
DEVELOPMENT OF A SECURE
COMMUNICATION SYSTEM BASED ON

STEGANOGRAPHY FOR MOBILE
DEVICES

by
Dasarathan Selvaraj

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE (M.Sc.)
in

High Integrity Systems
Frankfurt University of Applied Sciences

Under the guidance of

Prof. Dr. Christian Baun Prof. Dr. Matthias Wagner
Advisor Co Advisor

Frankfurt University of Applied Sciences Frankfurt University of Applied Sciences

Acknowledgement

It has been a pleasure to work with all the concerned members of the thesis. First, I would like

to thank my Professor Dr. Christian Baun for his consent to be my examiner. I am grateful for

his valuable guidance in planning and development of the thesis work. Without his profound

guidance, this thesis would not have been possible. His excitement and willingness to provide

feedback made the completion of this research an enjoyable experience. I would like to thank

my co-advisor Prof. Mathias Wagner, who has shown the right attitude towards the study. He

persistently conveyed the excitement in regards to teaching.

Furthermore, I thank the Frankfurt University of Applied Sciences for making my educational

carrier a special one. The facilities provided by the university was exceptionally useful for my

whole studies and for completion of this thesis. A special thanks to my colleagues for their

ever-consistent and intuitive support in completing the work. Finally, I would like to thank my

family, who has supported me in different ways. Even if their contributions are intangible, I

express my sincere gratitude to all of them.

Frankfurt am Main, 27 October 2014 Dasarathan Selvaraj.

i

Abstract

Due to rapid growth in the use of mobile devices, security issues shifts from the personal com-

puting platform to new mobile technology. Mobile devices have become the new source of

communication. Divergence of focus towards new audience and their new source of commu-

nication is necessary to know about their needs and to provide it with improved quality. In

addition to secure communication, hiding the fact that a secret message exists in a digital material

is an innovative concept. The distinct approach of combined cryptography and steganography

is discussed in this thesis. Steganography is a method to hide data, but it is not the same as

cryptography. The goal of modern steganography is to hide the information in an innocent digital

carrier, so that it is undetectable by third party.

This unique solution is developed and implemented as an android application for mobile devices.

This android application embed the message in a cover image or in an audio file. In addition, it

features the ability to extract the concealed message from the embedded cover file. The application

support text message and quick voice message. Process of development and implementation of

this concept is proved and documented.

iii

Declaration

I hereby declare that this thesis is my own work and effort. It has not been submitted, either in

whole or in part, anywhere for any awards. Where other sources of information have been used,

they have been acknowledged.

Frankfurt am Main, October 27 2014 Dasarathan Selvaraj

v

Contents

Acknowledgement i

Abstract iii

Declaration v

List of figures ix

List of tables xi

1 Introduction 1
1.1 Background . 1
1.2 Evolution of Steganography . 2
1.3 Approach . 3
1.4 Chapters at a Glance . 4

2 Literature Review 7
2.1 Digital Steganography . 7
2.2 Digital Carrier Methods . 9
2.3 Steganalysis . 10
2.4 Image File Types . 10
2.5 Audio File Types . 11

2.5.1 Bit depth . 11
2.5.2 Sample rate . 12

2.6 Cryptography . 12
2.6.1 Symmetric Encryption . 13
2.6.2 Asymmetric Encryption . 13
2.6.3 Data Encryption Standard (DES) . 13
2.6.4 Advanced Encryption Standard (AES) 13

3 Android 15
3.1 Android Operating System . 15
3.2 Highlights of Android . 16
3.3 Android Platform Components . 16
3.4 Android SDK . 17
3.5 System Requirement . 18

3.5.1 Operating Systems . 18

vii

Contents

3.5.2 Development Tools . 18
3.6 Installation and Configuration . 19

3.6.1 Eclipse . 19
3.6.2 Configuring Eclipse for ADT . 19
3.6.3 Android Virtual Device Manager . 19

3.7 Android Activity Lifecycle . 19
3.7.1 Android Process Status . 21
3.7.2 Activity State . 21
3.7.3 Activity Lifecycle Methods . 22

3.8 Android App Components . 23

4 Design and Requirement Analysis 25
4.1 Scope . 25
4.2 Functional Requirement . 26
4.3 Non Functional Requirement . 26

4.3.1 Use Case . 26
4.4 Architecture . 28

4.4.1 Application Flow . 28
4.4.2 Encryption Used . 29
4.4.3 LSB Technique . 30
4.4.4 Encode Data Packet . 31
4.4.5 Algorithm . 32
4.4.6 Package Model . 33
4.4.7 User Interface Design . 36

5 Implementation 41
5.1 Project Specification . 41
5.2 Tools Used . 42

5.2.1 Android Command Line Tools . 42
5.2.2 BinaCompa . 43
5.2.3 Checkstyle . 43

5.3 Emulator . 44
5.4 protectMSG . 44

5.4.1 Program Inputs . 44
5.4.2 Encode text to image . 45
5.4.3 Decode text from image . 47
5.4.4 Decode . 48
5.4.5 Encode text to audio . 48
5.4.6 Decode text from audio . 49
5.4.7 Encode audio into image . 49
5.4.8 Decode audio from image . 50
5.4.9 Supporting Features . 50

5.5 Class Diagram . 53

viii

Contents

6 Evaluation 57
6.1 Test Strategy . 57
6.2 Testing Scope . 57
6.3 Test method . 58

6.3.1 Functionality Test . 58
6.3.2 User Interface Test . 58
6.3.3 Monkey Testing . 59
6.3.4 Device Oriented Test . 60

6.4 Non-Functional Requirements Evaluation . 60
6.5 Challenges Confronted . 61

6.5.1 Emulator Setup . 61
6.5.2 Encryption Key Generation . 61

7 Conclusion 63
7.1 Summary . 63
7.2 Future Enhancements . 64

7.2.1 Validity for the message . 64
7.2.2 Other input file type . 64
7.2.3 Hide an image in a cover image . 64
7.2.4 Hide an audio in a cover audio . 64

A Appendix 67
A.1 Screenshots . 67
A.2 Use Case . 75
A.3 Test Case . 79
A.4 Source Code . 81

A.4.1 EncodeTextToImage . 81
A.4.2 MainActivity . 90
A.4.3 StegoEncryption . 96
A.4.4 StegoOperation . 99
A.4.5 AudioRecording . 106
A.4.6 Utility . 109
A.4.7 Validate . 111
A.4.8 Encode Audio To Image XML . 114

B Glossary 121

Bibliography 125

ix

List of Figures

3.1 Android Platform Component . 17
3.2 Dalvik Virtual Machine . 18
3.3 Android Activity Lifecycle . 20

4.1 Use case diagram . 27
4.2 Flow Chart . 29
4.3 LSB Technique . 30
4.4 Encode Data Packet . 31
4.5 Package Diagram . 33
4.6 Warning Message . 37
4.7 Info Message . 38
4.8 Error Message . 38
4.9 Initial Version Screen . 38

5.1 Encode Text To Image . 46
5.2 Encode block diagram without encryption . 46
5.3 Encode block diagram with encryption . 47
5.4 Decode block diagram without decryption . 47
5.5 Decode block diagram with decryption . 48
5.6 Share Screen . 51
5.7 Browse Picture . 52
5.8 Capture Picture . 52
5.9 Browse Audio . 52
5.10 Record Audio . 53
5.11 Simplified Class Diagram . 54

A.1 Encode Text To Image . 67
A.2 Decode Text From Image . 68
A.3 Encode Text To Audio . 68
A.4 Decode Text From Audio . 69
A.5 Encode Quick Voice Message To Image . 69
A.6 Decode Quick Voice Message From Image . 70
A.7 Help . 70
A.8 Home with button selected . 71
A.9 Encode Audio To Image with audio recorded 71
A.10 Encode Text To Audio With Image Selected 72

xi

List of Figures

A.11 Processing . 72
A.12 Share Image . 73
A.13 Menu . 73
A.14 Browse Audio . 74

xii

List of Tables

4.1 Screen Functions . 37

5.1 Program Input . 45

6.1 Test Case no: 001 . 58
6.2 Test Device Specification . 60

A.1 Use Case no: 1 . 75
A.2 Use Case no: 2 . 75
A.3 Use Case no: 3 . 76
A.4 Use Case no: 4 . 76
A.5 Use Case no: 5 . 77
A.6 Use Case no: 6 . 77
A.7 Use Case no: 7 . 78
A.8 Use Case no: 8 . 78
A.9 Test Case no: 001 . 79
A.10 Test Case no: 002 . 79
A.11 Test Case no: 003 . 79
A.12 Test Case no: 004 . 79
A.13 Test Case no: 005 . 80
A.14 Test Case no: 006 . 80

xiii

Chapter 1

Introduction

This work introduce the concept of steganography, purpose of this thesis and need for this

thesis at modern era. This thesis’s objective and optimal way to approach it, is discussed briefly.

Additionally a glimpse of other chapters are provided.

1.1 Background

The process of embedding secret information into a carrier is called steganography and its origins

can be traced back to ancient times. Moreover, its importance has not decreased since its birth.[3]

Society’s daily activities are highly influenced by latest digital technologies and communication.

Major economical and social impact are felt in all sphere of its existence. Evidence of the

development of smaller, faster and high performance mobile devices, which can support a wide

range of features, is supporting the fact of rapid growth in mobile technology. The attributes of

personal computers are slowly injected into mobile devices. Mobile hand-held devices which

are popularly called smart gadgets includes smart phones, tablets and e-book readers. Now a

days, they are becoming essential to everyday social activities. These newly developed devices

provides better processing, storing and transmission of information. In this ever changing and

evolving environment, establishing secure communication is an important target for researchers.

Undoubtedly, Android becomes the apt destination to keep in touch with the community of digital

1

Chapter 1. Introduction

device users. Android is an open-source operating system offered to mobile developers to use

on their smartphones (Samsung, HTC, Sony, etc.) and free for developers to expand on.[21]

Among adults who have mobile phone, 58% of them have smart phone in 2014. [17] Some

mobile users does not always stay as a user, instead they turns to mobile addicts. Data suggest

123% of increase in addicts this year when compared to last year.[18] Interesting fact is 65% of

global smartphone owners use Android OS.[19] Android has 56% of the mobile market share

with 375 million handsets sold already.

More internet users are using photos and videos as a social currency. 54% of internet users

have posted original photos or videos to websites and 47% share photos or videos they found

elsewhere online. Young adults and women lead the way in each of these activities. Cell phones

and smartphones have given rise to photos and video sharing apps. 18% of mobile owners use

Instagram and 9% use Snapchat. [20]

In current smart phone era, number of photos are taken with smart phone. All most all newly

released phone and tablets have at least one camera. All high end smart phone have both front and

back camera. Now a days, it has become so easy to take photos at any time anywhere. Selfies have

become so popular that one third of photos taken by phones are selfies. Smart phone is replacing

traditional cameras. The study found that the majority of today’s photo taking smartphone

customers, who’ve taken at least 10 photos in the last three months use only their smartphone to

take photos. [12] Global market have sky rocketed for smart phone while cameras have foundered

[13].Thus Android becomes the suitable choice for implementing image steganography.

1.2 Evolution of Steganography

Steganographic techniques have been used for ages and they date back to ancient Greece. The term

“Steganography” was first recorded in 1499 by Johannes Trithemius in his book, Steganographia.

In world war some messages were written using invisible ink. Liquids such as milk, vinegar and

fruit juices were used as invisible inks, because when each of these substances are heated they

darken and become visible to human eyes.

2

1.3. Approach

Historical methods relied on physical steganography. The employed media were human skin,

game, etc. What distinguishes historical steganographic methods from the modern ones is, in

fact, only the form of the cover (carrier) for secret data. [10]

In Ancient Greece they used to select messengers and shave their head, then they would write a

message on their head. Then hair was grown and the messenger was sent to deliver the message

with the secret message inside the hair. The recipient would shave off the messengers hair to see

the secret message.

Another method used in Greece were someone would peel wax off a tablet that was covered in

wax, write a message underneath the wax then apply the wax again. The recipient of the message

would simply remove the wax from the tablet to view the message.

Text steganography is hiding message in a text by abnormally altering its fonts, size, alignment

and other techniques.

