstlichen neuronalen Netzen. Neuronale Netze 

sind Modelle des maschinellen Lernens, die aus vielen einfachen „Neuronen“ bestehen. Sie 

orientieren sich grob an der Arbeitsweise biologischer Nervenzellen und führen einfache 

Rechenoperationen durch. Durch das Zusammenschalten vieler solcher Neuronen entstehen 

mehrere Schichten, die zusammen ein leistungsfähiges Modell darstellen und komplexe Muster 

erkennen können [4]. 

Neuronale Netze bilden laut der Quelle [4] die Basis von Deep Learning. Die Eingabeschicht 

nimmt Daten auf, während mehrere versteckte Schichten die Daten verarbeiten. Im Anschluss 

liefert die Ausgabeschicht das Ergebnis. Jede Verbindung hat ein Gewicht, um abzuwägen, wie 

wichtig ein Eingangssignal ist. Zusätzlich hat jeder Knoten einen Schwellenwert, um 

abzustimmen, wann er anspringt. Wenn das Ergebnis über dem Schwellenwert liegt, wird der 

Knoten aktiviert und das Signal wird an die nächste Schicht weitergeleitet. Somit können 

neuronale Netze hierarchische Merkmale aus Rohdaten lernen. Im Kontext der 

Bildverarbeitung werden häufig Convolutional Neural Networks eingesetzt (CNNs). Diese 

nutzen Faltungsoperationen (Convolutions), um Bildstrukturen wie Kanten, Formen oder 

Texturen zu erkennen. Typische Aufgaben, die mit CNN-basierten Modellen gelöst werden, 

sind Bildklassifizierung und Objekterkennung. 

 

Abbildung 1: Aufbau von neuronalen Netzen [4] 
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2.4 Training und Inferenz 

Im Lebenszyklus eines neuronalen Netzes wird zwischen zwei Phasen unterschieden: Training 

und Inferenz. 

 

Training: 

In der Trainingsphase wird das Modell mit großen Mengen von beschrifteten Daten trainiert. 

Dabei werden die Parameter des Netzes so angepasst, dass der Fehler zwischen den 

Modellvorhersagen und den Zielwerten minimiert wird [5]. Dieser Prozess ist sehr 

rechenintensiv und wird in der Regel auf leistungsfähiger Hardware durchgeführt.  

 

Inferenz: 

In der Inferenzphase ist das Training abgeschlossen. Das Modell wird mit neuen Eingabedaten 

versorgt und berechnet die entsprechenden Ausgaben. Ein Beispiel wäre ein Bild einer Person 

als Eingabe und die Erkennung (markierter Bildbereich) sowie die Klassifizierung der Person 

als Ausgabe. Hier steht insbesondere die Effizienz im Vordergrund. Die Berechnungen müssen 

schnell genug sein, um Echtzeit-Anforderungen zu erfüllen, und gleichzeitig auf der 

verfügbaren Hardware ausführbar bleiben [5].  

 

Die vorliegende Arbeit konzentriert sich ausschließlich auf die Inferenzphase. Die verwendeten 

Modelle werden in einem bereits trainierten Zustand bereitgestellt, typischerweise in einem 

geeigneten Format für den AI-HAT+. Der AI-HAT+ übernimmt dabei einen Großteil der 

Rechenarbeit der Inferenz. 

 

2.5 Edge-KI  

Ein zentrales Konzept dieser Arbeit ist die Edge-KI. Sie bezeichnet das Ausführen der KI-

Algorithmen direkt auf dem Endgerät selbst oder in unmittelbarer Nähe der Datenquelle. Somit 

wird eine Echtzeit-Datenverarbeitung und -analyse ermöglicht, ohne eine Abhängigkeit von 

einer Cloud-Infrastruktur [6]. 
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Edge-KI bietet mehrere Vorteile laut Quelle [6]: 

• Geringe Latenz: 

Da die Verarbeitung lokal erfolgt, entfallen Netzwerklaufzeiten. Dies ist besonders 

wichtig für Anwendungen mit Echtzeitanforderungen, zum Beispiel bei einer 

Fahrzeugerkennung bei selbstfahrenden Autos. 

 

• Datenschutz: 

Sensible Daten müssen nicht in ein anderes Netzwerk übertragen werden. Dies reduziert 

das Risiko von Datenschutzverletzungen, da die Informationen direkt auf dem Gerät 

verarbeitet werden. 

 

• Echtzeitanalyse: 

Die Anwendungen können ohne stabile Internetverbindung betrieben werden, was in 

vielen Szenarien (z. B. mobile Systeme, abgelegene Orte) von Vorteil ist. 

 

Edge-KI stehen auch Herausforderungen gegenüber [6, 7]: 

• Viele Edge-Geräte verfügen im Vergleich zu Cloud-Servern noch deutlich weniger 

Rechenleistung, Speicher und Energie. KI-Modelle müssen daher speziell optimiert und 

angepasst werden, damit sie auf der Zielhardware benutzt werden können. 

 

• Edge-KI eignet sich für lokale Echtzeitaufgaben direkt auf dem Gerät. Für 

rechenintensive Aufgaben wie Training oder Datenaggregation, wird jedoch häufig 

weiterhin die Cloud benötigt. Zudem ist die Verwaltung vieler verteilter Edge-Geräte 

im großen Maßstab aufwendig.  

 

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ ist ein typisches Beispiel einer Edge-

KI-Plattform. Die in dieser Arbeit entwickelten Anwendungen demonstrieren, wie sich 

komplexe KI-Funktionen direkt auf dem Endgerät realisieren lassen, trotz begrenzter 

Ressourcen. 
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3. Aktueller Stand von Edge-KI-Plattformen 

Wie in den vorherigen Abschnitten genannt, hat sich der Bereich der Edge-KI weiterentwickelt. 

Für typische KI‑Aufgaben wie Objekterkennung existieren inzwischen zahlreiche Hard- und 

Softwarelösungen, die sich in Leistungsfähigkeit, Kosten und Entwicklungsaufwand 

unterscheiden. Das Ziel dieses Kapitels ist es, den verwendeten Raspberry Pi 5 in Kombination 

mit dem KI-Beschleuniger AI-HAT+ in diesen Kontext einzuordnen. Dazu werden Kriterien 

definiert und anschließend bestehende Lösungen vorgestellt. Die Plattformen werden anhand 

dieser Kriterien verglichen. Auf dieser Grundlage lässt sich begründen, warum der Raspberry 

Pi mit dem AI-HAT für die angestrebten KI-Beispiele geeignet ist und wo weiterhin Bedarf für 

eigene Entwicklungen und Untersuchungen besteht. 

 

3.1 Bewertungskriterien 

Ein zentrales Kriterium ist die Funktionalität, also ob und in welchem Umfang typische 

Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung unterstützt werden. 

Dazu sollten vorgefertigte Modelle oder Beispielanwendungen existieren, um die Funktionalität 

der Plattform zu bestätigen. 

Eng damit verbunden ist die Leistungsfähigkeit im Hinblick auf Echtzeitbetrieb. Es ist 

relevant, ob eine Plattform die Bildraten im Bereich von mehreren zehn Bildern pro Sekunde 

mit möglichst geringer Verzögerung erreichen kann. Die Hersteller der Plattformen geben die 

Rechenleistung von KI-Beschleunigern häufig in „TOPS“ an, also in „Tera-Operationen pro 

Sekunde“. Dieser Wert dient in dieser Arbeit als grobe Orientierung für die Rechenleistung.  

Ein weiteres Kriterium sind die Anschaffungs- und Betriebskosten. Da sich die Arbeit an 

einer typischen Lehr- und Entwicklungsumgebung orientiert, spielt die Verfügbarkeit als auch 

die Kosten eine Rolle.  

Schließlich ist der Entwicklungsaufwand von Bedeutung: Eine Lösung ist für den Rahmen 

einer Bachelorarbeit nur dann praktikabel, wenn sie über eine nachvollziehbare 

Dokumentation, Beispielprojekte und ein nutzbares Software-Entwicklungspaket (SDK) 

verfügt. 
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3.2 Bestehende Edge-KI-Plattformen 

Als repräsentative Beispiele aktueller Edge-KI-Lösungen werden im Folgenden drei Ansätze 

betrachtet: NVIDIA Jetson, Google Coral mit Edge TPU sowie der Raspberry Pi 5 in 

Kombination mit dem AI-HAT+. 

 

3.2.1 NVIDIA Jetson 

Plattformen der NVIDIA-Jetson-Reihe sind kompakte Rechnersysteme, die für rechenintensive 

Bild- und KI-Anwendungen ausgelegt sind [8]. Eine Charakteristik der Jetson-Systeme ist die 

Integration der Rechenkomponenten und Beschleunigereinheiten auf dem Gerät. Die Systeme 

basieren auf einem Chip, der Prozessor, Grafikeinheit und weitere Komponenten auf einem 

System kombiniert [9]. Für KI-Anwendungen ist der integrierte Grafikprozessor der Jetson-

Systeme relevant, um die Rechenoperationen der neuronalen Netze besser parallelisieren zu 

können [10].  Aus der Sicht der Softwareentwicklung bieten Jetson-Systeme eine Vielzahl an 

Bibliotheken und Werkzeugen an, die die Ausführung neuronaler Netze auf der GPU 

beschleunigen. Diese Werkzeuge umfassen sowohl allgemeine Rechenbibliotheken als auch 

Optimierungswerkzeuge für neuronale Netze [11]. Der Entwicklungsaufwand kann bei den 

Systemen sinken, da viele Modelle ohne grundlegende Umformung lauffähig sind. In der Praxis 

werden Jetson-Plattformen oft benutzt, wenn eine hohe Leistung oder anspruchsvollere 

Modelle benötigt werden. 

 

Abbildung 2: NVIDIA Jetson Orin Nano Developer Kit [41] 
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3.2.2 Google Coral / Edge TPU 

Google-Coral-Plattformen enthalten als Zusatzhardware einen KI-Beschleuniger an einem 

Einplatinenrechner. Die Kernkomponente ist die Edge TPU: ein spezialisierter KI-Chip für die 

Ausführung neuronaler Netze [12]. Der Anschluss erfolgt dabei meist über die PCIe-

Schnittstelle. PCI Express ist eine interne Schnittstelle, die für hohe Datenraten ausgelegt ist 

und sich besonders für den Transfer von großen Datenmengen eignet. Das zentrale Merkmal 

dieses Ansatzes ist eine starke Spezialisierung auf die effiziente Inferenz. Für die Edge TPU 

gelten jedoch strikte Anforderungen an die Modellform: Häufig müssen Modelle in einem 

kompakten Format vorliegen (TensorFlow Lite) und als vollständig quantisierte 

Ganzzahlmodelle bereitgestellt werden, damit sie vollständig auf dem Beschleuniger 

ausgeführt werden können [13]. Laut Coral reduziert die Quantisierung die Zahlenpräzision 

(von Fließkommazahl zu Ganzzahlen) im Modell und senkt dadurch den Speicherbedarf und 

den Rechenaufwand, was zu einer verbesserten Geschwindigkeit und Energieeffizienz führt 

[13]. 

 

 

Abbildung 3: Google Coral Dev Board [42] 
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3.2.3 Raspberry Pi mit AI-HAT+ 

Der in dieser Arbeit verwendete Raspberry Pi 5 ist ein weiterer Einplatinenrechner, der durch 

Zusatzhardware für KI-Aufgaben erweitert werden kann. Der AI-HAT+ ist dabei eine 

Aufsteckplatine, die einen dedizierten KI-Beschleuniger enthält. Technisch gesehen handelt es 

sich hierbei um einen Hailo-basierten Beschleuniger, der über die PCIe-Schnittstelle 

angebunden wird [14]. 

In einer typischen KI-Anwendung übernimmt der Raspberry Pi die Aufgaben der 

Datenerfassung und Systemsteuerung, wie den Zugriff auf die Kamera und das Dateisystem. 

Der AI-HAT+ führt dabei die rechenintensive Inferenz aus. Daraus ergibt sich eine 

Arbeitsaufteilung, die die CPU des Raspberry Pi entlastet. Wie bei den Coral-Plattformen 

müssen die Modelle in einem speziellen Format (HEF-Modelle) für den KI-Beschleuniger 

vorbereitet werden. Dazu gehört die Anpassung der Rechenoperationen sowie die 

Quantisierung. Im Abschnitt 3.4 werden der Raspberry Pi 5 und AI-HAT+ im Einzelnen 

betrachtet. 

 

 

Abbildung 4: Raspberry Pi 5 mit AI-HAT+ [14] 
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3.3 Untersuchung der Plattformen anhand der Kriterien 

Die im Abschnitt 3.1 definierten Kriterien werden im Folgenden auf die drei betrachteten 

Plattformansätze angewendet, um den Raspberry Pi 5 mit AI HAT+ in den Stand der Technik 

einzuordnen.  

In Hinsicht auf die Funktionalität unterstützen grundsätzlich alle drei Ansätze typische 

Bildverarbeitungsaufgaben wie Objekterkennung oder Segmentierung. Unterschiede ergeben 

sich jedoch bei der Umsetzbarkeit. Bei Jetson-Systemen ist die Anzahl von lauffähigen 

Modellen hoch, da die Beschleunigung über die integrierte GPU erfolgt und es wenige 

Vorgaben an Modellformate gibt. Bei externen KI-Beschleunigern wie Coral und AI-HAT+ ist 

die Funktionalität stärker davon abhängig, ob ein Modell in der geforderten Form bereitgestellt 

werden kann. Dazu müssen die im Modell verwendeten Rechenoperationen vom jeweiligen 

Beschleuniger unterstützt werden. Somit ist die Kompatibilität der konkreten Modelle ein 

entscheidender Punkt. 

Für die Echtzeitfähigkeit gilt, dass Jetson-Systeme in der Regel eine hohe Rechenleistung 

erbringen, die für anspruchsvollere Modelle ein klarer Vorteil ist. Gleichzeitig sind hierfür 

höhere Anforderungen an Energieversorgung und Wärmeabfuhr [15] zu berücksichtigen, was 

die Einordnung als „kompaktes“ und „leichtgewichtiges“ Lehr- und Entwicklungssystem 

relativiert. Bei Coral- und AI-HAT+-basierten Lösungen hängt die erreichbare Echtzeitfähigkeit 

davon ab, ob das Modell vollständig auf dem KI-Beschleuniger ausgeführt werden kann. 

Insbesondere Arbeitsschritte wie Bildskalierung, Filterung oder die Ausgabe von Ergebnissen 

können die Gesamtlatenz beeinflussen.  

Das Kriterium Anschaffungs- und Betriebskosten ist für den Kontext einer Lehr- und 

Entwicklungsumgebung relevant, da es die Verfügbarkeit und den Einsatz in typischen 

Projektszenarien beeinflusst. Da die Jetson-Systeme leistungsorientiert sind und als 

Gesamtsystem eingeordnet werden, liegen sie meist in höheren Anschaffungsklassen. Die 

Einplatinenrechner sind als Basis weit verbreitet und bieten damit eine eher kostengünstige 

Lehr- und Entwicklungsumgebung.  

Ergänzend dazu wird der Entwicklungsaufwand minimiert, wenn nachvollziehbare 

Dokumentation, Beispielprojekte und Software-Entwicklungspakete verfügbar sind. Die 

Jetson-Systeme verfügen über eine Anzahl von umfangreichen Entwicklungswerkzeugen, 

jedoch erfordern sie dadurch auch eine stärkere Einarbeitung in die Systemumgebung. Bei 

Coral-Systemen ergibt sich der Aufwand aus den Modellvorgaben und möglichen Prüfungen 
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für die Modellkompatibilität. Der AI-HAT+ ist in die Raspberry-Pi-Umgebung integriert und 

es stehen Dokumentationen und Beispielprojekte zur Verfügung. Allerdings werden Werkzeuge 

benötigt, um Modelle in ein geeignetes Ausführungsformat zu überführen. 

 

Die Tabelle 1 gibt einen zusammenfassenden Überblick über die drei betrachteten Edge-KI-

Plattformen und ordnet sie den Kriterien zu. Herstellerzahlen der TOPS [16, 17, 14] können nur 

als grobe Orientierung verwendet werden, da sie von der Modellstruktur und Rechenart 

abhängen.  

Plattform Funktionalität Echtzeitfähigkeit Anschaffungs- 

/Betriebskosten 

Entwicklungs

aufwand 

NVIDIA  

Jetson 

(Orin 

Nano) 

Breites 

Spektrum für 

Bild-

verarbeitung 

Hohe Leistung, 

höherer 

Energiebedarf,  

bis zu 67 TOPS  

höhere 

Anschaffung, 

höherer Betrieb,  

Viele 

Bibliotheken, 

hoher Einstieg 

Google 

Coral/ 

Edge TPU 

Effiziente 

Bildmodelle 

Schnell, nur bei 

Kompatibilität,  

4 TOPS 

niedriger, 

Einplatinenrechner-

basiert 

Modellhürden 

Raspberry 

Pi 5 mit AI-

HAT+ 

Echtzeit-

Inferenz auf 

dem Pi 

Hoch, CPU-

Vor/Nachverarbei-

tung, 13/26 TOPS 

niedriger, 

Einplatinenrechner-

basiert 

Pi-Integration, 

Werkzeugkette 

erforderlich 

Tabelle 1: Überblick Edge-KI-Plattformen 

 

Zusammenfassend verfügen die drei betrachteten Ansätze alle über die Kapazität, um typische 

KI-Aufgaben zu bewältigen. Dabei unterscheiden sie sich primär im Systemkonzept. Die 

Jetson-Systeme sind als integrierte Gesamtsysteme konzipiert und bieten eine hohe 

Rechenleistung. Jedoch erfordern sie auch eine abgestimmte Systemumgebung, um effizient zu 

funktionieren. Zwar sind sowohl Coral- als auch AI-HAT-Systeme modellabhängig, jedoch 

unterscheiden sie sich in der Art der Abhängigkeit. Bei Coral ergeben sich Einschränkungen 

aus strikten Modellvorgaben, während bei dem AI-HAT+ das erforderliche Ausführungsformat 

im Vordergrund steht. Für die vorliegende Arbeit ist dabei entscheidend, dass der Raspberry Pi 

5 eine verbreitete und nachvollziehbare Basis für Kamera- und Videodatenverarbeitung bietet 

und der AI HAT+ die rechenintensive Inferenz auslagert. Durch die Nutzung vorgefertigter 



24 

 

Modelle kann der Entwicklungsfokus auf die Umsetzung gelegt werden sowie auf die 

Evaluation der Anwendungen. Damit eignet sich der Raspberry Pi 5 mit AI-HAT+, um 

praxisnahe KI-Beispiele zu implementieren und die Grenzen unter realistischen Bedingungen 

zu untersuchen. 

 

3.4 Verwendete Hardwareplattform 

In diesem Abschnitt wird die in dieser Arbeit verwendete Hardwareplattform vorgestellt. Der 

Raspberry Pi 5 in Kombination mit dem KI-Beschleuniger AI-HAT+ bilden die Basis für alle 

entwickelten Anwendungen. Ergänzend kommen eine Kamera sowie weitere Peripheriegeräte 

zum Einsatz, um Videoeingaben zu erfassen und die Ergebnisse der KI-Verarbeitung 

darzustellen. 

 

3.4.1 Raspberry Pi 5 

Der Raspberry Pi 5 ist die fünfte Generation der weitverbreiteten Einplatinencomputer der 

Raspberry-Pi-Familie. Er ist für einen kostengünstigen, zugleich aber leistungsfähigen Einsatz 

in Lehrumgebungen, Prototypen und eingebetteten Anwendungen konzipiert [18].  

Zentrale Merkmale [19, 20], die für diese Arbeit relevant sind, sind insbesondere: 

• eine mehrkernfähige CPU, die die Ausführung der Steuerlogik, der Videoverarbeitung 

sowie der Ansteuerung des KI-Beschleunigers übernimmt 

• ausreichend Hauptspeicher, um Videodaten, Puffer und die zur Inferenz benötigten 

Datenstrukturen im Arbeitsspeicher zu halten 

• eine leistungsfähige Videoeinheit (GPU) zur Beschleunigung von Grafik- und 

Videoaufgaben 

• standardisierte Schnittstellen wie HDMI, GPIO-Pins sowie CSI- oder USB-

Schnittstellen für den Anschluss von Kameras und anderen Geräten 

 

Der Raspberry Pi 5 übernimmt in dieser Arbeit die Rolle der zentralen Steuereinheit. Er 

initialisiert die Kamera, konfiguriert die Datenverarbeitungskette, übergibt Bilddaten an den 

AI-HAT+ und führt die Nachverarbeitung der Inferenzresultate durch.  
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3.4.2 AI-HAT+ 

Der AI-HAT+ ist ein Aufsteckmodul (HAT) für den Raspberry Pi 5, welcher einen „Neural-

Network-Accelerator“ (NPU) integriert. Dieser ist darauf ausgelegt, neuronale Netze effizient 

auszuführen, und übernimmt einen Großteil der rechenintensiven Operationen, die bei der 

Inferenz von Deep-Learning-Modellen anfallen. „Die NPU erlaubt es, die beschleunigten KI-

Modelle lokal auszuführen, sodass keine Daten zur Verarbeitung an einen Cloud-Server 

übertragen werden müssen.“ (eigene Übersetzung) [14]. 

Je nach Variante des Hailo-Chips bietet das System 13 TOPS (Hailo-8L) oder 26 TOPS (Hailo-

8). Die Kommunikation zwischen Raspberry Pi 5 und AI-HAT+ erfolgt über die definierte 

PCIe-Schnittstelle des HATs [14]. 

Der Vorteil des AI-HAT+ liegt insbesondere in der deutlich höheren Inferenzleistung im 

Vergleich zu einer reinen CPU-Inferenz. Dadurch werden Bildraten im Echtzeitbereich 

ermöglicht, die für Anwendungen wie Personenerkennung erforderlich sind. Der AI-HAT+ 

übernimmt in dieser Arbeit den Inferenzteil der Anwendungen.  

 

3.4.3 Kamera und weitere Peripherie 

Für die Erfassung der Bilddaten wird das Raspberry Pi Camera Module 2 verwendet. Diese ist 

mit dem Raspberry Pi 5 verbunden. Wichtig ist dabei, dass die Kamera eine ausreichende 

Bildauflösung und Bildrate liefert, um die im Rahmen dieser Arbeit untersuchten Anwendungen 

sinnvoll zu betreiben. Typischerweise wird mit der Auflösung von 720p und Bildraten zwischen 

15 und 30 Bildern pro Sekunde gearbeitet. 

Neben der Kamera kommen weitere Peripheriegeräte zum Einsatz, unter anderem: 

• einen Monitor zur Darstellung des Videobildes und der KI-Ergebnisse 

• Eingabegeräte wie Tastatur und Maus zur Bedienung des Systems 

 

Die Gesamtplattform aus Raspberry Pi 5, AI-HAT+, Kamera und Peripherie bildet eine 

kompakte Edge-KI-Plattform, ohne dass eine externe Cloud-Infrastruktur angebunden werden 

muss. Sie dient in dieser Arbeit als Referenzplattform für die Untersuchung, wie 

praxisorientierte KI-Anwendungen unter realistischen Randbedingungen auf einer 

ressourcenbegrenzten Hardware umgesetzt werden können. 
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4. Anforderungen und Design der KI-Beispiele 

In diesem Kapitel werden die Anforderungen der entwickelten KI-Anwendungen beschrieben 

und das darauf aufbauende Design der Systemarchitektur vorgestellt. Im Fokus stehen drei KI-

Beispiele, die auf Bild- bzw. Videodaten operieren und in Echtzeit ausgeführt werden sollen. 

Die Architektur soll dabei die begrenzten Hardware-Ressourcen der Plattform berücksichtigen 

und gleichzeitig genügend Flexibilität für die verschiedenen Anwendungsfälle bieten. 

 

4.1 Überblick über die umgesetzten KI-Anwendungen 

Im Rahmen dieser Arbeit werden folgende KI-Anwendungen realisiert: 

Posenerkennung: 

In dieser Anwendung wird die Körperhaltung einer Person im Kamerabild analysiert. Ein 

Modell zur Schätzung von Körperposen erkennt sogenannte „Schlüsselpunkte“. Diese Punkte 

sind Positionen von bestimmten Gelenkpunkten wie Schultern, Ellenbogen oder Handgelenken. 

Aus diesen Angaben lassen sich diskrete Posen wie „Arme gehoben“ oder „Arme unten“ 

mithilfe einfacher Regeln ableiten. Diese Anwendung eignet sich insbesondere zur 

Demonstration von Mensch-Maschine-Interaktion über Körperbewegungen. 

  

Gesichtsmaskierung: 

Diese Anwendung detektiert das Gesicht im Kamerabild und maskiert es durch Verpixelung 

oder Unschärfe der entsprechenden Bildbereiche in Echtzeit. Ein Gesichtsdetektionsmodell 

liefert den Bildbereich des erkannten Gesichts. Auf dieser Basis wird entschieden, welche 

Bildbereiche maskiert werden sollen. Sie adressiert den Aspekt des Datenschutzes und zeigt, 

wie KI-basierte Erkennung mit anschließender Bildmanipulation kombiniert werden kann.  

 

 

Fahrzeugzählung: 

In dieser Anwendung werden Fahrzeuge im Bild erkannt und gezählt, sobald sie eine im Bild 

definierte virtuelle Linie überqueren. Ein Objekterkennungsmodell erkennt Fahrzeuge im Bild 

und markiert die Position der Bildbereiche. Aus dieser Position wird abgeleitet, ob sich der 

Mittelpunkt einer Fahrzeugbox bewegt hat und ob sie sich von einer Seite der Linie auf die 
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andere bewegt hat.  Die Anwendung demonstriert ein einfaches Szenario der 

Verkehrsüberwachung und eignet sich, um die Kombination aus Objektverfolgung und 

Ereignislogik („Linienkreuzung“) zu zeigen.  

 

Die drei Beispiele decken damit unterschiedliche Anwendungsfelder ab: Mensch-Maschine-

Interaktion, Datenschutz und Videoanalyse im Verkehrsbereich. Gleichzeitig nutzen sie 

ähnliche technische Bausteine wie Kamera, Inferenz, Nachverarbeitung, die eine gemeinsame 

Systemarchitektur ermöglichen. 