1.3 Approach

Cryptography and steganography are two techniques used to ensure information confidentiality,

integrity and authenticity. Cryptography uses encryption to scramble the secret information in

such a way that only the sender and the intended receiver are able to reveal it. Steganography

hides the secret information in different carriers in such a way that it becomes difficult to detect.

Commonly the carriers are media files or other supports like communication protocols. An

example is network steganography.

The advantage of steganography over cryptography is that, there is no attraction of encrypted

message. In cryptography, it is well know that the message is encrypted. It is not the case with

steganography. Steganography is not only to concealing the contents of the message but also to

concealing the fact that a secret message is being sent. One of the limitation of steganography is

considered to be advantageous to society. Substantial process of steganography is to store data

in image or any other file. Arising question on possibility of steeling data is hammered down

immediately as the size of concealed data is very low. Believably, few kilobytes of data stolen is

not going to harm a lot. Even though, this case cannot be completely ruled out. Because there

3

Chapter 1. Introduction

can be small quantity of valuable data.

Both technologies have their limitations and this is why most of the specialists sustain that a good

solution for securing the digital information is to combine the two techniques.[9] In this paper I

propose an application named protectMSG developed to transmit secret files through Internet and

mobile networks using a smart phone that run Android operating system. It involves technical

steganography combined with symmetric key cryptography and a pseudorandom selection of the

bits.

1.4 Chapters at a Glance

This thesis consists of seven chapters. Their purpose is as follows:

Chapter 1 is introduction to steganography and need for the thesis. Helps to identify the basic

methodology of this work and the expected outcome from it.

Chapter 2 provides in-depth knowledge of the technologies that are the building blocks of

this thesis. Modern techniques of steganography and cryptography classifications and types of

commonly use encryption are elaborated.

Chapter 3 throws light on Android Operating System and its components. Also highlights

the advantage of using Android. Elementary installation and configuration required for the

development of project is explained.

Chapter 4 describes the design based on requirement of the final product. According to the scope

of the project, gathered analysis are put together as functional and non functional requirements.

Construction of architecture, algorithm and flow of the applications are explained in detail.

Necessary inputs for the development phase such as use case, package model and class diagram

are designed.

Chapter 5 gives elaborate details of implementation of this thesis. Details about the helpful tools

used during the development and their importance in implementation is provided. All function of

the application and the way of execution to obtain the result are written here.

4

1.4. Chapters at a Glance

Chapter 6 captures test results, behavior and every approach handled to provide best quality

product.

Chapter 7 is the final chapter of this dissertation and details the summary of the entire dissertation

and exploits the area of scope for future enhancements.

The next section consists of the appendices, glossary of terms and the bibliography of references.

5

Chapter 2

Literature Review

This chapter provides in depth knowledge of technologies that are the building blocks of

this thesis. Modern techniques of steganography and cryptography classifications are explained.

Also the types of commonly used encryption are elaborated.

2.1 Digital Steganography

A famous illustration of steganography is the prisoner’s problem where Alice and Bob are in jail,

locked up in separate cells, who wish to communicate in order to hatch an escape plan. However,

all communication between them is examined by a warden called Wendy, who will put them

in solitary confinement at the slightest suspicion of trouble. Specifically, in the general model

for steganography, we have Alice wishing to send a secret message M to Bob. In order to do

so she ”embeds” M into a cover object C, to obtain the stego-object S. The stego-object S is

then sent through a public channel. The warden Wendy who is free to examine all messages

exchanged between Alice and Bob can be passive or active. A passive warden simply examines

the message and tries to determine if it potentially contains a hidden message. If it appears that it

does, then she takes appropriate action else she lets the message through without alteration. An

active warden on the other hand can alter messages deliberately, even though she does not see

any trace of a hidden message,in order to foil any secret communication that can nevertheless be

occurring between Alice and Bob.[23]

7

Chapter 2. Literature Review

Given the above framework, the main goal of steganography is to communicate securely in a

completely undetectable manner. That is, Wendy should not be able to reliably distinguish in

any sense between cover-objects (objects not containing any secret message) and stego-objects

(objects containing a secret message). In this context, steganalysis refers to the body of techniques

that are designed to distinguish between cover-objects and stego-objects.[23]

There are several steganographic techniques exist and they are still being invented. They are

classified into technical steganography and linguistic steganography. Technical steganography

is a scientific method of hiding a message, such as the use of invisible ink or microdots and

other size-reduction methods. In Linguistic steganography, message is hidden in a carrier in

some non obvious ways and is further categorized as semagrams or open codes [4]. Semagrams

hide information by the use of symbols or signs. A visual semagram uses innocent looking or

everyday physical objects to convey a message, such as doodles or the positioning of items on a

desk or Website. A text semagram hides a message by modifying the appearance of the carrier

text, such as subtle changes in font size or type, adding extra spaces, or different flourishes in

letters or handwritten text. [4] Open codes hide a message in a legitimate carrier message in ways

that are not obvious to an unsuspecting observer. The carrier message is sometimes called the

overt communication whereas the hidden message is the covert communication. This category is

subdivided into jargon codes and covered ciphers.[4] Jargon code use a special language which

is understood only by a group of people. It is meaningless to others. Covered or concealment

ciphers is a method of hiding message openly in the carrier medium so that it can be recovered

by anyone who knows the secret for how it was concealed. A grille cipher employs a template

that is used to cover the carrier message. The words that appear in the openings of the template

are the hidden message. A null cipher hides the message according to some prearranged set of

rules, such as "read every fifth word" or "look at the third character in every word.[4] So, in this

thesis, covered cipher is the technique used to hide messages.

Few application of steganography are:

• Copyright

• Watermarks

8

2.2. Digital Carrier Methods

• Covert military operations

• Keys

• Intelligence agencies

• Medical imagery

• Checksum embedding

2.2 Digital Carrier Methods

In today’s world of digital technologies, the carrier in which secret data is embedded, is not

necessarily an image or web page source code, but it can also be any other file type or any

organizational unit of data. For example, a packet or a frame in a computer network can be

used as a carrier for steganography. Data are stored in left out file slack or unallocated space

as the remains of previous files. Unused part of file headers are used to hide secret information.

Information can also be hidden in a hard disk in a secret partition. In order to retrieve the data,

programs can be written to access slack and unallocated space directly. Network protocol is

also used as an digital carrier. Many new covert communications are possible through internet.

Recently, steganography has widened in the field of networks. Typical network steganography

method uses modification of a single network protocol. The protocol modification may be applied

to the PDU (Protocol Data Unit), time relations between exchanged PDUs, or both (hybrid

methods). Moreover, usage of relation between two or more different network protocols to enable

secret communication is possible. It is so called inter-protocol steganography.[10]

Sound has characters such as frequency, phase angle and speech cadence. Slight change in

these values are not recognizable by human ears. It is an advantage for hiding message in these

values. Most common carrier medium is image and audio file. Operation on these carriers are

easier than other carriers. Least significant bit substitution or overwriting is the commonly used

steganography method.

Combining the idea of both image and audio forms the video steganography. The strength of

the steganographic technique relies mainly on three factors - imperceptibility level in the stego

9

Chapter 2. Literature Review

image, robustness and embedding capacity.[22]

2.3 Steganalysis

Due to increase in number of technique used for steganography, a new study called steganalysis

has evolved. This study has evolved for security purpose and its aim is to prevent illegal commu-

nication. Purpose of steganalysis is to detect the messages that are hidden using steganography by

a third party. In the process of steganlysis, the cover file is tested for its file properties and verified

for any pattern in the file content. Like this several other ways are used to identify whether the

file has any hidden message. And several tool are available online for detecting whether the file

is subjected to steganography.

2.4 Image File Types

Practical use of image and photos in current digital world is engaged with different file formats.

All available image formats will fall under any one of these classifications - compressed, un-

compressed and vector formats. Part of the reason for the plethora of file types is the need for

compression. Image files can be quite large, and larger file types mean more disk usage and

slower downloads. Compression is a term used to describe ways of cutting the size of the file.

Compression schemes can by lossy or lossless.[8] Quality of the image depends on the accuracy

of displaying the color in it. Color depth is the number of bits used to display the color in a pixel.

Color depth is directly proportional to the size of the file. Another reason for the evolution of

many image types is the different in the color depth they have. Lesser the number of colors, lesser

the file size.

A lossless compression algorithm eliminates no information. It looks for more efficient ways

to represent an image without making any compromises in accuracy. But in contrast, lossy

algorithms accept some degradation in the image to make it smaller in file size. A lossless

algorithm will look for a recurring pattern in the file, and replace it with a short abbreviation. By

doing this file size is reduced. In contrast, a lossy algorithm might store color information at a

lower resolution than the image itself, since the eye is not so sensitive to changes in color of a

10

2.5. Audio File Types

small distance.[8] Major image file types available are JPG, GIF, TIFF, PNG, and BMP.

TIFF is, in principle, a very flexible format that can be lossless or lossy. TIFF is used almost

exactly as a lossless image storage format that do not compress at all. PNG is also a lossless

image format. It actually looks for patterns in the image that it can be used to compress file size.

The compression is exactly reversible, so the image is recovered exactly. PNG is the only lossless

format that web browsers support and later generation web browsers support PNG. It produces

smaller files and allows more colors. PNG supports partial transparency. Partial transparency is

used for many useful purposes, such as fadeing and antialiasing of text. GIF is "lossless" only for

images with 256 colors or less. For a rich, better, true color image, GIF might "lose" 99.9% of

the colors. JPG is designed for photographs and some continuous tone images that contain lots of

colors. It can achieve great compression ratios by maintaining really very high image quality.[8]

In conclusion, implementation of simple steganography technique like Least significant bit(LSB)

technique is possible in uncompressed image formats. For example, PNG format is a suitable

choice for LSB technique.

2.5 Audio File Types

Audio formats are majorly classified into uncompressed audio format, lossless compressed audio

format lossy compressed audio format. WAV, AU, AIFF,or raw header-less PCM are grouped

under the uncompressed audio format. A lossless compressed format stores data in less space

without losing any information. Lossy compression enables even greater reductions in file size

by removing some of the audio information and simplifying the data. MP3 format is one of the

popular lossy compression format. Include about frequency and sampling of audio formats.

2.5.1 Bit depth

The number of binary bits (ones and zeroes) used to record the sample level of the waveform.

Thus 8-bit sampling uses an 8 digit binary number to record the level, giving 28, or 256 potential

values. Bit depth describes the ratio between the quietest and loudest signals the system can

record . A 8-bit recording is a low resolution audio, it was used by earliest digital audio systems.

11

Chapter 2. Literature Review

12 bit recording had audible degradation or crunch. A 16 bit has 65,536 possible values (i.e.216),

and hence a far higher dynamic range (96dB) than 12-bit recording. 16 bit audio is a kind of

quality found in CD. 24-bit sampling has 16,777,216 discrete levels, giving 144dB dynamic

range, which exceeds the tolerances of human hearing. It is the minimum recommended standard

for high quality.

2.5.2 Sample rate

Sample rate is the number of sample obtained per second. It is expressed in hertz since it is a

frequency. There are three range of sampling rate are in use. Low quality audio is produced

by 44.1 kHz sampling rate with limited frequency range. 48 kHz is much professional audio

equipment. It is the minimum recommended archival standard. Sampling rate more than 96 kHz

offers high resolution and extended frequency response.

Bit depth and sample rate are the two determining factor of audio quality.

2.6 Cryptography

Cryptography is a technique that alter the data so that it is understandable only by sender, receiver

or anyone who knows to decrypt it. Cryptography protects data from theft, alteration and also

used for user authentication. Cryptography exist in different form from ancient age till now.

Cryptography is employed everywhere in today’s digital communication for its safety. With

proper use of cryptography secure communication can be achieved.Three type of cryptography

are secret key (or symmetric) cryptography, public-key (or asymmetric) cryptography, and hash

functions. Properties of secure communication includes

• Authentication

• Privacy/confidentiality

• Integrity

• Non-repudiation

12

2.6. Cryptography

2.6.1 Symmetric Encryption

Encryption is a methodology of encoding message or information with the help of a key. Such

encrypted messages, cipher do not expose its secret content to third party. Only the intended

receiver is able to decrypt the original message from the encrypted message using the legitimate

key. Symmetric Encryption is an encryption algorithm where the same key is used for both

encryption and decryption. The key must be kept secret, and is shared by the message sender and

recipient.

2.6.2 Asymmetric Encryption

Asymmetric Encryption is also called Public-key cryptography. It is a cryptography in which a

pair of keys is used to encrypt and decrypt a message so that it is handed to the recipient securely.

What one key encrypts, only the other can decrypt. One of which is private key and the other

key is public. Predominantly, public key is used for encryption of a message and private key is

used decrypt it. Whereas, in the case of digital signature, private key is used to generate digital

signature and public key is used to verify digital signature.

2.6.3 Data Encryption Standard (DES)

IBM designed DES and adopted by National Institute for Standards and Technology (NIST)

for commercial and unclassified government applications. It is the commonly used symmetric

cryptography. Triple-DES (3DES) and DESX are the two variant of DES. But there is a possibility

for DES can be susceptible to brute-force attacks. So it has been deprecated, and replaced by the

Advanced Encryption Standard (AES).

2.6.4 Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is the official successor of DES. AES is the United States

Government standard for symmetric encryption, defined in 2001. Rijndael is a block cipher used

in AES. It is based on a substitution-permutation network (SPN). AES cipher key length can

be 128, 192, or 256 bits. The AES replaced the DES with new and better feature such as block

13

Chapter 2. Literature Review

encryption, data security for 20-30 years and it is easy to implement in overall. It is widely used

to encrypt confidential text.

14

Chapter 3

Android

This chapter throws light on Android Operating System and its components. Also highlights

the advantage of using Android. Elementary installation and configuration required for the

development of the project is explained.

3.1 Android Operating System

Android is an operating system initially designed for mobile devices like phones and tablets, but

now android wear are available for smart watches. Android TV and Android Auto are expected

very soon. Android is based on Linux kernel, designed primarily for touch devices. Initially,

Android was developed by Android Inc. and later acquired by Google in 2005 to make sure

that a mobile operating system (OS) is created and maintained in an open platform. Android is

licensed under the Apache License 2.0 Linux kernel patches. Android operating system is an

open platform.

Google continues to pump time and resources into the Android project, which has already proved

to be beneficial, though devices are available only since October 2008. There are now 900 million

Android devices that have been activated. Android devices are activated daily.[15] 48 billion

Android apps are already available in app store.[15] In few years, Android have made a great

impact. Many analysts believe that the number of Android devices in use is greater than the

15

Chapter 3. Android

number of devices on all other mobile operating systems combined together. Android users trust

Google because the app resides in the Google Play Store, which is controlled by Google. So,

Android users have an impression that the apps are trust worthy.

Android powers hundreds of millions of mobile devices in more than 190 countries around the

world.[16] It’s the largest installed base of any mobile platform and growing very fast. Every day

another million users power up their Android devices for the first time and start looking for apps,

games, and other digital content.[16] Android gives a world-class platform for creating apps and

games for Android users everywhere, as well as an open marketplace for distributing to them

instantly.[16]

3.2 Highlights of Android

Android is highly customizable in nature. From the home screen to the themes or wall papers,

everything can be customized. The position of apps and the apps which are to be present on the

screen can also be controlled. It is also possible to install a number of third party applications on

the device. It has a large community of developers writing apps which extends the functionality

of the devices. These apps are written primarily in Java programming language.

3.3 Android Platform Components

Android system is made of several layers on top of Linux 2.6 Kernel. Linux Kernel handles the

security and network communication between the top layers and the underlying hardware. Linux

Kernel allocates resources to processes as they need them and performs memory management.

The goal of Linux is to ensure that the application works. Common functions such as graphic

rendering, data storage and web browsing are bundled as libraries. Along with these, core Java

libraries for running Android applications and the Dalvik runtime forms a layer. The Figure 3.1

shows the four layers of Android Operating System. The core libraries are following.

Open GL (graphics library): an application program interface (API) is used to produce 2D and

3D computer graphics.

WebKit - an open source web browser engine.

16

3.4. Android SDK

Figure 3.1 – Android Platform Component

SQLite - an open source relational database engine.

Media frameworks - A media library for playback of audio and video media.

Secure Sockets Layer (SSL)- provides Internet and web browser security.

Application Framework provides the classes used to create Android applications. It also provides a

generic abstraction for hardware access and manages the user interface and application resources.

Application is the main source for users to interact with the device. Android is a multitasking

platform, it can simultaneously run more than one application without one affecting the perfor-

mance of the other. Android Open Source Project has Browser, Camera, Gallery, Music, Phone

and many more as default application.

3.4 Android SDK

The Android Software Development Kit (Android SDK) provides API libraries and necessary

tools to create, compile, test, debug and package Android applications. These tools are mostly

command line based. Dalvik virtual machine is the software that runs the applications on Android

devices. Dalvik VM, an open-source software, is designed to address security, performance, and

reliability issues in mobile devices having limited power,limited processor speed and limited

RAM. Underlying functionality of dalvik is done using Linux kernel. Dalvik Executable (.dex) is

the file format executed by DVM. The java source files are converted to Java class files by the

Java compiler. As described in the FIgure 3.2, tool called dx(Dex compiler) which converts Java

17

Chapter 3. Android

class files into a .dex (Dalvik Executable). All class files of the application are placed in this

.dex file. During this conversion process redundant information in the class files are optimized in

the.dex file. So .dex files are smaller in size than the corresponding class files. Android Asset

Packaging Tool(aapt) pack .dex files into .apk(Android Package) file. APK file contains necessary

files and resources to deploy the application to devices.

Figure 3.2 – Dalvik Virtual Machine

3.5 System Requirement

In order to develop Android applications one needs a computer with following configuration as

specified by android.[26]

3.5.1 Operating Systems

• Windows XP (32 bit), Vista (32 or 64 bit), or Windows 7 or 8 (32 or 64 bit)

• Mac OS X (Intel) 10.5.8 or later (x86 only)

• Linux (tested on Ubuntu Linux, Lucid Lynx)

3.5.2 Development Tools

• JDK 6

• Apache Ant 1.8 or later

• SDK

• Eclipse for better development experience.

18

3.6. Installation and Configuration

3.6 Installation and Configuration

3.6.1 Eclipse

Eclipse is an Integrated Development Environment (IDE) to work with several programming

languages. All versions are available for download at free of cost as it is a open source. Android

applications are predominantly written in the Java programming language. So Eclipse IDE for

Java Developers (Eclipse IDE for JAVA EE Developers works as well) is suitable for android

development. Downloaded zip file from eclipse web page contains the eclipse application, which

is used to run the Eclipse.

3.6.2 Configuring Eclipse for ADT

ADT is designed to provide a powerful, integrated environment in which a developer can

build Android applications. Comfortable to create, develop, debug, compile, and run android

applications in Eclipse along with ADT. Most of the files in android development are XML files.

ADT provides easy operation with android’s XML file by improving the developer experience

though structured user interface. It is necessary to make installed Eclipse to configure to work

with Android ADT. Android SDK location should be set for the Eclipse. This can be set in the

preference window, against the android tab.

3.6.3 Android Virtual Device Manager

AVD Manager is a tools that comes with Android SDK. The AVD Manager provides a graphical

user interface used to create and manage Android Virtual Devices (AVDs), which are required

by the Android Emulator. Created ADV simulates an actual device. So it is possible to simulate

various screen size and test the app before testing on actual devices.

3.7 Android Activity Lifecycle

Activity is an application component which is provided with a window to user. User interact

with this window and activity responsible for this window will take care of the user actions here.

19

Chapter 3. Android

Activities in android goes throw several state in its lifecyle. Since android is made for mobile

devices, main objective of this life cycle is for memory and resource management. Apart from

this android also recreates activities on configuration changes. These states of the application have

to be maintained by the developer. When Android components are started a new process with

a unique ID mentioned in the AndroidManifest.xml file. The Android system creates a default

object if it is not specified in the AndroidManifest.xml. Ultimately, Android app work based on

the process status and activity status. The sequence of the life cycle methods are depicted in the

Figure 3.3.

Figure 3.3 – Android Activity Lifecycle

20

3.7. Android Activity Lifecycle

3.7.1 Android Process Status

Foreground

Depicts user is interacting with the activity in an application.

Visible

Depicts user is not interacting with the activity, even though the activity is still visible.

Service

An application which is running but not in foreground or visible.

Background

Depicts the activities that are stopped but it is kept in the Android’s least recent used (LRU) list.

If required android will terminate the least used activity one by one.

Empty

No active components found in the application.

3.7.2 Activity State

Running

Activity is said to be running if it is visible and interacts with the user.

Paused

Instance of the activity is running but might be killed by the system. Activity is paused until it is

visible and not killed but partially obscured.

Stopped

Activity is not visible and the instance is running but it might be killed any time.

21

Chapter 3. Android

Killed

Activity is terminated by the system using finish() method.

3.7.3 Activity Lifecycle Methods

Activity lifecyle methods are provided to implement tasks at different stages of the activity. Most

of the initiation task are implemented in onCreate method, because it is called at the start of the

activity.

onCreate

This method is called when the activity is created. Used for initialization of the activity and user

interface creation.

onResume

This method is called when the activity gets visible again and the user starts interacting with the

activity again.It is used to initialize fields, register listeners, bind to services and many more.

onPause

This method is called when another activity gets into the foreground. It is used to release re-

sources, save application data, unregister listeners, intent receivers, unbind from services or

remove system service listeners.

onStop

This method is called once the activity is no longer visible. It used to write write information to a

database and many more.

onDestroy

This method is called before the activity is destroyed. Since t is the final call to the activity, all

resource and process are released.

onRestart

22

3.8. Android App Components

This method is called after the activity has been stopped, just prior to it being started again.

onLowMemory

When the application need to the cleans up memory the Android system will request for it by

calling onLowMemory method.

onTerminate

This method is used to terminate a process but it is used only for testing purpose.

onConfigurationChanged

This method is called whenever the configuration changes occurs.

3.8 Android App Components

1. Activities

Every screen is represented by an Android Activity. It take response from user interface

and its interaction with the device screen. If application has more than one activity, one

which is mention in the manifest XML is initiated during launch of the app.

2. Services

Background operations are ran as a service.For example, audio can be played as background

activity while different application is active. Data can be downloaded at background

through network.

3. Broadcast receivers

Broadcasts are initiated from an application to notify about an action to other applications.

So broadcast receivers can perform any action according to the message. For example,

when there is some data is to be downloaded to the device, broadcast receivers get to know

about this and start their activity.

4. Content providers

On request by an application, data are supplied by content provider component. ContentRe-

solver class handle those request.

23

Chapter 3. Android

5. Fragments

A fragment is a kind of sub-activity. Part of user interface in an activity is represented by a

fragment.

6. Intent

Acts as a glue between activities. Mostly used while launching activities. Intent is passive

data structure containing an abstract description of action to be performed

7. Layouts

Structure of the user interface is defined by layout. Layouts are either declared in XML or

instantiated at runtime.

8. Views

View is the basic building block of user interface component. Button, text field etc. are the

UI components used as view.

9. Resources

Apart from source code android app is composed of images, audio files, and anything

relating to the visual presentation of the app. And XML files defining animations, menus,

styles, colors, and layout of the activity user interfaces. Resources make it is easy to update

various characteristics of the app without modifying the code.

10. Manifest

Before an android app start it must know the components that are existing. The manifest

file provide the list of components used. User permission, minimum API level, hardware

and software features used or required by the app, such as a camera, bluetooth services, or

a multitouch screen are declared in this file.

This thesis is basically an android app development. So all of the above mentioned components

of android and its working was very useful to implement the required functionality.

24

Chapter 4

Design and Requirement Analysis

This chapter describes the design based on the requirements of final product. According

to the scope of the project, gathered analysis are put together as functional and non functional

requirements. Construction of architecture, algorithm and flow of the applications are explained

in detail. Necessary inputs for the development phase such as use case, package model and class

diagram are designed.

4.1 Scope

Ideally, implementing few specific features of steganography in android is the objective. The

developed android application should be able to hide secrete text message in a cover image

or audio file. And it should be capable of hiding quick voice message in a cover image file.