 

4.2 Funktionale Anforderungen 

Im Folgenden werden die funktionalen Anforderungen an die einzelnen Anwendungen 

beschrieben. Sie legen fest, welche Funktionen die Prototypen bereitstellen sollen. 

4.2.1 Posenerkennung 

Die Anwendung soll einen Videostream erfassen können über eine angeschlossene Kamera. 

Dabei soll es möglich sein, mindestens eine Person zu erkennen und die Körpergeste über 

Schlüsselpunkte zu berechnen. Durch vordefinierte Regeln soll die Anwendung die Körperpose 

erkennen und die erkannte Pose im Videobild oder im Terminal in Echtzeit anzeigen. Dabei 

liegt die Verarbeitung eines einzelnen Benutzers im Vordergrund, während der Umgang mit 

mehreren Personen optional ist. 

4.2.2 Fahrzeugzählung 

Die Anwendung soll Fahrzeuge im Videostream erkennen können, mithilfe eines 

Objekterkennungsmodells. Es soll eine virtuelle Linie im Bild definiert werden, welche relativ 

zur Fahrstrecke der Fahrzeuge liegt (horizontal oder vertikal). Die Position der erkannten 

Fahrzeuge soll verfolgt werden und ein Zähler wird erhöht, sobald ein Fahrzeug die Linie in 

einer definierten Richtung überquert.  
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4.2.3 Gesichtsmaskierung 

Die Anwendung soll Gesichter im Videostream erkennen können. Um erkannte Gesichter 

deutlich sichtbar zu machen, wird eine Box um das erkannte Objekt gezeichnet. Danach folgt 

die Maskierung der Gesichter durch Verpixelung oder Weichzeichnen der entsprechenden 

Bildbereiche. Die Darstellung des maskierten Videostreams erfolgt dabei in Echtzeit. Die 

Anwendung soll dabei mindestens ein Gesicht erkennen und maskieren können. 

 

4.3 Nicht-funktionale Anforderungen 

Neben den funktionalen Anforderungen spielen nicht-funktionale Anforderungen eine wichtige 

Rolle. Sie legen grob fest, wie gut die Anwendungen ihre Aufgaben erfüllen sollen. Genauere 

Zielwerte für Bildrate oder Latenz werden in Kapitel 6 „Evaluation“ festgelegt (Siehe 6.3). 

Die folgenden Anforderungen gelten für alle Anwendungen: 

Echtzeitfähigkeit und Latenz: 

Alle Programme sollen reibungslos funktionieren und mindestens 15 Bilder pro Sekunde 

anzeigen. Die Bildrate sollte bei normaler Belastung konstant bleiben, ohne dass es zu starken 

Einbrüchen kommt. Die Verzögerung zwischen Kameraaufnahme und Darstellung der 

Ergebnisse soll minimal sein. Der Nutzer soll die Resultate in Echtzeit wahrnehmen, ohne dass 

sich Verzögerungen oder Inkonsistenzen bemerkbar machen.  

Ressourcennutzung: 

Es sollte sichergestellt werden, dass die CPU- und Speicherauslastung in einem Bereich bleibt, 

der für einen dauerhaften Betrieb ohne Instabilität sorgt. Dabei soll der Raspberry Pi nach 

längerer Zeit nicht überhitzen oder in eine CPU-Drosselung geraten. Ressourcen bleiben bei 

mehreren Prozessen ordnungsgemäß verteilt und blockieren nicht das System.  

Robustheit: 

Die Anwendungen sollen über eine längere Zeit stabil funktionieren, ohne dass sie abstürzen. 

Außerdem sollen sie in alltäglichen Situationen (normale Beleuchtung, mäßige Bewegung, 

unterschiedliche Hintergründe) verlässliche Ergebnisse erzielen. Darüber hinaus sollte die 

Erkennung gegenüber Verdeckungen, leichtem Wackeln und unterschiedlichen Distanzen 

tolerant sein.  
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Bedienbarkeit: 

Alle Programme sollen mit nur wenigen Schritten gestartet werden können, etwa mit einem 

Skript oder einem Befehl. Die Ergebnisse werden verständlich dargestellt, durch gezeichnete 

Boxen, Schlüsselpunkte und Statusanzeigen im Videobild oder im Terminal.  

Datenschutz: 

Die Daten sollen lokal verarbeitet werden und keine Cloudanbindung haben. Eine Speicherung 

von Bildern ist nur bewusst möglich und klar gekennzeichnet. Insbesondere sollen die 

Ergebnisse der Maskierung zuverlässig sein. 

 

4.4 Zielsetzung des Systemdesign 

Das Systemdesign verfolgt drei zentrale Ziele, die im Folgenden erläutert werden: 

Echtzeitverarbeitung des Videostreams: 

Als Erstes soll der Videostream der Kamera in Echtzeit verarbeitet werden können, sodass der 

Benutzer eine direkte Rückmeldung seiner Bewegung oder der Ereignisse im Video erhält. 

Dazu ist ein durchgängiger „Pipeline“-Ansatz erforderlich, der Bildaufnahme, Vorverarbeitung, 

Inferenz, Nachverarbeitung und Darstellung sinnvoll verbindet. 

Auslagerung der KI-Inferenz auf den AI-HAT+: 

Als Zweites wird es angestrebt, dass die rechenintensive Ausführung der neuronalen Netze auf 

den AI-HAT+ ausgelagert wird. Der Raspberry Pi 5 dient lediglich als Steuereinheit und 

übernimmt Vor- und Nachverarbeitungsaufgaben, sowie die Darstellung der Ergebnisse. 

Dadurch sollen die Ressourcen der CPU geschont werden, um höhere Bildraten zu ermöglichen. 

Gemeinsame Architektur für alle Anwendungen: 

Das dritte Ziel ist es, die Architektur so zu gestalten, dass alle Anwendungen auf einer ähnlichen 

Datenverarbeitungskette basieren, welche aus Kameraeingang, Vorverarbeitung, Inferenz, 

Nachverarbeitung und Darstellung besteht. Die Unterschiede zwischen den Anwendungen 

sollen in der Auswahl des Modells und der Auswertung des Modells liegen, nicht in den 

verschiedenen Strukturen. Dadurch werden die Entwicklung, Vergleichbarkeit und 

Wiederverwendung von Komponenten erleichtert. 
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4.5 Konzeption der gemeinsamen Systemarchitektur  

Obwohl die drei Anwendungen unterschiedliche Aufgaben lösen, sollen sie auf einer 

gemeinsamen Systemarchitektur basieren. Wie im vorherigen Abschnitt genannt, erleichtert es 

die Entwicklung, den Vergleich und eine mögliche Wiederverwendung der Komponenten. Der 

Kern ist eine „Videopipeline“ (Videoverarbeitungskette). Dabei wird jedes einzelne Bild in 

einer gleichen Abfolge von Verarbeitungsschritten durchlaufen. Auf hoher Abstraktionsebene 

lässt sich die Architektur folgendermaßen beschreiben:  

1. Videoaufnahme: Die Kamera liefert einen kontinuierlichen Videostream an den Raspberry 

Pi. Es werden die aktuellen Bilder des Videostreams ausgelesen, welche die Kamera liefert. Die 

einzelnen Bilder dienen als Eingang für weitere Verarbeitung. 

2. Vorverarbeitung: Die Rohbilder liegen zunächst im kameraspezifischen Ausgangsformat 

vor. Je nach KI-Modell gibt es Anforderungen zur Auflösung und zum Farbraum. Der Schritt 

der Vorverarbeitung passt die Bilder an diese Anforderungen. Die Bilder werden auf die 

geeignete Eingangsauflösung skaliert (1280 × 720 Pixel, sofern das Modell keine anderen 

Vorgaben macht). Als Nächstes folgt die Umwandlung in den benötigten Farbraum (RGB, falls 

keine Vorgaben existieren). Gegebenenfalls ist auch eine Normalisierung der Pixelwerte nötig. 

3. KI-Inferenz auf dem AI-HAT+: Das vorbereitete Bild wird nun an den AI-HAT+ 

übertragen. In diesem Schritt wird das zuvor geladene Modell ausgeführt und das vorbereitete 

Bild eingegeben. Dabei ist wichtig zu verstehen, dass die Anwendung keine Details über die 

interne Funktionsweise des AI-HAT+ kennen soll. Die Schnittstelle soll modellunabhängig 

einheitlich sein. Die Bilder werden analysiert und der AI-HAT+ erzeugt strukturierte Ausgaben 

wie Klasseninformationen, Schlüsselpunkte oder Rahmenboxen (Bounding Boxes).  

4. Nachverarbeitung: Die Roh-Ausgaben des Modells werden interpretiert und in nutzbare 

Informationen umgewandelt. Die Rahmenboxen und Schlüsselpunkte werden in das Bild 

gezeichnet. Eine Skalierung in die ursprüngliche Auflösung soll hier geschehen. 

Gleichzeitig wird hier die anwendungsspezifische Logik eingebaut: 

• Gestenerkennung: Die vom Modell gelieferten Schlüsselpunkte enthalten die benötigten 

Informationen, um anhand von vordefinierten Regeln eine diskrete Pose zu bestimmen. 

• Gesichtsmaskierung: Das Modell liefert den Bildbereich des erkannten Gesichts, der 

anschließend verpixelt oder weichgezeichnet wird. 



31 

 

• Fahrzeugdetektion und -zählung: Das Modell erkennt die verschiedenen Fahrzeuge im 

Bild. Aus den Positionen wird abgeleitet, ob das Fahrzeug die virtuelle Linie 

überquert. In dem Fall wird der Zähler erhöht. 

5. Darstellung: Die Ergebnisse der Nachverarbeitung werden je nach Anwendung im Videobild 

dargestellt, beispielsweise durch Skelett- und Schlüsselpunktdarstellungen, maskierte 

Bildbereiche und Rahmenboxen. Zusätzlich werden Textinformationen wie Pose, Zählerstand 

oder Debug-Ausgaben im Terminal ausgegeben. Das erzeugte Bild wird auf dem Monitor 

sichtbar und bildet die sichtbare Rückmeldung des Systems. 

Die Architektur ist bewusst so ausgelegt, dass Kameraeingang, Vorverarbeitung, Inferenz, 

Nachverarbeitung und Bildausgabe in allen Anwendungen in ähnlicher Weise realisiert werden. 

Die Unterschiede ergeben sich hauptsächlich im verwendeten Modell und im jeweiligen 

Nachverarbeitungsschritt. Dadurch entsteht eine modulare Systemarchitektur, welche die 

Wiederverwendung von Komponenten ermöglicht. 
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Abbildung 5: Aktivitätsdiagramm der Videoverarbeitungskette 
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4.6 Auswahl der KI-Modelle 

Für die Umsetzung der Anwendungen wurden bewusst vortrainierte Modelle aus dem Hailo-

Model-Zoo [21] ausgewählt. Der Model-Zoo bietet eine reichliche Anzahl an vortrainierten 

Modellen an, die im Zielformat für Hailo-Beschleuniger liegen. Zudem bietet er Umgebungen 

und Werkzeuge an, um eigene Modelle zu trainieren. Das Training von eigenen Modellen wäre 

im Rahmen dieser Arbeit zeitlich und organisatorisch nicht sinnvoll gewesen, da die 

Datenaufbereitung und das Modelltraining zeitintensiv sind und das eigentliche Ziel der Arbeit 

verschoben hätte. Die Auswahlkriterien waren daher die Verfügbarkeit als vorkompilierte HEF-

Datei, die Kompatibilität mit dem AI-HAT+, sowie eine ausreichende Laufzeitperformance für 

Echtzeitanwendungen.   

Für die Posenerkennung wurde das „YOLO8s Pose“-Modell [22] verwendet. Dieser schätzt 

Körperposen und liefert pro Person mehrere Gelenkpunkte. Das Modell eignet sich besonders 

gut, da es keine fertigen Klassen ausgibt, sondern nur die Positionen der Körperpunkte. Dadurch 

bleibt die Logik anpassbar, während das Modell die Schätzung übernimmt.  

Die Fahrzeugdetektion und -zählung verwendet das „YOLOv8s“-Objekterkennungsmodell 

[23]. Dieser kann 80 verschiedene Klassen erkennen und klassifizieren. Da in der Anwendung 

mehrere Objekte erkannt werden sollen, wie zum Beispiel Autos, Motorräder oder Fahrräder, 

deckt das Modell die benötigten Klassen ab.  

Das Gesichtserkennungsmodell „SCRFD_10G“ [24] wurde für die Gesichtsmaskierung 

verwendet. Das Modell ist für den Anwendungsfall besser geeignet als ein 

Gesichtsidentifikationsmodell, da nur die Gesichtsregion benötigt wird. Eine Identität des 

Gesichtes würde nicht das Datenschutz-Ziel dieser Anwendung verfolgen.  