Encoding audio data in a cover audio file is out of scope of the project. In same way hiding an

image in a cover image is not required. While hiding quick voice message in a cover image the

maximum voice message duration is 10 sec. Encoding and decoding of message must be done in

real time, i.e. in few moments. According to user action, app must notify appropriate errors and

warnings.

25

Chapter 4. Design and Requirement Analysis

4.2 Functional Requirement

Application is a made of group of modules. Each module works on certain task. Requirements

based on each task are called functional Requirement. By analyzing the scope of the project and

having the mandatory requirements of the target audience in mind, the functional requirements

are scripted. The idea is to create an application which is user friendly and perform task in

considerably short amount of time. There are mainly six functions. These functions are hiding

the text in image, hiding the text in audio, hiding the audio in image and retrieving back the

hidden message from those image and audio files. Simultaneously it is significant to provide

secure feel for users on their message. So encryption turned out to be a good option along with

steganography. Thus six screens are designed to accommodate each module in each screen.

Additionally, share, home and help screens are included for supporting features. These collective

information forms the main idea and basic requirements. Detailed requirements on each screens

and input validations are discussed further.

4.3 Non Functional Requirement

Behavior of a system is also a part of the requirement. They are termed as non functional require-

ments. Even some constrains and restriction on system are also considered as non functional

requirement. These requirement have to be selected such that it is bounded and relevant to the

system. Some behaviors considered as non functional requirements are capacity, efficiency,

effectiveness, extensibility, maintainability, privacy, portability, quality, reliability, response time,

robustness, security and stability.

4.3.1 Use Case

A use case is a methodology used in system analysis to identify, clarify, and organize system

requirements. The use case is made up of a set of possible sequences of interactions between

systems and users in a particular environment and related to a particular goal.[25]. All system

activities are recorded in use cases. Use case organize functional requirements into system and

26

4.3. Non Functional Requirement

actor interaction. Designing use case helps is managing complexity of the application. The whole

requirement is broke down in to several small scenarios. As shown in Figure 4.1, the user has

direct access to home screen. From home screen user can travel to any other screens. Share

feature is available only in encoding screens. The use case contains the goal of the event flow,

Figure 4.1 – Use case diagram

precondition and post condition of the event. Post condition can be successful or failed post

condition. Scenario action describes the path of the event from where it was triggered till the

goal. One of the use case of protectMSG is given below. Other use cases are found in appendix.

27

Chapter 4. Design and Requirement Analysis

Use Case 1 Home

Goal in Context
Home screen displays overview of the functionality of protectMSG

application. And user has the facility to navigate other pages.

Preconditions

Successful Post Condi-

tion

Overview of the application is present along with a way to access

different functionality of the application.

Failed Post Conditions

If user selects medium and message as audio, then the applica-

tion will inform user that encode or decode audio in audio is not

possible. Because it is not included in the scope of the application.

Scenario Action

Step 1: User selects message type and medium in any order.

Step 2: On click of “Go” button for encode or decode will leads to

the appropriate screen based on the input.

4.4 Architecture

4.4.1 Application Flow

The flow diagram in the Figure 4.2 explains the systematic operation of the application. Since the

application have more than one task, no task is depended on other task. Any task can be perform

on request of the user. So the user input determine the task to be executed. Fundamental input

parameters for any module or task in the application are the medium and the message type. An

Image file or an audio file can act as a medium to cover the message. Message can be either

text or audio. After the valid selection of medium and message type, operation that needs to

be performed is decided. The operation can be either encode or decode. Before encoding or

decoding, appropriate error message is thrown if the inputs are invalid. Now either it is encoded

or decoded on the selected input. Finally, based on the input, output is drawn. The process used

to encode and decode are discussed later in the chapter.

28

4.4. Architecture

Figure 4.2 – Flow Chart

4.4.2 Encryption Used

In this application at certain stage message is encrypted upon user request. AES encryption of

128 bits cipher key size is used to safe guard the user message. The message is encrypted using

the secrete key generated from the password provided by the user. The key length should be 128

bits. so the password undergoes a padding if its size is not exactly 128 bits. If the message is text

then the encrypted message is encoded under Base64 encoding scheme. Base64 is a binary to

text encoding scheme which represent binary data in ASCII string.

29

Chapter 4. Design and Requirement Analysis

4.4.3 LSB Technique

Least Significant Bit (LSB) is a simple technique to implement steganography. It is mostly

used for image and audio steganography. LSB method generally achieve both high capacity

and high imperceptibility. [1] High capacity refers to the large size of data can be embedded

when compared to other techniques. Imperceptibility refers to natural human ability to detect

the difference between the original object and embedded object. The technique works by

replacing some of the information in a given pixel with the information from the message data.

When the cover object is transformed to bytes, each byte is represented by bits. Replacing the

least significant bits seems to be a better option as the value they carry is insignificant when

compared to other bits. While the message and cover object is represented in the bit plane, every

least significant bit of the cover object’s byte is replaced by the message bits. This concept is

represented in the Figure 4.3.

Figure 4.3 – LSB Technique

By doing this, there is some loss of information in the cover object. In case of of image and audio

cover file, due to natural weakness of Human Audio/Visual System the loss of data in cover file

30

4.4. Architecture

is not noticeable.[7]

4.4.4 Encode Data Packet

Just embedding the message into a cover file does not provide a completeness to the application.

So the new concept is to create a Encode Data Packet and embed it in the cover file instead of

only message. It is useful for the application to work better than normal. Encode Data Packet

is a packet that encapsulate the message with some header information which is useful while

decoding the message. This packet is designed to achieve the attributes of secure communication.

The packet contains the message and a header. Header assure the encoded file is recognized

only by the desired reader. Hidden message is retrieved by precise interpretation of this header,

which is only known to protectMSG application. As shown in the Figure 4.4, Message Length

Figure 4.4 – Encode Data Packet

and Flag combines to from the header. And header precedes the message. Header is 8 bytes in

length. It is divided into two section, namely, Message Length and Flag. Message Length section

is used to convey the length of the message that needs to be hidden. It is impossible to extract

the precise message without knowing the length of the message hidden in the file. Size of the

Message Length frame is 4 bytes. So actual length of the message can vary from 0 to 232 in bytes.

This is a huge number. 32 bits are allocated because it will be useful if the message capacity has

to be increased in future enhancements.

Flag

There are several purpose and use in creating header for each encoding. Flag is a part of header

in the encode data packet. While decoding, flag provides the information that where the file was

31

Chapter 4. Design and Requirement Analysis

actually encoded by protectMSG. Apart from this, it also provides whether the encoded file was

protected by password or not. Two type of flag used are:

Flag 0 - 00 00 00 00 - Represent the file is encoded without password

Flag 1 - FF FF FF FF – Represents the file is encode with password

These flags are used to take several decisions while decoding. While extracting the message,

application throws appropriate error if the expected flag is not found. If user does not provide

a password but Flag 1 exist in the file, then the application throws error, asking for a password.

If any of these flags are not found in the files, then the file is consider to be not encoded by

protectMSG app.

4.4.5 Algorithm

In the process of embedding the message into a cover file involves several steps. They are

explained below.

Step 1 - Convert the medium to bytes

Medium can be either image or audio file. This file has to converted to byte array for manipula-

tion.

Step 2 - Encrypt Message

If the user has entered password then message is encrypted with the given password.

Step 3 - Convert the message to bytes

Message can be either text or audio file. So they are converted to bytes array for manipulation.

Step 4 - Create Encode Data Packet

Encode Data Packet is formulated using the flag, message byte array and its length. Flag depends

on user input.

Step 5 - Encode using LSB technique.

Then encode data packet is embedded in to the byte array of the medium using LSB technique.

Step 6 - Generate encoded file.

Finally the output byte array from the LSB technique, which contains the hidden message, is

32

4.4. Architecture

convert to either image or audio file based on the input medium type.

The steps involved in extracting the hidden message from the cover file is given below.

Step 1 - Convert the cover file into byte

The cover file containing the hidden message is first converted into byte array.

Step 2 - Read encode data packet header

The converted byte array under goes the reverse LSB technique to extract header and message of

the encode data packet.

Step 3 - Extract message

From the encode data packet header and message is separated and validated.

4.4.6 Package Model

In development of the project, to gain molecularity, all the classes are divided into packages.

Each package contains several class that performs task in specific area. Model view controller

pattern is followed in this project development. The StegoVO is a value object class. It act as a

model. Classes in the operation package are the controller which does all core functionality and

control the whole system. The fragments classes continuously attach with the view object of the

project. They mainly update the user interface when ever required.These relations are represented

in the Figure 4.5.

Figure 4.5 – Package Diagram

33

Chapter 4. Design and Requirement Analysis

Drawer

This package is responsible for implementation of the navigation of the application. Android’s

drawable menu is implemented. It appears at top left corner of the app. Classes in this package

are listed below.

Package Name : com.protectMSG.drawer

• NavDrawerItem.java

• NavDrawerListAdapter.java

Exception

Custom exception class is used to catch and throw specific criteria that are treated as error in this

app.

Package Name : com.protectMSG.exception

• StegoException.java

Gesture

Gesture package incorporate gesture in the application. Activity class should implement the

SwipeInterface to avail this feature. Gesture package is helpful because it simplifies the usage of

gesture at any required place very easily.

Package Name : com.protectMSG.gesture

• ActivitySwipeDetector.java

• SwipeInterface.java

Operation

Operation package primarily does the all variety of encoding, decoding and its validations.

Package Name : com.protectMSG.operation

34

4.4. Architecture

• DecodeAudioFromImage.java

• DecodeTextFromAudio.java

• DecodeTextFromImage.java

• EncodeAudioToImage.java

• EncodeTextToAudio.java

• EncodeTextToImage.java

• Help.java

• HomeFragment.java

• MainActivity.java

• TransparentProgressDialog.java

• Validate.java

Stego Operation

Classes in this package combinedly responsible for the core functionality of the app. LSB

technique and encryption are their main duties.

Package Name : com.protectMSG.stego.operation

• StegoEncryption.java

• StegoOperation.java

• StegoVO.java

Util

Util package has classes that majorly does supporting functions for other classes. So they all are

helper class.

Package Name : com.protectMSG.util

35

Chapter 4. Design and Requirement Analysis

• AudioRecording.java

• Constant.java

• Customfontloader.java

• Utility.java

4.4.7 User Interface Design

Theme and Icons

When it comes to mobile apps, unlike desktop software, they are used for shot span of time to do

quick tasks. User actively use the application for short period of time. An app should be attractive

and easy to use it. Thus user interface design plays significant role in the the development of the

application. Theme, color and icons used in the application are suitable for all kind of users. Grey

background is chosen as it is not flashy or dull. Text and buttons are contrast to the background

so that they are clearly visible. And the next is to make the user experience better by fluent

navigation in the application.

Navigation and Controls

The protectMSG app has eight screens in total. At the start of the application home screen

appears. From home screen, other screens can be visited except Help screen. Apart form home

screen, all other functionality of the application can be visited including help screen by accessing

the navigation drawer. The navigation drawer is a panel that displays the app’s main navigation

options on the left edge of the screen. It is hidden most of the time, but is revealed when the

user swipes a finger from the left edge of the screen or, while at the top level of the app, the user

touches the app icon in the action bar. [9] Advantage of this menu is the ability to access any top

level content from anywhere in the app.

For example, encode text to image screen can be accessed either from home page or by using the

drawer menu at the top left corner of the application. Home page has an option to select message

type and the medium to carry the message. The phrase “Encoding Text To Image” denotes the

36

4.4. Architecture

message is text and its medium is image file. After selecting the message type and medium,

“Encode Text To Image” screen can be visited by clicking “Go” button for “Encode” .

Below is the Table 4.1 representing the available screens, its function and access point in the

application.

Table 4.1 – Screen Functions

Screen Functionality Accessible From
Home Gives brief description about the

application and task that can be
performed in this application

Appears at the start of the
application. Also accessi-
ble using drawer menu.

Encode text to image Hide text message in an image. Home and drawer menu.
Decode text from image Reveals text message from an im-

age.
Home and drawer menu.

Encode text to audio Hide text message in an audio. Home and drawer menu.
Decode text from audio Reveals text message from an au-

dio.
Home and drawer menu.

Encode audio to image Hide audio message in an image. Home and drawer menu.
Decode audio from image Reveals audio message from an

image.
Home and drawer menu.

Help Display detailed specifications of
the application that are useful to
the user.

Drawer menu.

Feedback and Alerts

Relevant information, warnings and error messages have to be intimated to the user at necessary

moments. Android provides a small pop up message called toast messages. It just fills the amount

of space required for the message while the current activity remains visible and interactive. It

appears only for short period of time and then fades out. This toast message is customized to

match with the theme of the application by modifying the background color and including the

application icon in the message. Text color in the toast message is orange for warnings, red for

errors and green for information as shown in the below Figure 4.6, Figure 4.7 and Figure 4.8

respectively.

Figure 4.6 – Warning Message

37

Chapter 4. Design and Requirement Analysis

Figure 4.7 – Info Message

Figure 4.8 – Error Message

Prototype and Versions

Prototype is the model of the final output. Generally, prototype for GUI of the application is

created at first. Then during the process of development several versions of the application are

created step by step. So requirement is gathered in terms of user interface to create a basic

prototype of the UI design. Many versions of the user interface are created in the process of

development. Initial version has the basic required fields and buttons without any special effects.

Every other version is reviewed prior designing the next version for but better user interaction,

improvised theme and rich UI features. Final version is powered with gestures, rich appearance

and colorful buttons. The figure 4.9 shows the initial version of the app.

Figure 4.9 – Initial Version Screen

38

4.4. Architecture

According to the requirement, the functionality of the application is designed for better imple-

mentation. As well, the GUI of the application is constructed for high flexibility.

39

Chapter 5

Implementation

This chapter gives elaborate details of implementation of this thesis. Details about the

helpful tools used during the development and their importance in implementation. All function

of the application and the way of execution to obtain the result are written here.

5.1 Project Specification

Android manifest XML is where all the components and setting of the android application is

mentioned. It also defines the structure and metadata of android application[27]. Permission for

the app to access the SD card, camera and audio recording are mentioned in manifest file. Other

specifications of the project are given below.

Application name: protectMSG

Minimum Required SDK: API 14

Target SDK: API 19

Target device: Samsung Tab3 GT-P5210

Screen size: 10 inch

Screen mode: Landscape

Online/Offline work: App works perfectly in offline mode. But, internet is needed to share files.

41

Chapter 5. Implementation

The protectMSG app is compatible with following Android versions.

Android 4.0–4.0.2 Ice Cream Sandwich (API level 14)

Android 4.0.3–4.0.4 Ice Cream Sandwich (API level 15)

Android 4.1 Jelly Bean (API level 16)

Android 4.2 Jelly Bean (API level 17)

Android 4.3 Jelly Bean (API level 18)

Android 4.4 KitKat (API level 19)

5.2 Tools Used

5.2.1 Android Command Line Tools

Android provide several tools that can be used from command line. They are bundled in Android

SDK package. tools are classified into SDK tools and platform tools. SDK tools are platform

independent while platform tools are customized to support the features of the latest Android

platform. SDK tools are frequently used to manage the android project are.

android

Android tool is used to create three types of android projects. A project with all files and resources

that are needed to build a project into an .apk file for installation is one among them. Other type

is a library project which allows it to be shared with other projects that depend on it. It cannot be

installed on devices. Last type is a test projects extend JUnit test functionality to include Android

specific functionality.

42

5.2. Tools Used

mksdcard

Quickly creates a FAT32 disk image that can load in the emulator, to simulate the presence of an

SD card in the device. The created SD card should be associated to an AVD while creating the

AVD in the AVD Manager. Desired memory for the SD card should be specified while creating it.

Same SD card image can be shared across multiple emulators.

Dalvik Debug Monitor Server (DDMS)

Dalvik Debug Monitor Server is a debugging tool provided by android. It is a command line

tool, but it is easily accessible while using Eclipse with ADT. Eclipse provide a perspective that

display all the functions of DDMS. DDMS shows the list of AVDs and devices connected to

ADB. It has LogCat, a system to view log messages in real time. A file manager is available to

view, push and pull file to the SD card image. Also displays heap usage, slowly running thread

and memory allocation of objects.

Android Debug Bridge (ADB)

ADB is used to install Android application file(.apk) file, manage state of an emulator instant, to

push and pull files from SD Card image.

5.2.2 BinaCompa

Comparing bytes of data becomes unavoidable necessary in this application development. There

exist a tool called BinaCompa. It is used to compare two selected file byte data. For example, it

is possible to compare each and every bytes of the two selected files in order.

5.2.3 Checkstyle

Checkstyle is a helping tool for programmers to write java code adhering to coding standards.

Eclipse plugin for Checkstyle provide integrated development with eclipse. Naming convention

for java is followed.

43

Chapter 5. Implementation

5.3 Emulator

Android provides mobile device emulator along with Android SDK. Emulator is a virtual mobile

device that runs on computer. Before deploying any application directly into the physical device,

android provide an option to develop and test app in emulator. Android Virtual Device (AVD) is

an emulator configuration tool. Hardware and software parameters to be emulated are defined

using AVD. Some important parameters are

AVD Name - Specifies the name of the created virtual device

Device - Devices are available at different screen size. This field determine the screen size of the

emulator.

Target - Android API level is mentioned here. It is nothing but the android version.

CPU/ABI - ARM and Intel Atom are the CPU available to choose

Memory Option - RAM size have to specified in order to create a virtual device.

SD Card - SD card image should be created and associated with the virtual device.

5.4 protectMSG

5.4.1 Program Inputs

All core functionality in this application needs some sort of input from the user. Message and the

cover file for embedding are accepted as input from the user. User has wide choice of input types

when it comes to image or audio. Because there are lot of image and audio formats available

now. But only certain image and audio formats are accepted as input to the system. So all inputs

undergoes a validity check. Thus these inputs are verified for its characteristics whether they are

eligible for application process. The Table 5.1 denotes the valid input criteria. The protectMSG

application has more than one screen. Not all screen accept all input. Each screen screen has

different type inputs based on its functionality. So the Table 5.1 also depict the association

between the input and the screen.

44

5.4. protectMSG

Table 5.1 – Program Inputs

Input Valid Criteria Acting Screens
Encode Text Not null and length between 1 to

50 characters. It can be numeric,
alphabets and special characters.

Encode text to image
Decode text from image
Encode text to audio
Decode text from audio

Password Null or length between 3 to 15
character. It can be numeric, al-
phabets and special characters.

Encode text to image
Encode text to audio
Encode audio to image
Decode text from image
Decode text from audio
Decode audio from image

Image JPG, JPEG, PNG file formats are
accepted.

Encode text to image
Decode text from image
Encode audio to image
Decode audio from image

Audio WAV file formats is accepted. Encode text to audio
Decode text from audio

5.4.2 Encode text to image

Encode text to image is one of the functionality in protectMSG app. Here, text message is hidden

in a cover image.

Encode text to image screen has two text field. First text field is for entering the message that

needs to be hidden in the image file. Other text field is for the user to enter the password, which

is an optional field. It can be seen in the Figure 5.1. If an image is encoded with a password, then

it can be decoded only with the same password.

Since Image is the medium here, a valid image has to be selected using the browse image button.

On click event of the plus icon initiate the event for image selection from gallery. There are

several application available to view and select images. By default, android device manufacturer

provide a gallery app installed when the device is sold. Optionally, many applications for viewing

image are available in play store. On clicking the browse image button, all the installed gallery

applications pops for selection.

Text data is hidden in the image by clicking the encode data button but the input text, password

and the cover image undergoes several validity check before encoding. Password is an optional

input. If the password is not provided by the user the operation take place as shown in the Figure

45

Chapter 5. Implementation

Figure 5.1 – Encode Text To Image

5.2. Directly the message is sent for encoding in to the cover image file.

Figure 5.2 – Encode block diagram without encryption

If the user had given a password, an encryption key is generated from the password provided by

the user. Using the generated encryption key the text message is encrypted and sent for encoding

on cover image as shown in the Figure 5.3.

Encoding

Once the inputs clears verification and arrive the encoding phase, the image is read as a bitmap

and it is converted to mutable format. The bitmap is converted to byte array. The text is

46

5.4. protectMSG

Figure 5.3 – Encode block diagram with encryption

converted to byte array and embedded with image bytes using LSB encoding. Byte array

returned from LSB encoding has text hidden in it. This byte array again converted to bitmap

and formulated into new image. This generated image is saved in SD card of the device in the

location "/sdcard/protectMSG/Image/".

5.4.3 Decode text from image

The encode image is sent to the intended recipient. The recipient will be able to extract the hidden

message from the image. But only images that are encoded by protectMSG should be used. This

screen has only one text field. This text field is for entering password, which is optional. If an

image is encoded with password, then the same password has to be used to unlock it.

The below Figure 5.4 shows the process of decoding if the password is not provided. And the

Figure 5.5 shows the process when password is used.

Figure 5.4 – Decode block diagram without decryption

47

Chapter 5. Implementation

Figure 5.5 – Decode block diagram with decryption

5.4.4 Decode

Click event of “Reveal Hidden Text” button start the decode process with selected image. Since

the the image was encoded by LSB technique, the text hidden in it is extracted in same way. If the

message was encrypted the it is decrypted using the key generated from the password provided

by the user. If the password is wrong, error is thrown asking for correct password.

5.4.5 Encode text to audio

Encode text to audio is the functionality which hides text in an audio file by converting the text

data into bytes and encode it in the audio voice signal.This screen has two text field. First text

field is for entering text message that needs to be hidden in the audio file. Other field is for the

user to enter password, which is optional. If an audio is encoded with password, then the encoded

audio can be decoded using the same password only.

Since audio is the medium here a valid audio file have to be selected using the browse audio

feature. On click event of the plus icon initiate the event for audio selection from gallery. There

are several application available to play and select audio. By default, android device manufacturer

provide an audio player app installed when the device is sold. Optionally, many applications for

accessing audio files are available in play store. On clicking the browse button, all installed audio

player applications pops up for selection.

Recording user voice is also possible. Instead of selecting an already existing audio file, there

48

5.4. protectMSG

exist an option for recording users’s voice. Using the record audio button, one can start recording

their voice by clicking once. User can continue to record their voice and by clicking the button

once again will stop recording. Then the recorded audio is automatically saved in the folder

“/sdcard/RecordedAudio/”. Name of the recorded audio file is unique every time as it take the

current timestamps.

On completion of successful recording new section appears below, containing the recorded audio

file with an option to play. When the green play button is clicked it turns to blue pause button

and start playing the recently recorded audio. The audio stops playing automatically once it has

finished playing. Pause button is used to pause the audio that is currently played. Instant message

appears at the bottom when the audio starts playing, paused or finished playing.

On valid input selection both text and audio are converted to byte array and encoded using LSB

technique. The resultant byte array is saved as WAV file in the SD card location "/sdcard/pro-

tectMSG/Audio/".

5.4.6 Decode text from audio

Hidden text in the audio is decoded and revealed by the exclusive decode function. Audio encoded

by protectMSG have to be used for decoding, otherwise appropriate error is thrown. And if the

encode audio is secured by password, then then same password have to be used to unlock it. This

screen has one text field. This text field is for entering password, which is optional. If an audio is

encoded with password, then the encoded audio can only be decoded with the same password.

5.4.7 Encode audio into image

Audio data can be hidden in the image pixels by converting the audio data into bytes and encode

it in the image pixels. This functionality is intended to hide quick voice message in an image

file. So the voice message is restricted to 10 seconds of recording. This screen has one password

field and two section for input selection. First field is for entering password, which is optional.

Next section is for recording the audio that needs to be hidden in image file. Next section is for

selecting the cover image. If an image is encoded with password, then the encoded image can

49

Chapter 5. Implementation

only be decoded with the same password.

5.4.8 Decode audio from image

Hidden audio in the image can be decoded and revealed by the exclusive decode function. Image

encoded with audio by protectMSG have to be used here. And if the encoded image is secured

by password, then then same password has to be used to unlock it.This screen has one text field.

First text field is for entering password, which is optional. If an image is encoded with password,

then the encoded image can only be decoded with the same password.