Insgesamt wurde die Modellauswahl so getroffen, dass sich alle drei Anwendungen mit der 

konzipierten Architektur implementieren lassen. Dabei liefern die Modelle strukturierte 

Ausgaben, die sich in der Nachverarbeitung weiterverarbeiten lassen. Die Unterschiede der 

Modelle liegen somit in den Ausgaben und weniger in der Systemintegration, wodurch ein 

Vergleich in der entwickelten Architektur möglich ist. 
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4.7 Annahmen und Abgrenzungen 

Für die Konzeption der Anwendungen werden einige Annahmen getroffen und bewusste 

Abgrenzungen vorgenommen: 

• Die Anwendungen sind als Prototypen zu verstehen und nicht als produktive Systeme. 

Bestimmte Aspekte wie umfassende Fehlerbehandlung werden nicht betrachtet. 

• Das Training der verwendeten Modelle ist nicht Bestandteil dieser Arbeit. Es wird 

vorausgesetzt, dass geeignete, vortrainierte Modelle zur Verfügung stehen und in das 

für den AI-HAT+ notwendige Format vorkompiliert sind (Hailo-Model-Zoo). 

• Die Anwendungen werden unter kontrollierten Bedingungen entwickelt und getestet, 

zum Beispiel mit einer einzelnen Person vor der Kamera oder einem definierten 

Kamerawinkel bei der Fahrzeugzählung. Extreme Szenarien wie schlechte 

Beleuchtung, starke Bewegungsunschärfe oder sehr viele Objekte im Bild werden nur 

eingeschränkt betrachtet. 

• Die Arbeit konzentriert sich auf die bildbasierte KI-Verarbeitung. Weitere Sensoren 

werden nicht einbezogen. 

Durch diese Abgrenzungen bleibt der Umfang der Arbeit überschaubar, während die gewählten 

Beispiele dennoch ein breites Spektrum typischer Edge-KI-Anwendungen abdecken. 
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5. Implementierung 

In diesem Kapitel wird beschrieben, wie das im vorherigen Abschnitt entwickelte Design 

konkret in Software umgesetzt wurde. Für das Verständnis werden als Erstes die technischen 

Grundlagen erläutert. Im Anschluss wird auf die gemeinsame Basisimplementierung 

eingegangen, bevor die Besonderheiten der einzelnen Anwendungen erläutert werden. 

 

5.1 Entwicklungsumgebung und verwendete Technologien 

Die Implementierung erfolgt in Python, da diese Sprache eine gute Unterstützung für 

Bildverarbeitung, Skripting und die Anbindung externer Bibliotheken bietet. Auf der untersten 

Ebene stellt das Betriebssystem Raspberry Pi OS die notwendigen Gerätetreiber zur Verfügung, 

um die Kamera und den AI-HAT+ anzusprechen. Die Treiber, Multimedia-Frameworks und 

Bibliotheken werden im Folgenden besprochen. 

 

5.1.1 GStreamer als Videopipeline 

GStreamer ist ein Multimedia-Framework [25], mit dem sich Videodaten in Pipelines 

verarbeiten lassen. Eine Pipeline besteht aus einer Reihe von Elementen [26, 27], die jeweils 

eine klar definierte Aufgabe übernehmen. Somit können Datenverarbeitungsschritte 

miteinander verbunden. Jedes Element besitzt sogenannte „Pads“ [28]. Das sind Eingangs- und 

Ausgangsanschlüsse (src und sink), über die Daten von einem Element zum nächsten fließen. 

Somit entsteht eine durchgehende Datenstrecke.  

 

Abbildung 6: GStreamer, Elemente, Pads, Pipeline [26] 

 

Die Pipeline wird in Python aufgebaut und gesteuert. Die einzelnen Elemente werden zu einer 

festen Reihenfolge miteinander verbunden. Die Kamerabilder fließen kontinuierlich durch 
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diese Kette. In den Hailo-Referenzanwendungen wird der AI-HAT+ über herstellerspezifische 

GStreamer-Elemente in die Pipelines integriert [29]. Ein Element (hailonet) übernimmt in der 

Regel die Inferenz und ein weiteres Element (hailooverlay) kann die Visualisierung der 

Erkennungsergebnisse unterstützen. Diese Hailo-Elemente fügen sich wie normale GStreamer-

Bausteine in die Pipeline ein, sodass Kamera, Inferenz und Ausgabe in einem durchgehenden 

Datenfluss verbunden werden können.  

Für die anwendungsspezifische Logik müssen die Anwendungen Zugriff auf die 

Modellausgaben haben. Dafür benutzt diese Arbeit das Konzept der „Pad-Probe“ [30] in 

GStreamer. Eine Pad-Probe ist ein „Abhörpunkt“ an einem Pad eines Elements. Somit kann 

eine Callback-Funktion an einem bestimmten Pad registriert werden. Typischerweise liegt dies 

am Ausgangspad des Elements, das die Modellausgaben bereitstellt. Das heißt, dass die 

Callback-Funktion aufgerufen wird, sobald ein Bild dieses Pad passiert. Somit kann bei jedem 

Bild die Funktion aufgerufen werden und die benötigten Informationen abrufen.  

 

5.1.2 Hailo-Softwareumgebung 

Damit der AI-HAT+ als KI-Beschleuniger genutzt werden kann, wird eine spezifische Hailo-

Softwareumgebung benötigt. Im Wesentlichen besteht die Umgebung aus drei Bausteinen: 

Der Hailo-Treiber [31] sorgt dafür, dass der AI-HAT+ vom Betriebssystem erkannt wird und 

als Gerät zur Verfügung steht. Der Treiber übernimmt den Datentransfer zwischen dem 

Arbeitsspeicher des Raspberry Pi und dem Speicher des Hailo-Chips. In der Implementierung 

wird der Treiber nicht direkt angesprochen, jedoch ist er die Voraussetzung, damit andere 

Bibliotheken auf den Beschleuniger zugreifen können. 

Die HailoRT-Runtime [32, 33] ist die Laufzeitumgebung, die direkt mit dem Hailo-Chip 

kommuniziert. Sie lädt die HEF-Modelle in den Chip und führt die Inferenz durch. In den 

Anwendungen dieser Arbeit wird HailoRT überwiegend indirekt über GStreamer-Elemente 

genutzt, da die Hailo-Plugins intern auf HailoRT zurückgreifen. 

Das Hailo-SDK [34] ist das Entwicklerpaket und stellt verschiedene Werkzeuge bereit (z. B. 

Modellkonvertierungswerkzeuge). Die Referenzbeispiele [35] aus dem SDK dienten als 

Vorlage für den Aufbau der eigenen GStreamer-Pipeline. 
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5.1.3 Python-Bibliotheken für Bildverarbeitung und Numerik 

In den Anwendungen kamen mehrere Python-Bibliotheken zum Einsatz.  

Open Source Computer Vision Library (OpenCV) [36] ist eine verbreitete Bibliothek für 

Bildverarbeitung und Computer Vision. Für die entwickelten Anwendungen stellt sie 

Funktionen zur Skalierung, Filterung, Farbkonvertierung und mehr bereit.  

NumPy [37] ist die Standardbibliothek für numerische Berechnungen in Python. Für die 

Anwendungen stellt sie Datenstrukturen für Vektor- und Matrixoperationen zur Verfügung.  

Die Kombination aus GStreamer, Hailo-Softwareumgebung und Python-Bibliotheken bildet 

die technische Grundlage für die folgenden Abschnitte der Implementierung.  
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5.2 Gemeinsame Basisimplementierung 

In der gemeinsamen Basisimplementierung wird in der Funktion build_pipeline die Pipeline 

gebaut. Es wird eine Kette aus Kameraquelle (rpicamsrc für den Raspberry-Pi-Kamerastack 

oder alternativ v4l2src für Video4Linux2), Konvertierungs- und Skalierungsschritten, einem 

Hailo-Inferenz-Element und einem Video-Sink erstellt. Dabei werden Breite, Höhe und Bildrate 

der Frames zentral festgelegt (1280×720 Pixel). Nach dem Aufbau werden die Hailo-

spezifischen Elemente (hailonet, hailooverlay und hailofilter) aus der Pipeline 

geholt und bei Bedarf weiter konfiguriert. 

 

FRAME_WIDTH  = 1280 

FRAME_HEIGHT = 720 

FRAMERATE    = 30 
 

def build_pipeline(app_name: str = "name", use_rpicam: bool = True): 

     

 

    if use_rpicam: 

        source = ( 

            "rpicamsrc name=src " 

            f"! video/x-raw,width={FRAME_WIDTH},height={HEIGHT}," 

            f"framerate={FRAMERATE}/1" 

        ) 

    else: 

        source = ( 

            "v4l2src device=/dev/video0 name=src " 

            f"! video/x-raw,width={WIDTH},height={HEIGHT}," 

            f"framerate={FRAMERATE}/1" 

        ) 

 

    pipeline_desc = f""" 

        {source} 

        ! videoconvert 

        ! videoscale 

        ! video/x-raw,format=RGB 

        ! queue 

        ! hailonet name=hnet hef-path={hef_path} 

        ! queue 

        ! hailofilter name= hfilter so-path={so_path} 

        ! queue 

        ! hailooverlay name=overlay 

        ! queue 

        ! identity name=identity_callback 

        ! autovideosink sync=false 

    """ 

 

    return Gst.parse_launch(pipeline_desc) 

Codeblock 1: Quellcode Pipeline bauen 
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def configure_hailo_elements(pipeline): 

    hnet    = pipeline.get_by_name("hnet") 

    overlay = pipeline.get_by_name("overlay") 

 

    # Beispiel: Eigenschaften könnten hier gesetzt werden  

    # hnet.set_property("batch-size", 1) 

    # overlay.set_property("draw-scores", True) 

Codeblock 2: Quellcode Hailo-Elemente holen und konfigurieren 

 

Die eigentliche KI-Inferenz wird mit der Hilfe der GStreamer-Elemente hailonet und 

hailooverlay realisiert. Die Elemente, sowie Hailo-Runtime werden als dynamische 

Bibliotheken (.so-Dateien) von der Hailo-SDK bereitgestellt und in das System eingebunden. 

Das Element hailonet übernimmt das Laden des jeweiligen HEF-Modells in den Hailo-Chip 

sowie die Ausführung der Inferenz. Die vorverarbeiteten Bilder werden als Eingabe an 

hailonet übergeben. Dort werden sie verarbeitet und die Modell-Ausgaben, wie zum 

Beispiel Rahmenboxen oder Schlüsselpunkte, werden als Metadaten an den jeweiligen 

Videobuffer gehängt (hailofilter). Nun liest das Element hailooverlay die 

Metadaten aus und zeichnet die entsprechenden Informationen direkt in das Videobild ein, z. 

B. Rahmen um erkannte Fahrzeuge oder Gesichter.  

 

Am Ende der GStreamer-Pipeline steht ein Video-Sink-Element wie autovideosink oder 

waylandsink. Diese Elemente sind dafür zuständig, um den resultierenden Videostream im 

Anzeigefenster des Raspberry Pi auszugeben. Außerdem wird in allen Anwendungen eine Pad-

Probe am Ausgabepad (src-Pad) angehangen. Diese Pad-Probe ruft pro Bild eine Rückruf-

Funktion (app_callback) auf. In dieser Funktion ist der Zugriff auf den aktuellen 

Videobuffer und die angehängten Metadaten möglich. Die anwendungsspezifische Logik, wie 

zum Beispiel die Posenklassifikation, wird auf Grundlage dieser Information in der Rückruf-

Funktion umgesetzt. Gleichzeitig wird hier eine Funktion eingebaut, um die Metriken wie 

Bildrate, Latenz und CPU-Auslastung aufzuzeichnen. 
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def app_callback(pad, info, user_data): 

    buffer = info.get_buffer() 

    if buffer is None: 

        return Gst.PadProbeReturn.OK 

 

    detections = [] 

    try: 

        roi = hailo.get_roi_from_buffer(buffer) 

        detections = roi.get_objects_typed(hailo.HAILO_DETECTION) 

    except Exception: 

        detections = [] 

         

    #Anwendungsspezifische Logik hier 

 

    #Metriken 

 

    return Gst.PadProbeReturn.OK 

Codeblock 3: Quellcode Callback-Funktion 

 

Die Pipeline erhält ein identity-Element, damit die Pad-Probe sicher platziert werden kann. 

Das identity-Element gibt die Bilder neutral weiter, ohne sie zu verändern. Sie dient dem 

Zweck, einen stabilen Ankerpunkt für die Pad-Probe bereitzustellen. Da Sink-Elemente von 

Pipeline zu Pipeline unterschiedlich sein können, wäre es ohne das Element schwieriger, die 

Probe zuverlässig an derselben Stelle zu platzieren. Nachdem die Pipeline erstellt wurde, wird 

das identity-Element über seinen Namen identity_callback gesucht. Anschließend 

wird das src-Pad ausgelesen und dort eine Pad-Probe registriert, die bei jedem Bild die Funktion 

app_callback ausführt. Im Codeblock 4 wurde dieses Vorgehen implementiert. 

 

def build_pipeline(app_name: str = "name", use_rpicam: bool = True): 

    (...) 