5.4.9 Supporting Features

Home Screen

Home screen provides the overview of the application. This screen list the features of the

protectMSG application in brief and the ways to achieve it. In home screen user can select the

message type and medium type. There exist two option buttons for selecting the message type.

One is “Text” button to emphasis that the user message is a text. Other button is “Audio”, which

implies audio message is desired to be hidden in a cover file. Since they are option button, only

one button stays selected at a time. By selecting one of these button, the other button will go

un-selected. Similar functionality applies for the medium type buttons. The medium can be either

“Image” or “Audio”. An exception exist here. Audio message cannot be hidden in another audio

file as it is not in the scope of this thesis.

Share

Share button at the top right corner of the screen is used to share the recently encoded file. So this

feature is available only in encoding screens. It is not available in the screens featuring decoding.

On click of the share button, it rotates in the clockwise direction and initiates the intent to share

files. Applications installed in the device, which has the ability to share the files are listed in the

50

5.4. protectMSG

pop up screen. User has an option to select his/her own desired application to share the file. For

example, if applications like Gmail, or Facebook is installed, they would show up in the listing.

So user has an option to share the file either through mail or any messaging apps. This gives

flexibility and choice for the user to share file through their own desired application. Screen shot

of the home screen is show in the Figure 5.7.

Figure 5.6 – Share Screen

Browse Picture

In most of the screens, user have to input an image to the system. So, the browse picture section

in the screen will allows the user to select images from the device internal storage or SD card. The

protectMSG app will not do this. But it will transfer this job to any other app that is installed in

the device. The protectMSG will communicated with other apps by initiating intent. So specific

intent for accessing picture is initiated by clicking the plus icon in this section. Now user will be

shown with wide choice of gallery application installed in the device to select the image. The

selected image is verified for its type. Only JPEG, JPG and PNG are accepted. Below Figure 5.8

shows the Browse Picture section.

51

Chapter 5. Implementation

Figure 5.7 – Browse Picture

Capture Picture

User has an option to capture image from the device camera. When the camera button is

clicked, camera activity is initiated to take picture. The captured picture is saved in the location

"/sdcard/picture/protectMSG/Image/". Below Figure 5.9 shows the capture picture section.

Figure 5.8 – Capture Picture

Browse Audio

In case of an audio file selection, this feature facilitated the action and validates the selected input.

The initiated intent will give an option for user to select the audio file through any of the installed

app intended to open them. The screen shot for this is shown in the appendix. Below Figure 5.10

shows the browse audio section.

Figure 5.9 – Browse Audio

Record Audio

In few screens of the application instead of selecting an existing audio, user can record his

own voice and use in the application. First click of the record button will start the voice

recording. And the next click will stop recording and display a new section below the with

an option to play the recently record audio. All recorded voice will be stored in the location

"/sdcard/protectMSG/RecordedAudio/". Below Figure 5.10 shows the record audio section.

52

5.5. Class Diagram

Figure 5.10 – Record Audio

Help

Help screen provides general information, restriction and limitations of protectMSG application.

Listed information are significant for the users to access and know about the application. They

are categorized into Basic, Audio, Image and Quick Voice Message. Categorization provides

clarity in explaining necessary information to the users.

5.5 Class Diagram

Class diagram is a structure that describes the relation between the system’s classes. In pro-

tectMSG application, several java classes are used but only important class relationships are

shown in the diagram below. EncodeTextToImage class is the center of attraction in the diagram.

This is shown in the Figure 5.12

MainActivity.java

MainActivity class is specified in the android manifest file to load this class on start of the

application. This class is responsible for redirection to other activities on request.

EncodeTextToImage.java

Primary function of EncodeAudioToImage class is to convert the text to byte array, image file to

byte array and then send these arrays to StegoOperation class, which performs LSB encoding.

The resultant byte array from StegoOperation class is again formulated into an image file. This

class is also responsible for activities like sharing the encoded file, capturing image using the

camera, browsing picture. Similarly EncodeTextToAudio and EncodeAudioToImage class does

convert message and cover file into byte array and responsible for task like sharing and playing

selected audio. They also share the similar kind of relationship with other classes as that of

53

Chapter 5. Implementation

Figure 5.11 – Simplified Class Diagram

EncodeAudioToImage.

DecodeTextFromImage.java

DecodeTextFromImage class is used to extract the text message from the image file. DecodeAu-

dioFromImage and DecodeTextFromAudio class also extract the message from the corresponding

cover files.

Help.java

Help class is a fragment used to display the necessary information regarding the application.

HomeFragment.java

This class is related to the functioning of the home page in the app.

Validate.java

Validate class does basics functions to verify the inputs such as password, encode text, input file

54

5.5. Class Diagram

size and file extensions.

StegoEncryption.java

AES encryption and decryption is implemented in StegoEncryption class. A dedicated method is

available for password padding.

StegoOperation.java

StegoOperation is a significant class implementing the core functionality, LSB technique. Accepts

message and cover file as input in bytes and performs encoding operation. Also performs decode

operation and extracts the message from the cover file.

StegoVO.java

StegoVO is a value object to store details about message and errors belonging to the encoding

or decoding transaction. Object of this class is passed as a parameter to the encode and decode

methods to carry messages and errors of the current action.

AudioRecording.java

AudioRecording class handles recording audio and saving it in the appropriate SD card location.

Constant.java

To maintain coding standards, all strings used in this project are grouped in Constant class. The

caller can refers to these constants using static references. So the caller will never need to create

a Constant object.

Customfontloader.java

In the application there are several fonts used in different places. Static methods from Custom-

fontloader class are used to apply necessary fonts to required UI component easily.

Utility.java

Pulling the locations of the audio and image files from the SD card, generating filenames for

newly encoded files and showing custom alert are the functionality of the Utility class.

55

Chapter 5. Implementation

In the development process, several struggles has been overcame to achieve the desired output.

These road blocks were discussed in details in the section 6.5 Challenges Confronted.

56

Chapter 6

Evaluation

This chapter investigate and captures test results, behavior and every approach handled to

provide best quality product.

6.1 Test Strategy

Software testing approach is defined initially to achieve testing objectives. Testing methodology

and the testing procedures for each testing are defined prior to the testing. Testing plan is derived

from the specified requirement of the application and the test scope is also defined. Test plan

contains full details of test approach, test conditions, test cases, expected results, test exclusions.

Required environment and tools for testing are identified and prepared.

6.2 Testing Scope

Instead of creating a single master test plan, the strategy is to divide testing into several small

test cases. Each test case concentrate on single function and scripts their outcomes. Addressing

each functions separately provides modularity and linearity in testing. By simplifying the testing

process quality of the test results increases in terms of accuracy. Testing scope is to test all

functionality, user interface, maintain the test approach throughout, provide the test deliverable at

the end and it also include device specific testing.

57

Chapter 6. Evaluation

6.3 Test method

6.3.1 Functionality Test

Functionality test is similar to black-box testing, where the focus is on functions of the application

rather than the way of programming or coding. Several modules in the application are expected

to behave in the programmed way. These expected results are grouped to form test cases. Then

testing is done with reference to these test cases. One of the test case is shown below in the Table

6.1, rest are attached in the appendix.

Table 6.1 – Test Case no:001

Test Case no: 001

Test Case Encode Text To Image
Test Case Description On clicking of encode button, text message is encoded into the

cover image.
Test Input Valid text is considered as a message that needs to be hidden. Valid

image is also an input from user to conceal the text message.
Expected Result New image is generated with the given text message hidden in it.

6.3.2 User Interface Test

User Interface Test is a testing technique, which test the application using graphical user interface

to find the defects. GUI events like key press and button click are triggered to check for unexpected

results.[24] Check list verified during the user interface tests are :

• Check Screen Validations

• Verify All Navigations

• Check usability Conditions

• Verify Data Integrity

• Verify the object states

• Verify the date Field and Numeric Field Formats

58

6.3. Test method

6.3.3 Monkey Testing

All bugs are expected to be caught by test cases. It does not happens every time. Sometime

random test reveal unexpected error which was not trapped according to the plan. This random

test is called monkey test. It is a test where random inputs are giving without any restriction.

Advantage of this testing is the possibility of a generation of a new test case, which was originally

skipped while preparing the test plan initially.

The Monkey is a command-line tool. It runs both on emulator instance and device. It sends a

pseudo-random stream of user events into the system, which acts as a stress test on the application.

cite11

Four primary categories of Monkey

• Basic configuration options, such as setting the number of events to attempt.

• Operational constraints, such as restricting the test to a single package.

• Event types and frequencies.

• Debugging options.

When the Monkey runs, it generates events and sends them to the system. It also watches the

system under test and looks for three conditions, which it treats specially. If the Monkey is

constrained to run in one or more specific packages, it watches for attempts to navigate to any

other packages, and blocks them. If the application crashes or receives any sort of unhandled

exception, the Monkey will stop and report the error. If the application generates an application

not responding error, the Monkey will stop and report the error.[11] Events are generated based

on the selected verbosity level.

Monkey is launched using a command line on development machine or from a script. Because

the Monkey runs in the emulator/device environment, it must be launched from a shell in that

environment. It can be done by prefacing adb shell to each commands or by entering the shell

and entering Monkey commands directly

59

Chapter 6. Evaluation

6.3.4 Device Oriented Test

Since the application is designed to run on android version 4.2.2, jelly bean, it was tested on

Samsung Galaxy Tab3 GT-P5210. Specification of the device tested is shown below in the Table

6.2.

Table 6.2 – Test Device Specification

Device Specification Samsung Galaxy Tab3 GT-P5210
Form Factor Tablet, Touchscreen

OS Android 4.2.2 Jelly Bean
Display Type TFT capacitive touchscreen, 16M colors
Display Size 10.1 inches (149 ppi pixel density)

Display Resolution 1280 x 800 pixels
Primary Camera 3 MP

Secondary Camera 1.3 MP
Primary Camera 256 ppi

Chipset Intel Atom Z2560
CPU Dual-core 1.6 GHz

Internal memory 16 GB
Memory card slot microSD up to 64 GB

RAM 1GB
WLAN Wi-Fi 802.11 a/b/g/n, Wi-Fi Direct, Wi-Fi hotspot

Bluetooth v4.0, A2DP
USB microUSB v2.0 (MHL 1.2), USB Host

6.4 Non-Functional Requirements Evaluation

General operation of a system in a routine or everyday use is classified as non-functional

requirement. Resource requirement such as writable SD Card, sufficient memory is a non

functional requirement. Extensibility is also a non functional requirement. Extensibility make

sure the developed application is adaptable for additional functionality without much effort

and customizable for forthcoming version upgrades. These requirements are verified for its

completion along with performance, recovery, security, endurance and usability.

60

6.5. Challenges Confronted

6.5 Challenges Confronted

This thesis was a new learning curve in android application development. On the way of discov-

ering several innovative concepts, several challenges were faced. Listing here few significant

difficulties overcame.

6.5.1 Emulator Setup

Emulator tool is provided by android for accessing or testing the application in the PC system

before deploying into the actual devices. It is the tool which actually simulates the program for

us. It is difficult for a developer to test in all type of hardware devices. Instead emulator can be

used to simulate hardware device of different specification. Using emulator it is possible to create

emulator for different size of screens. According to the requirement of the application, SD card,

camera and microphone has to be associated to the emulator.

6.5.2 Encryption Key Generation

Encryption key generation was a critical challenge in the phase of development. The key used in

encryption is 128 bits in length. In the early stage the key generated was random every time. Then

after removing random function, an other issue popped up. The key was inconsistent because

of the incorrect length of the password used to generate the key. So this problem was solved

by padding the password to 128 bits length. This worked perfectly for every attempt of the

encryption and also for all kind of passwords.

61

Chapter 7

Conclusion

This is the final chapter of this dissertation and details the summary of the entire disserta-

tion and exploits the area for scope of future enhancements.

7.1 Summary

Steganography is an effective technique and incredibly versatile for hiding information from plain

sight. Although methods for detecting hidden data do exist, they cannot be entirely relied upon,

as none of them are fully effective. So, among the loads of available steganographic technique, a

suitable one is chosen to implement in android. Attributes of the chosen technique is carefully

designed to fit the android environment for better performance. This chosen technique is nothing

but the Least Significant Bit (LSB) steganography. It works out well for but image and audio

steganography.

The protectMSG Android app was designed to hide text data in image and audio file. And

voice message of maximum 10 second duration can also be hidden in an image file. This is

achieved by implemented LSB steganographic technique in an innovative way. Cryptography

and steganography is mixed elegantly in the design of this app to make it secure and better. AES

encryption is used to encrypt the messages which is better than DES encryption. And when it

is comes to results, this app is able to successfully extract the hidden message from the cover

63

Chapter 7. Conclusion

file. It is made sure that only intended recipient extract it. The protectMSG app is developed in

such a way that it is user friendly. User is well directed at any point time in the app by providing

appropriate information, warnings and errors message.

7.2 Future Enhancements

7.2.1 Validity for the message

A new exciting feature is to bind a validity for a message in a cover image or audio file. Since

this is an application for mobile devices, it is easy to share a cover image or audio to other person.

In order to improve the level of safety, a life time for the message hidden can be set in the cover

file. This can be achieved by embedding the expiry date along with message in the cover file.

Logic should be implemented to retrieve only unexpired messages.

7.2.2 Other input file type

Currently the input files to the system is restricted based on the file types. In case of image files,

only PNG, JPG and JPEG can be used. In case of audio file, only WAV files are accepted as input.

There are still many other file formats are in used today. MP3 are the most commonly used audio

files. And even many other file formats are available for image files. So to make the protectMSG

app support all other file type is also included in the future enhancements.

7.2.3 Hide an image in a cover image

The protectMSG android app has facility to hide a text in image or audio. It can also hide audio

in an image. In future, steganography technique of hiding a image in a cover image can be

incorporated.

7.2.4 Hide an audio in a cover audio

Other possible combination of message and medium are audio hiding in a audio. This is also possi-

ble to implement in future if the audio message size is considerable lesser than the cover audio file.

64

7.2. Future Enhancements

In whole, scripted requirement is theoretically designed and implemented in practice as an android

app named protectMSG. This final product is stable and fulfills all the initial requirements. This

application is found to be robust and fit for all kind of audience.

65

Appendix A

Appendix

A.1 Screenshots

Figure A.1 – Encode Text To Image

67

Appendix A. Appendix

Figure A.2 – Decode Text From Image

Figure A.3 – Encode Text To Audio

68

A.1. Screenshots

Figure A.4 – Decode Text From Audio

Figure A.5 – Encode Quick Voice Message To Image

69

Appendix A. Appendix

Figure A.6 – Decode Quick Voice Message From Image

Figure A.7 – Help

70

A.1. Screenshots

Figure A.8 – Home with button selected

Figure A.9 – Encode Audio To Image with audio recorded

71

Appendix A. Appendix

Figure A.10 – Encode Text To Audio With Image Selected

Figure A.11 – Processing

72

A.1. Screenshots

Figure A.12 – Share Image

Figure A.13 – Menu

73

Appendix A. Appendix

Figure A.14 – Browse Audio

74

A.2. Use Case

A.2 Use Case

Table A.1 – Use Case no: 1

Use Case 1 Home

Goal in Context Home screen displays overview of the functionality of protectMSG
application. And user has the facility to navigate other pages.

Preconditions
Successful Post
Condition

Overview of the application is present along with a way to access
different functionalities of the application.

Failed Post Condi-
tions

If user selects medium and message as audio, then the applica-
tion will inform user that encode or decode audio in audio is not
possible. Because it is not included in the scope of the application.

Scenario Action
Step 1: User selects message type and medium in any order.
Step 2: On click of “Go” button for encode or decode will leads to
the appropriate screen based on the input.

Table A.2 – Use Case no: 2

Use Case 2 Encode text into Image
Goal in Context Hiding text data in an image file.
Preconditions
Successful Post
Condition Generates a PNG image file with the hidden text data in it.

Failed Post Condi-
tions Throws error for invalid text, password, and image.

Scenario Action

Step 1: User opens the application.
Step 2: Navigate to “Encode text into Image” screen
Step 3: Enter encode text.
Step 4: Enter password if necessary.
Step 5: Select picture
Step 6: Click “Encode Data” button.

75

Appendix A. Appendix

Table A.3 – Use Case no: 3

Use Case 3 Decode text From Image
Goal in Context Reveal text data from an encoded image file.
Preconditions Image should be already an encoded image by this application
Successful Post
Condition Reveals the hidden text from the encoded audio file.

Failed Post Condi-
tions

Scenario Action

Step 1: User opens the application
Step 2: Navigate to “Decode text From Image” screen
Step 3: Enter password if the encoded file is secured by the pass-
word
Step 4: Select image
Step 5: Click “Reveal Hidden Text” button

Table A.4 – Use Case no: 4

Use Case 4 Encode text into Audio
Goal in Context Hiding text data in an audio file.
Preconditions
Successful Post
Condition Generates a WAV audio file with the hidden text data in it.

Failed Post Condi-
tions

Scenario Action

Step 1: User opens the application.
Step 2: Navigate to “Encode text into Audio” screen.
Step 3: Enter encode text.
Step 4: Enter password if necessary.
Step 5: Select audio or record audio.
Step 6: Click “Encode Data” button.

76

A.2. Use Case

Table A.5 – Use Case no: 5

Use Case 5 Decode text From Audio
Goal in Context Reveal text data from an encoded audio file.
Preconditions Audio should be already an encoded audio by this application.
Successful Post
Condition Reveals the hidden text in the encoded audio.

Failed Post Condi-
tions

Scenario Action

Step 1: User opens the application.
Step 2: Navigate to “Decode text From Audio” screen.
Step 3: Enter password if the encoded file is secured by the pass-
word.
Step 4: Select audio.
Step 5: Click “Reveal Hidden Text” button.

Table A.6 – Use Case no: 6

Use Case 6 Encode Audio into Image
Goal in Context Hiding audio data in an image file.
Preconditions
Successful Post
Condition Generates a PNG image file with the hidden audio data in it.

Failed Post Condi-
tions

Scenario Action

Step 1: User opens the application.
Step 2: Navigate to “Encode Audio into Image” screen.
Step 3: Enter encode text.
Step 4: Enter password if necessary.
Step 5: Select audio or record audio.
Step 6: Select image.
Step 7: Click “Encode Data” button.

77

Appendix A. Appendix

Table A.7 – Use Case no: 7

Use Case 7 Decode Audio From Image
Goal in Context Reveal audio data from an encoded image file.
Preconditions Image should be already an encoded image by this application.
Successful Post
Condition

Generates the audio file containing the hidden voice data from the
image.

Failed Post Condi-
tions

Scenario Action

Step 1: User opens the application.
Step 2: Navigate to “Decode Audio From Image” screen.
Step 3: Enter password if the encoded file is secured by the pass-
word.
Step 4: Select image.
Step 5: Click “Reveal Voice Message” button.

Table A.8 – Use Case no: 8

Use Case 8 Share
Goal in Context To share the recently encoded file.
Preconditions An image or audio should be encoded and generated.
Successful Post
Condition

Pop up appears with all installed application’s list which has the
ability to share file. Example- Gmail, Facebook, Viber and etc.

Failed Post Condi-
tions

Throws error if the encode file is not available or generated previ-
ously

Scenario Action Step 1: After encoding, the encoded file can be shared by clicking
the share button at the top right corner.

78

A.3. Test Case

A.3 Test Case

Table A.9 – Test Case no: 001

Test Case no: 001
Test Case Encode Text To Image
Test Case Description On clicking of encode button, text message is encoded into the

cover image, only when the inputs are valid.
Test Input Valid text is the input message to be hidden. Valid image is also

an input from user to conceal the text message.
Expected Result New image is generated with the given text message hidden in it.

Table A.10 – Test Case no: 002

Test Case no: 002
Test Case Decode Text From Image
Test Case Description On clicking of decode button, text message is extracted from the

cover image, only on valid inputs.
Test Input Image encoded with text by protectMSG is an input to the system.

If that image was protected by password then it must be provided
as input.

Expected Result Hidden text is extracted from the cover image and shown to user.

Table A.11 – Test Case no: 003

Test Case no: 003
Test Case Encode Text To Audio
Test Case Description On clicking of encode button, text message is encoded into the

cover audio, only on valid inputs.
Test Input Valid input text is the message to be hidden. Valid audio is also an

input from user to conceal the text message.
Expected Result New image is generated with the given text message hidden in it.

Table A.12 – Test Case no: 004

Test Case no: 004
Test Case Decode Text From Audio
Test Case Description On clicking of decode button, text message is extracted from the

cover audio, only on valid inputs.
Test Input Audio encoded with text by protectMSG is an input to the system.

If that image was protected by password then it must be provided
as input.

Expected Result Hidden text is extracted from the cover audio and shown to user.

79

Appendix A. Appendix

Table A.13 – Test Case no: 005

Test Case no: 005
Test Case Encode Audio To Image
Test Case Description On clicking of encode button, audio message is encoded into the

cover image, only on valid inputs.
Test Input Valid input audio is the message to be hidden. Valid audio is also

an input from user to conceal the text message.
Expected Result New image is generated with the given text message hidden in it.

Table A.14 – Test Case no: 006

Test Case no: 006
Test Case Decode Audio From Image
Test Case Description On clicking of decode button, audio message is extracted from the

cover image, only on valid inputs.
Test Input Image encoded with audio by protectMSG is an input to the system.

If that image was protected by password then it must be provided
as input.

Expected Result Hidden audio is extracted from the cover image and shown to user
for playing.

80

A.4. Source Code

A.4 Source Code

A.4.1 EncodeTextToImage

package com.protectMSG.operation;

import java.io.ByteArrayOutputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.OutputStream;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.IntBuffer;

import java.text.SimpleDateFormat;

import java.util.Date;

import java.util.Locale;

import android.annotation.SuppressLint;

import android.app.Activity;

import android.app.Fragment;

import android.content.Intent;

import android.database.Cursor;

import android.graphics.Bitmap;

import android.graphics.Bitmap.CompressFormat;

import android.graphics.BitmapFactory;

import android.net.Uri;

import android.os.Bundle;

import android.os.Environment;

import android.os.Handler;

import android.provider.MediaStore;

import android.util.Log;

import android.view.LayoutInflater;

import android.view.View;

import android.view.View.OnFocusChangeListener;

import android.view.ViewGroup;

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

import android.widget.Button;

import android.widget.EditText;

import android.widget.ImageView;

import android.widget.TextView;

import com.protectMSG.stego.operation.StegoEncryption;

81

Appendix A. Appendix

import com.protectMSG.stego.operation.StegoOperation;

import com.protectMSG.util.Customfontloader;

import com.protectMSG.util.Utility;

public class EncodeTextToImage extends Fragment {

private static final String TAG = "FindPeopleFragment";

private TransparentProgressDialog progressBar;

private static int RESULT_LOAD_IMAGE = 1;

String picturePath = null;

String outputPicturePath = null;

View rootView = null;

// Activity request codes

private static final int CAMERA_CAPTURE_IMAGE_REQUEST_CODE = 100;

public static final int MEDIA_TYPE_IMAGE = 1;

public static final int MEDIA_TYPE_VIDEO = 2;

// directory name to store captured images and videos

private static final String IMAGE_DIRECTORY_NAME = "protectMSG";

Uri fileUri = null;

ImageView imageView = null;

View layout = null;

EditText encodeEditText = null;

EditText passwordEditView = null;

TextView errorEncodeTextView = null;

TextView errorPasswordTextView = null;

boolean error = false;

Handler handler = null;

public EncodeTextToImage() {

}

@SuppressLint("CutPasteId")

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

Log.i(TAG, "Enter : onCreateView");

rootView = inflater.inflate(R.layout.encode_text_to_image, container,false);

TextView tv1 = (TextView) rootView.findViewById(R.id.headerTextView);

TextView tv2 = (TextView) rootView.findViewById(R.id.enterEncodeTextView);

TextView tv3= (TextView) rootView.findViewById(R.id.enterPasswordTextView);

TextView tv4= (TextView) rootView.findViewById(R.id.browsePictureTextView);

TextView tv5= (TextView) rootView.findViewById(R.id.capturePictureTextView);

encodeEditText= (EditText) rootView.findViewById(R.id.encodeEditText);

passwordEditView= (EditText) rootView.findViewById(R.id.passwordEditView);