     

        pipeline = Gst.parse_launch(pipeline_desc) 

 

        identity = pipeline.get_by_name("identity_callback") 

        src_pad = identity.get_static_pad("src") 

        src_pad.add_probe(Gst.PadProbeType.BUFFER, app_callback, 

None) 

 

    return pipeline 

Codeblock 4: Quellcode identity-Element holen und anhängen 

 

  



41 

 

Der eigentliche Programmstart erfolgt über die main-Funktion. In der Funktion wird die 

Videopipeline aufgebaut und eine GLib-Mainloop gestartet, sodass die Pipeline kontinuierlich 

ausgeführt wird. Die eigentliche Struktur der Pipeline wird in einer eigenen Funktion gekapselt, 

sodass die drei Anwendungen jeweils als eigenständige Programme umgesetzt sind, jedoch alle 

dem gleichen grundlegenden Pipeline-Aufbau folgen. 

 

import gi 

from gi.repository import Gst, GObject 

def main(): 

    Gst.init(None)                      

    loop = GObject.MainLoop()          

    pipeline = build_pipeline()        

    pipeline.set_state(Gst.State.PLAYING) 

 

    try: 

        loop.run()                     

    except KeyboardInterrupt: 

        pass 

    finally: 

        pipeline.set_state(Gst.State.NULL) 

 

    (...) 

 

if __name__ == "__main__": 

    main() 

Codeblock 5: Quellcode Main-Funktion 

 

Durch die Kombination aus Hailo-SDK und GStreamer können Kamerabilder eingelesen, auf 

den AI-HAT+ verarbeitet und das Ergebnis angezeigt werden. In den folgenden 

Unterabschnitten wird auf die anwendungsspezifischen Unterschiede eingegangen. 
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Die Abbildung 7 zeigt noch einmal die Pipeline mit ihren Elementen: 

 

Abbildung 7: Aktivitätsdiagramm Ablauf der Videopipeline 
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5.3 Implementierung der Gestenerkennung 

Die Gestenerkennung auf Basis der Körperpose verwendet das Modell „YOLO8s Pose“, das 

für jede erkannte Person im Bild eine Menge von Gelenkpunkten liefert. In der 

Implementierung werden diese Schlüsselpunkte zunächst in Pixelkoordinaten des 

ursprünglichen Kamerabildes zurückgerechnet. Anschließend werden sie so miteinander 

verbunden, dass eine einfache Skelettdarstellung entsteht, die im Video visualisiert wird. 

Als Erstes werden die Rohdaten von der Kamera geliefert. Das Modell erwartet jedoch eine 

Eingabegröße von 640×640 Pixel. Das Bild wird proportional skaliert, sodass das 

Seitenverhältnis gleich bleibt und die fehlenden Bereiche mit Rändern aufgefüllt werden 

(Padding). Ein „Strecken“ des Bildes würde es verzerren und die Erkennung verschlechtern. 

 Im hailonet-Element wird das Modell geladen und der Hailo-Chip führt die Inferenz aus. 

Danach dekodiert das hailofilter-Element die Tensors und führt die Koordinaten vom 

Netzraum zurück in den Bildraum mithilfe der Funktion filter_letterbox (aus der 

Nachverarbeitungsbibliothek libyolov8pose_postprocess.so). Die fertigen Metadaten 

HAILO_DETECTION und HAILO_LANDMARKS werden an den GStreamer-Buffer angehängt 

und können mit der Funktion hailo.get_roi_from_buffer(buffer) gelesen 

werden.  

Am Ende zeichnet hailooverlay noch die Boxen und die Schlüsselpunkte, um ein Skelett 

zu erhalten. Aus dem GStreamer-Buffer wird nun die beste Person und deren Schlüsselpunkte 

genommen, um die Pose zu klassifizieren. Da die Punkte noch relativ zur Rahmenbox 

normalisiert sind, müssen sie in Bildpixel umgerechnet werden: 

 

1. Relativ in Rahmenbox → relativ im Bild 

𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 = 𝑝. 𝑥() ⋅ 𝑏𝑏𝑜𝑥. 𝑤𝑖𝑑𝑡ℎ() + 𝑏𝑏𝑜𝑥. 𝑥𝑚𝑖𝑛() 

𝑦𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 = 𝑝. 𝑥() ⋅ 𝑏𝑏𝑜𝑥. 𝑤𝑖𝑑𝑡ℎ() + 𝑏𝑏𝑜𝑥. 𝑥𝑚𝑖𝑛() 

2. Relativ im Bild → Bildpixel 

𝑥𝐵𝑖𝑙𝑑𝑝𝑖𝑥𝑒𝑙 = 𝑥𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 ∙ 𝑊 

𝑦𝐵𝑖𝑙𝑑𝑝𝑖𝑥𝑒𝑙 = 𝑦𝑟𝑒𝑙𝑎𝑡𝑖𝑣 𝑧𝑢𝑚 𝐵𝑖𝑙𝑑 ∙ 𝐻 
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roi = hailo.get_roi_from_buffer(buffer) 

detections = roi.get_objects_typed(hailo.HAILO_DETECTION) 

 

best_kps, best_conf = None, 0.0 

for det in detections: 

    if det.get_label() != "person": 

        continue 

    bbox = det.get_bbox()                     

    conf = det.get_confidence() 

    lmarks = det.get_objects_typed(hailo.HAILO_LANDMARKS) 

    if not lmarks: 

        continue 

 

    pts = lmarks[0].get_points() 

    kps_xyc = [] 

    for p in pts: 

        x = (p.x()*bbox.width() + bbox.xmin()) * W 

        y = (p.y()*bbox.height()+ bbox.ymin()) * H 

        kps_xyc.append((x, y, conf))     

      

    if conf > best_conf: 

        best_conf, best_kps = conf, kps_xyc 

Codeblock 6: Quellcode Umrechnung der Gelenkpunkte in Bildpixel 

 

Um die Posen zu klassifizieren, müssen einige Regeln programmiert werden. Für HANDS_UP 

müssen die Handgelenke deutlich über der Nase und Schulterhöhe liegen. Für die erste Regel 

benötigen wir die y-Koordinaten der Handgelenke. In Bildkoordinaten liegt der Ursprung oben 

links. Das heißt, dass für die Handgelenke ein höherer Wert zurückgegeben wird, obwohl sie 

im Bild tief liegen (neutrale Position). Für die Programmierung der Regeln heißt das, dass der 

Wert der Handgelenke kleiner sein muss als der Nasen Wert. Dies gilt auch für die zweite Regel, 

die besagt, dass die Handgelenke über den Schultern sein müssen. Damit sichergestellt werden 

kann, dass die Handgelenke deutlich über der Nase und den Schultern sind, werden die 

Koordinaten jeweils um 10% der Bildhöhe erhöht.  

#lwy:       y-Wert des linken Handgelenks 

#rwy:       y-Wert des rechten Handgelenks 

#nose_y:    y-Wert der Nase 

#mean_sh:   Mittelwert der Schultern 

 

up_margin = 0.10*H   

if (lwy < nose_y - up_margin and rwy < nose_y - up_margin) or \ 

   (lwy < mean_sh - up_margin  and rwy < mean_sh - up_margin): 

    return "HANDS_UP" 

Codeblock 7: Quellcode HANDS_UP Regeln 
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T_POSE wird erkannt, sobald Handgelenke und Ellenbogen auf Schulterhöhe sind oder weit 

nach außen gehen. Um sicherzugehen, dass die Handgelenke nicht exakt auf der Schulterhöhe 

liegen müssen, wird ein vertikales Toleranzband definiert. Das Band lässt Abweichungen von 

bis zu 18% der Bildhöhe zu. Zudem wird verglichen, ob die Höhe der Handgelenke auf der 

Höhe der Schultern liegt (innerhalb des Toleranzbands). Um zu schauen, ob die Arme 

ausgestreckt sind, wird das Maximum aus 60% der Schulterbreite und 15% der Bildbreite 

genommen. Dieser Wert wird mit den x-Werten der Handgelenke verglichen, um zu schauen, 

ob sie seitlich weit genug von den Schultern entfernt sind.  

#lwy/rwy:      y-Wert des linken/rechten Handgelenks 

#torso_w:   Breite des Torsos (ungefähre Schulterbreite) 

#lsy/rsy:    y-Wert der linken/rechten Schulter 

#lsx/rsx:    x-Wert der linken/rechten Schulter 

 

tol_y_level = 0.18*H                   

out_min_x   = max(0.6*torso_w, 0.15*W)   

 

left_lvl  = abs(lwy - lsy) < tol_y_level 

right_lvl = abs(rwy - rsy) < tol_y_level 

 

left_out  = abs(lwx - lsx) > out_min_x 

right_out = abs(rwx - rsx) > out_min_x 

 

if left_lvl and right_lvl and (left_out or right_out): 

    return "T_POSE" 

Codeblock 8: Quellcode T_POSE Regeln 

 

 Als Letztes wird ARMS_DOWN erkannt, sobald die Handgelenke deutlich unter der 

Schulterhöhe liegen. Um herauszufinden, ob die Handgelenke unter der Schulterhöhe sind, 

werden die jeweiligen Handgelenke mit dem Mittelwert der Schultern verglichen. Ein 

Schwellwert wurde auf 35% der Torsohöhe unterhalb der mittleren Schulterhöhe definiert, da 

dies die besten Ergebnisse in den Tests erzielte. Die Regel erwies sich trotzdem als zu 

großzügig, da seitlich ausgestreckte Arme teilweise als ARMS_DOWN erkannt wurden. Daher 

wurde eine zweite Bedingung ergänzt, die die seitliche Nähe der Arme zum Körper prüft. Ein 

Handgelenk gilt als nah am Körper, wenn der horizontale Abstand zur jeweiligen Schulter 

kleiner ist als ein neu definierter Schwellwert, der sich aus dem Maximum aus 50% 

Schulterbreite und 10% Bildbreite zusammensetzt. 
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below_sh_thr   = mean_sh + 0.35*torso_h           

hands_below    = (lwy > below_sh_thr) and (rwy > below_sh_thr) 

 

near_body_max_x= max(0.5*torso_w, 0.10*W)         

hands_near     = (abs(lwx - lsx) < near_body_max_x) and (abs(rwx - 

rsx) < near_body_max_x) 

 

if hands_below and hands_near: 

    return "ARMS_DOWN" 

Codeblock 9: Quellcode ARMS_DOWN Regeln 

 

Die app_callback-Funktion ist das Herzstück der Anwendung. Sie wird für jedes 

ankommende Bild aufgerufen und führt die Auswertung aus. Vereinfacht lässt sich der Ablauf 

so beschreiben: Die Kamera liefert als Erstes ein Videobild. Das Hailo-Modul führt auf dem 

Bild die Inferenz aus und in der Nachverarbeitung werden die Metadaten wie „Person“ und 

Schlüsselpunkte der Pose an das Bild angehängt. Nun wird app_callback aufgerufen, liest 

die Daten aus und klassifiziert die Pose. Im Anschluss werden die letzten Bilder geglättet, um 

Flackern zu vermeiden. Das Bild läuft weiter durch die Pipeline und hailooverlay zeichnet 

das Skelett. So bleibt app_callback leichtgewichtig und kann die Daten analysieren, ohne 

sie selbst zu rendern.  

def app_callback(pad, info, user_state): 

    (...) 

    best_kps = extract_best_person_keypoints(detections, W, H)    

 

    pose = classify_pose(best_kps, W, H) 

    user_state.pose_hist.append(pose) 

    smoothed = Counter(user_state.pose_hist).most_common(1)[0][0] 

    user_state.current_pose = smoothed 

 

    if PRINT_EVERY_FRAME: 

        print(smoothed) 

 

    return Gst.PadProbeReturn.OK 

Codeblock 10: Quellcode Callback-Funktion Posenerkennung 
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5.4 Implementierung Fahrzeugzählung 

Die Implementierung des Fahrzeugzählers besteht aus der Objektdetektion mit dem Modell 

„YOLOv8s“ und der GStreamer-Pipeline. Wie bei den anderen Anwendungen lädt hailonet 

das HEF-Modell. Auf der Modellebene wird damit eine robuste Mehrklassen-Detektion 

erreicht. Die Anwendung erkennt ausschließlich die Fahrzeugklassen „car“, „bus“, „truck“ und 

„motorcycle“.  

In der GStreamer-Pipeline gelangt das Bild als Erstes zur Farbkonvertierung und Skalierung. 

Das Modell erwartet dabei ein Seitenverhältnis von 640×640 Pixel im RGB-Farbraum. Auch 

hier bleibt das Seitenverhältnis bei der Skalierung erhalten und die Ränder werden aufgefüllt 

(Padding). Das Element hailonet lädt das Bild für die Inferenz und danach zu 

hailofilter für die Nachverarbeitung. Die Ausgabe des Modells sind Klassen und die 

dazugehörigen Box-Koordinaten. Als Nachverarbeitungsbibliothek wird 

libyolo_hailortpp_postprocess.so genutzt, die auch mit der Funktion filter_letterbox 

die Boxen zurück ins Originalbild rechnet. Da das Modell insgesamt 80 Klassen erkennen kann, 

wird das Standardvisualisierungselement hailooverlay deaktiviert, da ausschließlich 

Rahmenboxen für Fahrzeuge gezeichnet werden. Das Darstellen der Linie, Boxen und Texte 

übernimmt cairooverlay und textoverlay (bereitgestellte GStreamer Elemente).  

Ein wesentlicher Punkt für die Zählgenauigkeit ist die Stolperfallen-Logik in der Rückruf-

Funktion. Der Rückruf app_callback wird pro Bild aufgerufen und ist die zentrale 

Komponente in der Anwendung. Als Erstes werden die gewünschten Klassen gefiltert. Somit 

wird sichergegangen, dass ausschließlich die Fahrzeugklassen „car“, „bus“, „truck“ und 

„motorcycle“ erkannt werden. Danach werden Rahmenboxen in Pixelkoordinaten 

gerechnet und ein Ankerpunkt definiert. Der Ankerpunkt ist wichtig, um die Position des 

Fahrzeugs zu ermitteln. Anstatt die Mitte der Box zu verwenden, nutzt die Zähllogik die untere 

Mitte der Box (Bodenkontaktpunkt). Bei mehreren Versuchen stellte sich heraus, dass dieser 

Ankerpunkt Zählfehler bei hohen Fahrzeugen minimiert und eine stabilere Überquerung der 

Linie liefert. Danach wird geprüft, auf welcher Seite der Linie sich der Ankerpunkt befindet. 

Die Punkte des aktuellen Bildes werden mit dem vorherigen Bild verglichen und es wird 

geschaut, ob ein Seitenwechsel mit derselben Objekt-ID erfolgt ist. Ein Wechsel von links nach 

rechts wird als „LR“ gezählt und umgekehrt als „RL“.  
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CALLBACK app_callback(pad, info, state): 

     

    (...) 

 

    carsnow ← 0 

 

    FÜR jede detektion IN dets: 

        klasse ← detektion.klasse 

        WENN klasse ∉ {car, bus, truck, motorcycle}: 
            WEITER 

 

        (x1, y1, x2, y2) ← rechne Rahmenbox in Pixel 

        ankerpunkt ← (cx = (x1+x2)/2, cy = y2)      

 

        s_prev ← state.last_side[tid]                 

        s_now  ← seite_relativ_zur_tripline(cx, cy) 

 

        WENN s_prev existiert UND s_prev ≠ s_now UND  

        (jetzt − state.last_cross_ts[tid]) ≥ MIN_CROSS_INTERVAL: 

            WENN s_prev < s_now: state.passed_LR += 1 

            SONST:               state.passed_RL += 1 

            state.last_cross_ts[tid] ← jetzt 

 

        state.last_side[tid] ← s_now 

        state.last_seen[tid] ← jetzt 

        füge (x1,y1,x2,y2, klasse) zu state.draw_boxes hinzu 

        carsnow += 1 

 

    aktualisiere Textoverlay mit: 

        "Cars: carsnow | Passed LR: state.passed_LR  RL: 

state.passed_RL" 

 

    RETURN OK 

Codeblock 11: Pseudocode Callback-Funktion Fahrzeugzählung 
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5.5 Implementierung der Gesichtsmaskierung 

Das Ziel dieser Implementierung ist die Echtzeitmaskierung von Gesichtern in einem 

Videostream. Aufgrund praktischer Probleme bei der Bildmanipulation, musste die GStreamer-

Struktur angepasst werden. 

 

5.5.1 Abgrenzung der Gesichtsmaskierung gegenüber den anderen Anwendungen 

Während die anderen Anwendungen die Programmlogik über eine Pad-Probe an einem 

identity-Element realisieren, wird in dieser Anwendung bewusst auf eine einzelne 

Rückruffunktion (app_callback pro Bild) verzichtet. Der Grund ist, dass eine Verpixelung 

eine direkte Veränderung der Bilddaten erfordert und das „Verdecken“ des Gesichts mit 

cairooverlay nicht ausreicht. Allerdings werden Buffer von GStreamern oft als 

unveränderliche Zero-Copy-Buffer zur Verfügung gestellt, was bei Manipulationen zu 

Instabilitäten führen kann. In der Praxis traten bei Versuchen, den Buffer direkt zu verändern, 

Fehler wie „write map requested on non-writable buffer“ auf. Auch extreme Verzögerungen 

oder niedrige Bildraten traten bei vorherigen Versionen des Prototyps auf.  

Der zentrale Entwurfspunkt der neuen Architektur ist die Trennung zwischen der Verarbeitung 

der Pipeline und der Bildmanipulation. In der überarbeiteten Pipeline wird ein tee-Element 

hinzugefügt. Dieser agiert wie ein Verteiler und trennt den Videostrom in zwei Datenpfade. Ein 

Pfad dient zur Darstellung des Kamerabildes, während der andere Pfad die KI-Inferenz auf dem 

Hailo-Chip hat. Dadurch wird verhindert, dass aufwendige Bildoperationen die Videopipeline 

blockieren. Würde die Maskierung direkt im GStreamer-Rückruf (app_callback) 

ausgeführt werden, könnte es im Video schnell zu Stau, Aussetzern oder „Einfrieren“ kommen.  

Um dies zu vermeiden, wird das Kamerabild über ein appsink-Element an die Anwendung 

übergeben und dort in einem eigenen, schreibbaren Speicherbereich bearbeitet. Das Ergebnis 

wird anschließend über appsrc wieder in eine Ausgabe-Pipeline geführt. Die KI-Inferenz 

über den Hailo-Chip bleibt dabei unverändert und liefert weiterhin die Metadaten, welche über 

die Pad-Probe ausgelesen werden. 
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Die Abbildung 8 beschreibt die überarbeitete Pipeline mit allen Elementen:

 

Abbildung 8: Architekturdiagramm der Gesichtsmaskierung Pipeline 
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5.5.2 Implementierung 

Zu Beginn wird die Eingangsgröße des Gesichtsmodells „SCRFD_10g“ bestimmt. Die 

Gesichtserkennung liefert ihre Rahmenboxen im Koordinatensystem des Modell-Eingangs. 

Damit die Boxen korrekt auf die von uns vorgegebene Auflösung (1280×720 Pixel) übertragen 

werden können, liest das Programm die Netzgröße aus dem HEF-Format aus (640×640 Pixel).  

Der Anzeige-Zweig der Pipeline führt die Kamerabilder in ein appsink-Element, damit die 

Anwendung die Bilddaten übernehmen kann. Die Bilder werden somit nicht in der Pipeline 

verarbeitet, sondern an die Anwendung übergeben. Mit der Rückruf-Funktion 

on_preview_sample kann ausschließlich das aktuelle Bild aus dem Buffer ausgelesen 

werden. Das Bild wird als NumPy-Array in eine kleine Warteschlange gelegt. Wie in der 

Abgrenzung erwähnt, findet in diesem Rückruf keine aufwendige Bildbearbeitung statt. Somit 

wird der Rückruf absichtlich so kurz gehalten wie möglich: das Bild übernehmen, das alte Bild 

verwerfen und ein neues Bild ablegen.  

CALLBACK on_preview_sample(sample): 

    frame ← lese aktuelles RGB-Bild aus sample 

    frame ← kopiere Bild in lokales Array  

 

    WENN warteschlange_voll: 

        verwerfe altes Bild  

    lege frame in Warteschlange 

 

    RETURN OK 

Codeblock 12: Pseudocode Callback-Funktion on_preview_sample 

 

Der Inferenz-Zweig der Pipeline skaliert das Bild proportional auf die Eingangsgröße des 

Netzes (640×640) und die fehlenden Bildbereiche werden mit Rändern aufgefüllt (Padding). 

Anschließend wird es zum hailonet- und hailofilter-Element weitergeleitet. Die 

Rahmenboxen der erkannten Gesichter werden als Metadaten an den jeweiligen Buffer gehängt. 

Wie in den anderen Anwendungen wird eine Pad-Probe an das scr-Pad des identity-

Elements registriert. Die Pad-Probe liest pro Buffer die Metadaten aus und speichert nur die 

aktuelle Liste der Rahmenboxen mit Zeitstempel. Auch hier gilt das gleiche Prinzip wie im 

Anzeige-Zweig: Die Pad-Probe soll nur Daten abgreifen und nicht blockieren. 

Die tatsächliche Maskierung findet dann nicht im Rückruf statt, sondern im sogenannten 

Worker-Thread. Dieser funktioniert wie ein zusätzlicher Ausführungsstrang, der parallel zum 

Hauptprogramm läuft. Der Thread worker_loop wartet auf ein neues Kamerabild aus der 
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Warteschlange. Sobald ein neues Bild vorliegt, werden die gespeicherten Rahmenboxen 

genommen, und von den Netz-Koordinaten zurück in die Vorschau-Auflösung umgerechnet. 

Falls die Detektionen älter als 0,7 Sekunden sind, wird die Liste der Rahmenboxen geleert. Um 

das Gesicht zu maskieren, wird ein für die erkannte Gesichtsbox ein leicht vergrößerter Bereich 

berechnet und der Bildbereich im NumPy-Array verpixelt. Anschließend wird das bearbeitete 

Bild in einen neuen GStreamer-Buffer kopiert und über appsrc in eine separate 

Ausgabepipeline eingespeist. Das Ergebnis wird über waylandsink oder autovideosink 

angezeigt. 

THREAD worker_loop(): 

    SOLANGE programm_läuft: 

        frame ← warte blockierend auf neues frame aus warteschlange 

 

        (dets, timestamp) ← hole zuletzt gespeicherte detektionen 

        WENN dets zu älter als 0.7s: 

            dets ← leere liste 

 

        FÜR jede detection in dets: 

            box_net ← koordinaten im netz-system (net_w, net_h) 

            box_preview ← rechne box_net auf 1280x720 um  

            box_preview ← vergrößere box leicht  

            box_preview ← begrenze box auf bildränder 

 

            verpixle den bildbereich innerhalb box_preview im frame 

 

        schiebe bearbeitetes frame in ausgabe (appsrc) 

Codeblock 13: Pseudocode worker_loop Thread 

 

Damit die Maskierung des Gesichts an der richtigen Stelle des Bildes erscheint, müssen die 

Boxen in die Vorschau-Auflösung zurückgerechnet werden. In den anderen Anwendungen 

passiert dieser Schritt durch die Funktion filter_letterbox. Diese Funktion ist jedoch 

oft in YOLO-Nachverarbeitungsbibliotheken zu finden. Da es sich hierbei um ein SCRFD-

Modell handelt, wird die libscrfd.so-Bibliothek genutzt und eine eigene Funktion muss dafür 

definiert werden. Im Codeblock 14 übernimmt die Funktion 

map_net_to_preview_letterbox das Entfernen der Randbereiche und das 

Rückskalieren der ursprünglichen Auflösung.  
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def map_net_to_preview_letterbox(x1n, y1n, x2n, y2n, prev_w, prev_h, 

net_w, net_h): 

     

    scale = min(net_w / prev_w, net_h / prev_h) 

    new_w = prev_w * scale 

    new_h = prev_h * scale 

    pad_x = (net_w - new_w) / 2.0 

    pad_y = (net_h - new_h) / 2.0 

 

    x1 = (x1n - pad_x) / scale 

    x2 = (x2n - pad_x) / scale 

    y1 = (y1n - pad_y) / scale 

    y2 = (y2n - pad_y) / scale 

    return x1, y1, x2, y2 

Codeblock 14: Quellcode map_net_to_preview_letterbox Funktion 

 

Bei der Maskierung des Gesichts handelt es sich um eine Block-Pixelung. Zunächst wird der 

erkannte Gesichtsbereich („ROI“, also „Region Of Interest“) aus dem Bild ausgeschnitten. 

Anschließend wird dieser Ausschnitt in gleich große Blöcke unterteilt. Für jeden Block wird 

eine einheitliche Farbe bestimmt, die sich aus dem Mittelwert der Pixel-Farben im Block ergibt. 

Die Blöcke werden mit den Farben gefüllt und das Gesicht wird unerkennbar. Im Anschluss 

wird der Ausschnitt des Gesichtes zurück ins das Originalbild geschrieben. Die Stärke der 

Verpixelung lässt sich über die Blockgröße steuern.  

Funktion VERPIXELN(bild, gesichts_box, blockgröße): 

    (x1, y1, x2, y2) = gesichts_box 

 

    roi = bild[y1:y2, x1:x2] 

 

    Für y von 0 bis roi.höhe in Schritten von blockgroesse: 

        Für x von 0 bis roi.breite in Schritten von blockgroesse: 

 

            block = roi[y : y+blockgroesse, x : x+blockgroesse] 

            farbe = MITTELWERT(block)    

            block[:] = farbe 

 

    bild[y1:y2, x1:x2] = roi 

Codeblock 15: Pseudocode Bildmanipulation Funktion 
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5.6 Zusammenfassung 

Die Implementierung setzt das entworfene Systemdesign konsequent um und zeigt, dass auf 

der gemeinsamen Plattform Raspberry Pi 5 mit AI-HAT+ unterschiedliche KI-Anwendungen 

realisiert werden können, ohne die Architektur jedes Mal neu zu erfinden. Alle Anwendungen 

folgen demselben Grundprinzip aus Kamerazugriff, Vorverarbeitung, Inferenz, 

Nachverarbeitung und Darstellung. Die Unterschiede konzentrieren sich auf das jeweils 

verwendete Modell und auf die Anwendungslogik in der Nachverarbeitung.  

Bei der Anwendung zur Gesichtsmaskierung, trat jedoch ein spezielles Problem auf. Die 

Bildmanipulation erwies sich als deutlich empfindlicher als die reine Auswertungslogik der 

anderen Anwendungen. Sie erforderte eine unterschiedliche Pipeline-Architektur, während bei 

den anderen KI-Beispielen die Verarbeitung direkt über die Rückruf-Funktion erfolgte.  

Insgesamt wird es bestätigt, dass es möglich ist, eine ähnliche Grundstruktur zu 

implementieren. Gleichzeitig wird aber klar, dass bestimmte Aufgaben wie Bildmanipulation 

eine Anpassung der Pipeline-Architektur erfordern, um eine robuste und flüssige Darstellung 

zu gewährleisten. 
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6. Evaluation 

In diesem Kapitel wird untersucht, wie leistungsfähig die entwickelten Anwendungen auf der 

Plattform aus Raspberry Pi 5 und AI-HAT+ sind. Das Ziel der Evaluation ist es, die 

Leistungsfähigkeit der Systeme im Hinblick auf Echtzeitfähigkeit, Erkennungsqualität und 

Ressourcenauslastung zu bewerten und die ursprünglichen Ziele aus der Einführung zu 

überprüfen. Die Betrachtung erfolgt aus quantitativer Sicht, über Bildraten und 

CPU‑Auslastung, sowie aus qualitativer Sicht durch das Beobachten des Verhaltens in 

typischen Szenarien. 

 

6.1 Zielsetzung der Evaluation 

Die Evaluation verfolgt zwei zentrale Fragestellungen. Zum einen soll anhand von definierten 

Kriterien geprüft werden, ob die entwickelte Plattform in der Lage ist, die KI-Anwendungen in 

einer flüssig wahrgenommenen Geschwindigkeit auszuführen (Bildrate). Zum anderen soll 

untersucht werden, ob die Ergebnisse der Modelle in den gewählten Szenarien ausreichend 

robust und zuverlässig sind (Latenz, CPU-Auslastung), um die jeweiligen Anwendungsfälle 

sinnvoll abzudecken. 

Darüber hinaus dient die Evaluation dazu, Unterschiede zwischen den Anwendungen sichtbar 

zu machen. Einige Szenarien, wie die Posenerkennung, sind naturgemäß komplexer und 

ressourcenintensiver als andere. Die gewonnenen Messwerte und Beobachtungen liefern somit 

auch Hinweise darauf, welche Art von Edge-KI-Anwendungen sich besonders gut für den 

Einsatz auf dem Raspberry Pi 5 mit AI-HAT+ eignet und wo Grenzen der Plattform erkennbar 

werden. 

 

6.2 Versuchsaufbau 

Die Messungen wurden direkt auf dem Raspberry Pi 5 durchgeführt, auf dem auch die 

Anwendungen implementiert wurden. Der AI-HAT+ war während aller Tests eingebunden und 

führte die Inferenz aus. Die Kamera war in fester Position, um reproduzierbare Bedingungen 

zu schaffen. Die Videobilder wurden von der Kamera aufgenommen. 
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Für die Posenerkennung fanden die Tests in einem Innenraum mit gleichmäßiger Beleuchtung 

statt. Die Testperson positionierte sich in variierender Distanz zur Kamera und führte 

unterschiedliche Körpergesten vor. Der Zweck bestand darin, die vorgegebenen Gesten sowie 

Grenzfälle wie zum Teil verdeckte Handgelenke oder schnelle Bewegungen hervorzurufen. 

Die Erkennung von Fahrzeugen wurde anhand von Videosequenzen untersucht, in denen 

Fahrzeuge eine festgelegte Linie im Bild überqueren. Je nach Aufbau konnten hierfür entweder 

reale Aufnahmen oder aufgenommene Videos mit der Kamera abgespielt werden. Entscheidend 

war, dass Fahrzeuge in verschiedenen Abständen, Geschwindigkeiten und Blickwinkeln die 

virtuelle Linie überquerten, um das Verhalten des Zählers nachvollziehen zu können. 

Die Gesichtsmaskierung wurde ebenfalls in einem Innenraum getestet. Hier lag der Fokus 

darauf, ob das Gesicht zuverlässig erkannt und maskiert wird, auch wenn sich die Person 

bewegt oder teilweise seitlich zur Kamera steht. 

 

6.3 Bewertungsmetriken 

Für die Bewertung wurden mehrere Kennzahlen herangezogen. Eine zentrale Rolle spielt die 

Bildrate, also die Anzahl von verarbeiteten Bildern pro Sekunde. Sie gibt einen direkten 

Hinweis darauf, ob eine Anwendung als „echtzeitnah“ wahrgenommen wird. „Etwa 16 bis 18 

Bilder pro Sekunde kann unser Gehirn für ein flüssiges Zusammenspiel der Bilder verarbeiten“ 

[38], während Kinofilme oder Videoportale bis zu 30 Bilder die Sekunde liefern [38]. Laut der 

Quelle [39] kann das menschliche Auge 14 bis 16 Bilder pro Sekunde wahrnehmen. Der 

Zielwert liegt somit bei 15 bis 30 Bildern pro Sekunde bei einer Auflösung von 1280×720 

Pixeln, um ein flüssiges Videobild darzustellen.  

Ein weiterer Indikator für eine „echtzeitnahe“ Wahrnehmung ist die Latenz der Pipeline. Sie 

gibt an, wie lange es durchschnittlich dauert, bis das nächste fertige Bild durch die Schleife 

kommt. Eine steigende Latenz zeigt, dass die Pipeline stockt.  

Ergänzend wurde die Auslastung der CPU und des RAM beobachtet, um abzuschätzen, 

inwieweit der Raspberry Pi 5 noch Reserven für weitere Aufgaben hätte oder bereits an seine 

Grenzen stößt. Eine CPU-Auslastung von über 80% ist grundsätzlich nicht kritisch, jedoch kann 

es bei längeren Laufzeiten zu höheren Temperaturen kommen.  
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Als Letztes wurde noch die CPU-Temperatur gemessen, um zu schauen, ob sich die Temperatur 

trotz höherer Auslastung in einem normalen Bereich bewegt. Der Raspberry Pi beginnt laut 

Hersteller ab 80 °C zu drosseln [40], um eine Überhitzung zu vermeiden.  

Zur Beurteilung der Erkennungsqualität wurden je nach Anwendung unterschiedliche Kriterien 

herangezogen. Bei der Posenerkennung wurde betrachtet, ob die vom System ausgegebene Pose 

mit der tatsächlich gezeigten Pose übereinstimmt und wie stabil die Erkennung bei Bewegungen 

oder leichten Veränderungen der Position ist. Bei der Gesichtsmaskierung war relevant, ob die 

Gesichter im Bild erkannt und anonymisiert wurden und wie häufig Fehl- oder Nicht-

Erkennungen auftraten. In der Fahrzeugdetektion und -zählung wurden die gezählte Anzahl der 

Fahrzeuge mit der tatsächlichen Anzahl der Linienüberquerungen verglichen. 

Neben diesen quantitativen Metriken flossen auch subjektive Eindrücke in die Bewertung ein, 

zum Beispiel, ob das System träge wirkt oder ob der Lüfter deutlich lauter wird. 
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6.4 Ergebnisse der Posenerkennung 

In den Tests zur Posenerkennung zeigte sich, dass das System bei einer Auflösung von 

1280×720 Pixeln in der Lage ist, den Videostream kontinuierlich zu verarbeiten und die 

Körperpose der im Vordergrund stehenden Person zu schätzen. Die Bildrate lag im Durchschnitt 

bei 30 Bildern pro Sekunde. Somit konnten Bewegungen nahezu in Echtzeit nachvollzogen 

werden. Die Pipeline-Latenz lag konstant bei rund 35 Millisekunden und zeigt, dass die Pipeline 

stabil ist. Die Auslastung der CPU lag durchschnittlich bei 71%, obwohl der Hailo-Chip die KI-

Berechnung übernimmt. Durch Vor- und Nachverarbeitungsschritte muss der Raspberry Pi viel 

Arbeit leisten und lässt durch die Auslastung wenig Raum für andere Programme. Eine RAM-

Nutzung von ca. 270MB bedeutet, dass die Anwendung sehr speicherschonend ist. Die CPU 

des Raspberry Pi erreicht eine Temperatur von 73°C. Das ist warm, aber im Regelfall noch 

sicher. Mit 72 °C ist der CPU nah an der Drosselungsgrenze, wodurch der Lüfter deutlich hörbar 

ist.  

Zeit in 

Minuten 

Bilder pro 

Sekunde 

Pipeline-

Latenz (ms) 

CPU-Temp. (°C) CPU-Auslastung (%) RAM 

(MB) 

10 30 34.7 72.15 74.20 271.89 

20 30 35.2 71.33 74.10 271.56 

30 30 35.0 71.05 74.17 271.28 

40 30 34.7 71.05 74.17 271.28 

50 30 35.1 71.60 74.12 270.85 

60 29.99 35.1 71.71 74.02 270.45 

Tabelle 2: Metriken des Testlaufs für Posenerkennung 

 

Die Skelettdarstellung im Videobild machte die Arbeit des Modells gut sichtbar. Die 

Anwendung lieferte in typischen Situationen sinnvolle Ergebnisse. Deutlich angehobene Arme 

wurden zuverlässig erkannt, und neutrale Haltungen wurden korrekt von den anderen Posen 

unterschieden. Schwächen traten hauptsächlich in Randbereichen auf, etwa bei zügigen 

Bewegungen, seitlichen Perspektiven oder wenn der Körper teilweise aus dem Bild herausragte. 

In einigen Fällen traten instabile Klassifizierungen oder kurzzeitige Fehlanzeigen auf.  
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Abbildung 9: Videobild Posenerkennung 
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6.5 Ergebnisse der Fahrzeugzählung 

Bei Tests zur fahrzeugbasierten Detektion und Zählung arbeitete das System stabil im 

Echtzeitbereich. Die mittlere Bildrate lag konstant bei 30 Bildern pro Sekunde. Die gemessene 

Pipeline-Latenz betrug etwa 30 Millisekunden über die ganze Testzeit. Damit reagierte die 

Zähl-Logik sichtbar flüssig. Die Systemlast blieb niedrig. Die CPU-Auslastung bewegte sich 

zwischen 27-28%. Das deutet darauf hin, dass die rechenintensive Objektdetektion effektiv auf 

den Hailo-Beschleuniger ausgelagert ist. In der Praxis bleibt somit Raum für ergänzende 

Aufgaben wie Protokollierung oder Export der Zähldaten. Die CPU-Temperatur lag bei etwa 

67°Cund bleibt somit deutlich unter dem Drosselwert von 80°C. Beim Arbeitsspeicher zeigt 

sich wie bei den anderen Anwendungen ein unauffälliges Bild. Die Auslastung liegt bei rund 

252 MB und bleibt konstant. Das spricht gegen unbeabsichtigtes Anwachsen von Puffern und 

lässt genügend RAM für Erweiterungen.  

Zeit in 

Minuten 

Bilder pro 

Sekunde 

Pipeline-

Latenz (ms) 

CPU-Temp. (°C) CPU-Auslastung (%) RAM 

(MB) 

10 30.00 31.1 66.65 26.70 256.28 

20 30.00 30.4 67.20 26.50 253.95 

30 30.00 30.6 66.83 26.40 253.17 

40 29.99 29.7 66.65 26.35 252.76 

50 30.00 30.2 66.54 26.30 252.39 

60 30.00 31.0 66.56 26.37 252.14 

Tabelle 3: Metriken des Testlaufs für Fahrzeugzählung 

 

Die Darstellung der Boxen und der Linie macht die Arbeitsweise des Systems nachvollziehbar. 

In typischen Verkehrsszenen mit moderater Perspektive und stabilem Bild liefert die 

Anwendung robuste Ergebnisse. Die vorbeifahrenden Fahrzeuge werden zuverlässig erkannt 

und der Zähler inkrementiert, sobald ein erkanntes Fahrzeug die Linie überquert. Einige 

Schwächen zeigen sich in Randbereichen. Kleine oder weit entfernte Fahrzeuge werden 

manchmal nicht erkannt und dadurch nicht gezählt. Starke Teilverdeckungen durch das 

Überholen oder dichtes Auffahren erschweren die Zuordnung der Boxen. Zudem kann es bei 

extremen Kamerawinkeln oder bei schnellen Spurwechseln zu einem instabilen Seitenwechsel 

kommen.  
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Abbildung 10: Videobild Fahrzeugzählung [43] 
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6.6 Ergebnisse der Gesichtsmaskierung 

In den Tests zur Gesichtsmaskierung zeigte sich, dass das System den Videostream, bei einer 

Auflösung von 1280×720 Pixel, stabil verarbeitet. Während des Tests traten keine Fehler oder 

erkennbare Abbrüche auf. Die Bildrate lag im Mittel bei 28 Bildern pro Sekunde, wodurch die 

Maskierung im laufenden Bild weitgehend flüssig wirkte. Die gemessene Pipeline-Latenz blieb 

im Durchschnitt bei 52 Millisekunden, was für eine Echtzeit-Maskierung ausreichend ist. Die 

CPU-Auslastung des Raspberry Pi lag im Mittel bei 60%. Ursache hierfür sind auch wieder die 

Vor- und Nachverarbeitungsschritte, wie Farbkonvertierung, Skalierung und die Maskierung 

der Bildbereiche. Damit beansprucht die Anwendung einen spürbaren Teil der Rechenleistung, 

jedoch lässt sie im Vergleich zur Posenerkennung etwas mehr Reserven für weitere Prozesse. 

Die RAM-Nutzung lag im Durchschnitt bei 158 MB, wodurch die Anwendung auch als 

speicherschonend zählt. Die CPU-Temperatur erreichte im Mittel etwa 72°C. Damit arbeitet 

das System im warmen Bereich, bleibt noch unterhalb der Drosselgrenze von 80°C. 

Zeit in 

Minuten 

Bilder pro 

Sekunde 

Pipeline-

Latenz (ms) 

CPU-Temp. (°C) CPU-Auslastung (%) RAM 

(MB) 

10 27.80 51.9 73.80 60.20 159.20 

20 27.76 51.0 72.97 60.15 159.20 

30 27.79 51.9 72.70 60.13 158.46 

40 27.82 51.7 72.42 60.17 158.09 

50 27.81 51.9 72.26 60.26 157.86 

60 27.80 51.9 72.15 60.38 158.08 

Tabelle 4: Metriken des Testlaufs für Gesichtsmaskierung 

 

Die Maskierung im Videobild machte die Funktion der Gesichtserkennung sichtbar. Sobald ein 

Gesicht im Bild lag, wurde der entsprechende Bereich maskiert. In typischen Situationen 

wurden die Gesichter in Echtzeit erkannt und die Maskierung lag zuverlässig auf den 

Bildbereichen. Auch bei schnellen Kopfbewegungen oder teilweiser Verdeckung kam es selten 

zu Fehleranzeigen. Schwächen wurden nur in Momenten erkannt, in denen die Gesichtsregion 

kurzfristig abgegrenzt wurde. 
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Abbildung 11: Videobild Gesichtsmaskierung 
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6.7 Diskussion und Bewertung der Ergebnisse 

Der Raspberry Pi 5 in Kombination mit dem AI-HAT+ hat sich im Rahmen dieser Arbeit als 

grundsätzlich geeignete Plattform für die Umsetzung von praxisorientierten KI-Anwendungen 

erwiesen. Die Evaluation hat gezeigt, dass in allen drei Anwendungen die Kamerabilder 

verarbeitet werden konnten und die Inferenz in nahezu Echtzeit durchgeführt werden konnte. 

Dazu waren die erzielten Bildraten und Reaktionszeiten ausreichend, um die Anwendung aus 

einer Benutzersicht als flüssig wahrzunehmen. Damit erfüllt die Plattform das Ziel, typische 

Aufgaben der Bildverarbeitung mit KI auf einem kompakten Edge-Gerät demonstrieren zu 

können.  

Ein wesentlicher Vorteil der Plattform liegt in der klaren Aufgabenteilung zwischen dem 

Raspberry Pi und dem AI-HAT+. Der Raspberry Pi übernimmt die Steuerung der Anwendung, 

sowie die Anbindung der Kamera und die Auswertung der Modell-Ausgaben. Die 

rechenintensive Ausführung der neuronalen Netze übernimmt dabei der AI-HAT+. Durch die 

Auslagerung der Inferenz wird gezeigt, dass die CPU-Auslastung des Raspberry Pi moderat 

bleibt und somit weiterhin in der Lage ist, die restlichen Aufgaben wie Vorverarbeitung, 

Nachverarbeitung und Darstellung zuverlässig zu übernehmen. Die Tests zeigen auch, dass 

selbst bei längerem Betrieb, keine kritischen Einbrüche der Bildrate auftreten. Für Lehr- und 

Demonstrationszwecke, sowie für erste Prototypen im Bereich Edge-KI ist dies ein deutlicher 

Pluspunkt.  

Ein weiterer positiver Aspekt ist, dass zwei der drei Anwendungen auf derselben technischen 

Grundlage aufgebaut werden konnten. Von der Kameraanbindung bis zur Inferenz und Ausgabe 

wurde die Basisstruktur der Anwendungen wiederverwendet. Dies vereinfacht die Entwicklung 

deutlich und erleichtert die Wiederverwendung der Struktur bei verschiedenen KI-Szenarien 

auf derselben Plattform. Die Gesichtserkennung bildet hier die Ausnahme, da sie aufgrund der 

Bildmanipulation von der einheitlichen Struktur abweicht. Jedoch zeigt die Pipeline-Latenz, 

dass die komplexere Struktur nur einen geringen Unterschied macht, und dass die Anwendung 

praxistauglich ist. Aus der Sicht einer Abschlussarbeit mit praxisorientiertem Schwerpunkt war 

die gemeinsame Basisstruktur trotzdem wertvoll, da keine Anwendung vollständig neu 

aufgebaut werden musste. 

Gleichzeitig werden in den Tests aber Grenzen der Plattform sichtbar. Zum einen sind die 

verfügbaren Rechenressourcen trotz KI-Beschleuniger begrenzt. Komplexere Modelle, höhere 

Auflösungen oder zusätzliche Verarbeitungsschritte können die Bildrate schnell reduzieren. Die 
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Modellwahl und die Konfiguration der Videopipeline müssen daher aufeinander abgestimmt 

sein, um einen Kompromiss zwischen Erkennungsqualität und Echtzeitfähigkeit zu erreichen. 

Zudem hängen Ergebnisse von den Rahmenbedingungen ab. Eine schlechte Beleuchtung oder 

eine sehr komplexe Szene führen schneller zu instabilen Erkennungen.  

Auch aus der Entwicklersicht gibt es bei der Plattform einige Einschränkungen. Die Nutzung 

des AI-HAT+ setzt die bereitgestellte Softwareumgebung von Hailo voraus, und viele Schritte 

können nur innerhalb dieses Ökosystems erfolgen. Für die vorliegende Arbeit wurde auf 

vortrainierte und bereits kompilierte Modelle zurückgegriffen, die den Aufwand deutlich 

erleichterten. Für andere Modelle ist die Konvertierung zum HEF-Modell nötig und wäre 

zusätzlicher Aufwand, der über den Rahmen dieser Arbeit hinausgeht.  

Insgesamt lässt sich die Plattform aus Raspberry Pi 5 mit AI-HAT+ dennoch als passend für die 

in dieser Arbeit verfolgten Ziele bewerten. Sie bietet genügend Rechenleistung, um 

unterschiedliche KI-Anwendungen in Echtzeit zu demonstrieren.   
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7. Zusammenfassung und Ausblick 

Zum Abschluss werden die Ergebnisse zusammengefasst und im Hinblick auf die Ziele dieser 

Arbeit bewertet. Zunächst werden die Schritte des Entwicklungsprozesses sowie die 

Erkenntnisse zusammengefasst. Dazu gehört die Eignung des Raspberry Pi 5 mit AI-HAT+ als 

Plattform für praxisnahe KI-Beispiele. Anschließend werden mögliche Weiterentwicklungen 

und offene Fragen aufgezeigt, die sich für zukünftige Arbeiten und Projekte ergeben. 

 

7.1 Zusammenfassung der Arbeit 

In dieser Arbeit wurde die Entwicklung und Implementierung praxisorientierter KI-Beispiele 

auf dem Raspberry Pi 5 mit dem AI-HAT+ untersucht. Der Ausgangspunkt dieser Arbeit war 

die Frage, inwieweit sich die Plattform für die Entwicklung von praxisorientierten KI-

Anwendungen eignet. Um diese Frage zu beantworten, wurden drei unterschiedliche 

Anwendungen realisiert: eine Posenerkennung auf Basis der Körperpose, eine 

Gesichtserkennung zur Maskierung von Gesichtern sowie eine Fahrzeugerkennung zur 

Fahrzeugzählung. 

Ein zentrales Ergebnis der Arbeit ist, dass diese Plattformarchitektur sich in der Praxis bewährt. 

Die drei umgesetzten Anwendungen konnten weitgehend alle auf derselben Grundlage realisiert 

werden. Auch wenn die Anwendung der Gesichtsmaskierung von der entworfenen 

Grundarchitektur abweicht, wurden mehrere Bausteine der Grundarchitektur wiederverwendet, 

um die Anwendung erfolgreich zu realisieren. Unterschiede ergaben sich sonst nur im 

eingesetzten Modell und in der Logik der Nachverarbeitung.  

Die Evaluation hat gezeigt, dass die Anwendungen mit Bildraten arbeiten, die vom Benutzer 

als flüssig wahrgenommen werden. Die Transition von Pose zu Pose wird in typischen 

Situationen nahezu in Echtzeit vom System wahrgenommen. Die Gesichtsmaskierung ist in der 

Lage, Gesichter in einem Videobild zu erkennen und unmittelbar zu maskieren. Die 

Fahrzeugerkennung kann Fahrzeuge zählen, die eine virtuell definierte Linie im Bild 

überqueren. Die Umsetzung praxisorientierter KI-Beispiele auf dem Raspberry Pi 5 mit AI-

HAT+ wurde somit erreicht.  

Allerdings wurden im Rahmen der Evaluation auch Grenzen deutlich. Die Erkennungsqualität 

hängt stark von den Rahmenbedingungen ab. Eine schlechte Beleuchtung, verdeckte Objekte, 
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stark seitliche Ansichten oder sehr komplexe Szenen führen zu instabileren Ergebnissen. Dies 

betrifft sowohl die Robustheit der Posenerkennung als auch die Fahrzeugzählung und die 

Gesichtsmaskierung. Hier zeigt sich der typische Konflikt von Edge-KI: Einerseits sollen 

Modelle klein und effizient genug sein, um auf beschränkter Hardware zu laufen, andererseits 

wird dadurch die maximale Erkennungsleistung begrenzt. 

Insgesamt kann festgehalten werden, dass die entwickelte Plattform für den Einsatz in Lehre, 

Demonstration und prototypischer Entwicklung geeignet ist. Sie macht es möglich, 

verschiedene KI-Anwendungen direkt auf einem kleinen, kostengünstigen System ausführbar 

zu machen, ohne auf eine Cloud-Infrastruktur angewiesen zu sein. Die entwickelten 

Anwendungen bilden somit nicht nur ein Ergebnis dieser Arbeit, sondern auch eine Grundlage, 

auf der zukünftige Projekte und Erweiterungen aufbauen können. 

 

7.2 Weiterentwicklungsmöglichkeiten und offene Fragen 

Aus den Ergebnissen der Arbeit ergeben sich mehrere Ansatzpunkte für zukünftige 

Erweiterungen. Eine Möglichkeit besteht darin, robustere oder speziell angepasste Modelle zu 

integrieren, die besser mit schwierigen Beleuchtungssituationen oder komplexeren Szenen 

zurechtkommen.  

Ein weiterer Schritt wäre die Weiterentwicklung der bestehenden Anwendungen. Anstatt Posen 

zu erkennen, könnte die Anwendung um Gesten erweitert werden, wie zum Beispiel „Winken“. 

Ebenso wäre es sinnvoll, die Erkennung der Posen auf mehrere Personen auszuweiten und 

Strategien zu entwickeln, wie mit überlappenden Personen umgegangen wird. Für die 

Fahrzeugzählung wäre eine manuelle Definition der virtuellen Linie innerhalb der Anwendung 

interessant. Die Gesichtsmaskierung ist ein spezieller Fall, da die Verarbeitungskette von der 

ursprünglichen Struktur abweicht. Es wäre sinnvoll, die Maskierung weiter in die 

Verarbeitungskette einzubinden oder nach Alternativen zu suchen, die eine Verpixelung direkt 

in der Pipeline ermöglicht, ohne dass Leistungsverluste entstehen. 

Auf der Plattformebene ergeben sich technische Fragen, da sich die vorliegende Arbeit auf eine 

einzelne Kamera und einen KI-Beschleuniger konzentriert. Eine interessante Erweiterung wäre 

die Verarbeitung von mehreren Videostreams oder der Einsatz von weiteren Sensoren. Somit 

könnte die Plattform extremer auf ihre Grenzen testen. Auch die Frage, ob sich mehrere KI-
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Anwendungen gleichzeitig ausführen lassen, ohne die Echtzeitfähigkeit zu verlieren, bleibt 

offen. 

Weiterhin wäre eine datengetriebene Evaluation denkbar, um die Modelle quantitativ zu 

bewerten, zum Beispiel in Form von Präzisions- und Recall-Messungen. Auch ein Vergleich 

mit alternativen Edge-KI-Plattformen oder KI-Beschleunigern könnte spannend sein, um die 

Leistungsfähigkeit des Raspberry Pi 5 mit AI-HAT besser einordnen zu können. 

Abschließend kann festgehalten werden, dass die Plattform für die Entwicklung und 

Implementierung von praxisorientierten KI-Beispielen geeignet ist, jedoch auch 

Entwicklungsmöglichkeiten bietet, die im Rahmen dieser Arbeit nicht möglich waren. Die 

Abschlussarbeit bietet jedoch einen Ausgangspunkt, auf dem zukünftige Projekte aufbauen 

können, um die genannten Entwicklungsmöglichkeiten zu realisieren.  
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