82

A.4. Source Code

errorEncodeTextView = (TextView)

rootView.findViewById(R.id.errorEncodeTextView);

errorPasswordTextView = (TextView)

rootView.findViewById(R.id.errorPasswordTextView);

Button encodeButton= (Button) rootView.findViewById(R.id.encodeButton);

tv1.setTypeface(Customfontloader.getTypeface(getActivity(),1));

tv2.setTypeface(Customfontloader.getTypeface(getActivity(),1));

tv3.setTypeface(Customfontloader.getTypeface(getActivity(),1));

tv4.setTypeface(Customfontloader.getTypeface(getActivity(),1));

tv5.setTypeface(Customfontloader.getTypeface(getActivity(),1));

encodeEditText.setTypeface(Customfontloader.getTypeface(getActivity(),1));

passwordEditView.setTypeface(Customfontloader.getTypeface(getActivity(),1));

encodeButton.setTypeface(Customfontloader.getTypeface(getActivity(),1));

errorEncodeTextView.setTypeface(Customfontloader.getTypeface(getActivity(),1));

errorPasswordTextView.setTypeface(Customfontloader.getTypeface(getActivity(),1));

//validate encode text on out of focus

encodeEditText.setOnFocusChangeListener(new OnFocusChangeListener() {

public void onFocusChange(View v, boolean hasFocus) {

Log.i(TAG, "setOnFocusChangeListener : encodeText");

if(!hasFocus){

error =

Validate.validateEncodeText(encodeEditText.getText().toString());

if(error)

errorEncodeTextView.setVisibility(View.VISIBLE);

else

errorEncodeTextView.setVisibility(View.INVISIBLE);

}

}

});

final Animation animRotate = AnimationUtils.loadAnimation(getActivity(),

R.anim.anim_rotate);

final Button shareButton = (Button) rootView.findViewById(R.id.shareButton);

shareButton.setOnClickListener(new View.OnClickListener() {

@SuppressLint("NewApi")

public void onClick(View arg0) {

Log.i(TAG, "onClick : shareButton");

arg0.startAnimation(animRotate);

83

Appendix A. Appendix

if(outputPicturePath!=null){

Intent share = new Intent(Intent.ACTION_SEND);

share.setType("image/*");

File imageFileToShare = new File(outputPicturePath);

Uri uri = Uri.fromFile(imageFileToShare);

share.putExtra(Intent.EXTRA_STREAM, uri);

startActivity(Intent.createChooser(share, "Share Image!"));

}else{

Utility.showCustomAlert("No encoded image available to

share",getActivity(),"Error");

}

}

});

// Browse Button - onClick - opens the image library

Button buttonLoadImage = (Button) rootView.findViewById(R.id.browseButton);

buttonLoadImage.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View arg0) {

Log.i(TAG, "onClick : browseButton");

Intent i = new

Intent(Intent.ACTION_PICK,android.provider.MediaStore.Images.Media.EXTERNAL_CONTENT_URI);

startActivityForResult(i, RESULT_LOAD_IMAGE);

}

});

// Capture Button - onClick - opens the Camera app

Button buttonCaptureImage = (Button) rootView.findViewById(R.id.captureButton);

buttonCaptureImage.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View arg0) {

Log.i(TAG, "onClick : captureButton");

captureImage();

}

});

//Encode Button - onClick - encodes the image file

final Button button = (Button) rootView.findViewById(R.id.encodeButton);

84

A.4. Source Code

button.setOnClickListener(new View.OnClickListener() {

@SuppressLint("NewApi")

public void onClick(View v) {

Log.i(TAG, "onClick : encodeButton");

//error checking for valid passport

boolean passwordError =

Validate.validatePassword(passwordEditView.getText().toString());

if(passwordError)

errorPasswordTextView.setVisibility(View.VISIBLE);

else

errorPasswordTextView.setVisibility(View.INVISIBLE);

//error checking for valid encode text

boolean encodeTextError =

Validate.validateEncodeText(encodeEditText.getText().toString());

if(encodeTextError)

errorEncodeTextView.setVisibility(View.VISIBLE);

else

errorEncodeTextView.setVisibility(View.INVISIBLE);

boolean error = false;

if(picturePath==null){

Utility.showCustomAlert("Select Image To

Encode",getActivity(),"warning");

error=true;

}

if(!passwordError&&!encodeTextError&&!error){

progressBar = new TransparentProgressDialog(v.getContext(),

R.drawable.spinner);

progressBar.setCancelable(true);

progressBar.show();

handler = new Handler();

Runnable runnable = new Runnable() {

public void run() {

encodeData();

handler.post(new Runnable(){

public void run() {

85

Appendix A. Appendix

Utility.showCustomAlert("Encode Finished", getActivity(),

"Info");

// close the progress bar dialog

progressBar.dismiss();

}

});

}

};

new Thread(runnable).start();

}

}

});

return rootView;

}

@Override

public void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

Log.i(TAG, "Enter : onActivityResult()");

if (requestCode == RESULT_LOAD_IMAGE && resultCode == Activity.RESULT_OK &&

null != data) {

Uri selectedImage = data.getData();

String[] filePathColumn = { MediaStore.Images.Media.DATA };

Cursor cursor = getActivity().getContentResolver().query(selectedImage,

filePathColumn, null, null, null);

cursor.moveToFirst();

int columnIndex = cursor.getColumnIndex(filePathColumn[0]);

picturePath = cursor.getString(columnIndex);

cursor.close();

if(Validate.validateFileExtension(picturePath,"Image"))

{

Utility.showCustomAlert("Select Valid File",getActivity(),"error");

}else if(Validate.validateFileSize(picturePath,"Image",getActivity())){

Utility.showCustomAlert("File size is too large",getActivity(),"error");

}else{

imageView = (ImageView) rootView.findViewById(R.id.imageView1);

86

A.4. Source Code

imageView.setImageBitmap(BitmapFactory.decodeFile(picturePath));

}

}

// if the result is capturing Image

if (requestCode == CAMERA_CAPTURE_IMAGE_REQUEST_CODE) {

if (resultCode == Activity.RESULT_OK) {

if(data != null) {

Bitmap thumbnail = (Bitmap) data.getExtras().get("data");

imageView.setImageBitmap(thumbnail);

}

} else if (resultCode == Activity.RESULT_CANCELED) {

// user cancelled Image capture

Utility.showCustomAlert("Image Capture Cancelled",getActivity(),"Info");

} else {

// failed to capture image

Utility.showCustomAlert("Sorry, Failed to capture

image",getActivity(),"Error");

}

}

}

//Method to encode data in image file

private void encodeData() {

Log.i(TAG, "Enter : encodeData()");

EditText edit = (EditText) rootView.findViewById(R.id.encodeEditText);

EditText passwordEdit = (EditText) rootView.findViewById(R.id.passwordEditView);

// encode

// Read file to bytes

Bitmap bmp = BitmapFactory.decodeFile(picturePath);

ByteArrayOutputStream bos = new ByteArrayOutputStream();

bmp.compress(CompressFormat.PNG, 0, bos);

String encode_text = edit.getText().toString();

String password = null;

boolean isPasswordLocked = false;

try {

//Encrypt with password if it not null

if(passwordEdit.getText().length()!=0)

{

isPasswordLocked=true;

87

Appendix A. Appendix

password = passwordEdit.getText().toString();

encode_text=StegoEncryption.encrypt1(encode_text,password);

}

StegoOperation operation = new StegoOperation();

// Make the bitmap mutable

bmp = StegoOperation.convertToMutable(bmp);

// Get integer pixel array from the input bitmap

int[] pixels1 = new int[bmp.getHeight() * bmp.getWidth()];

bmp.getPixels(pixels1, 0, bmp.getWidth(), 0, 0,bmp.getWidth(),

bmp.getHeight());

// Convert int array to byte array

ByteBuffer byteBuffer = ByteBuffer.allocate(pixels1.length * 4);

IntBuffer intBuffer = byteBuffer.asIntBuffer();

intBuffer.put(pixels1);

byte[] byteArray1 = byteBuffer.array();

byteArray1 = operation.encode(byteArray1, encode_text,isPasswordLocked);

Log.i(TAG,"Convert byte array to int array");

Log.i(TAG,"byteArray1 length : "+byteArray1.length);

IntBuffer intBuf =

ByteBuffer.wrap(byteArray1).order(ByteOrder.BIG_ENDIAN).asIntBuffer();

Log.i(TAG,"Step 1 done");

Log.i(TAG,"intBuf.remaining()"+intBuf.remaining());

Log.i(TAG,"Step 1.5 done");

int[] array = new int[intBuf.remaining()];

Log.i(TAG,"Step 2 done");

intBuf.get(array);

Log.i(TAG,"Step 3 done");

pixels1 = array;

Log.i(TAG,"Set encoded array to bitmap");

// Set bitmap with newly encoded array

bmp.setPixels(pixels1, 0, bmp.getWidth(), 0, 0,bmp.getWidth(),

bmp.getHeight());

Log.i(TAG,"Create output file from bitmap");

outputPicturePath=Utility.generateImageFileName();

OutputStream fOut = new FileOutputStream(outputPicturePath);

bmp.compress(Bitmap.CompressFormat.PNG, 0, fOut);

fOut.flush();

88

A.4. Source Code

fOut.close();

} catch (Exception e) {

e.printStackTrace();

Utility.showCustomAlert("Error Occurred", getActivity(), "Error");

}

}

/*

* Capturing Camera Image will lauch camera app requrest image capture

*/

private void captureImage() {

Log.i(TAG, "Enter : captureImage()");

Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

Uri fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);

intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri);

// start the image capture Intent

startActivityForResult(intent, CAMERA_CAPTURE_IMAGE_REQUEST_CODE);

}

/**

* ------------ Helper Methods ----------------------

* */

/**

* Creating file uri to store image/video

*/

public Uri getOutputMediaFileUri(int type) {

Log.i(TAG, "Enter : getOutputMediaFileUri()");

return Uri.fromFile(getOutputMediaFile(type));

}

/**

* returning image / video

*/

private static File getOutputMediaFile(int type) {

Log.i(TAG, "Enter : getOutputMediaFile()");

// External sdcard location

89

Appendix A. Appendix

File mediaStorageDir = new

File(Environment.getExternalStoragePublicDirectory(Environment.DIRECTORY_PICTURES),

IMAGE_DIRECTORY_NAME);

// Create the storage directory if it does not exist

if (!mediaStorageDir.exists()) {

if (!mediaStorageDir.mkdirs()) {

Log.d(IMAGE_DIRECTORY_NAME, "Oops! Failed create "

+ IMAGE_DIRECTORY_NAME + " directory");

return null;

}

}

// Create a media file name

String timeStamp = new

SimpleDateFormat("yyyyMMddHHmmss",Locale.getDefault()).format(new Date());

File mediaFile;

if (type == MEDIA_TYPE_IMAGE) {

mediaFile = new File(mediaStorageDir.getPath() + File.separator + "IMG_" +

timeStamp + ".jpg");

} else if (type == MEDIA_TYPE_VIDEO) {

mediaFile = new File(mediaStorageDir.getPath() + File.separator+ "VID_" +

timeStamp + ".mp4");

} else {

return null;

}

return mediaFile;

}

/**

* Display image from a path to ImageView

*/

}

A.4.2 MainActivity

package com.protectMSG.operation;

90

A.4. Source Code

import java.util.ArrayList;

import android.app.Activity;

import android.app.Fragment;

import android.app.FragmentManager;

import android.content.res.Configuration;

import android.content.res.TypedArray;

import android.os.Bundle;

import android.support.v4.app.ActionBarDrawerToggle;

import android.support.v4.widget.DrawerLayout;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.AdapterView;

import android.widget.ListView;

import com.protectMSG.drawer.NavDrawerItem;

import com.protectMSG.drawer.NavDrawerListAdapter;

public class MainActivity extends Activity {

private DrawerLayout mDrawerLayout;

private ListView mDrawerList;

private ActionBarDrawerToggle mDrawerToggle;

// nav drawer title

private CharSequence mDrawerTitle;

// used to store app title

private CharSequence mTitle;

// slide menu items

private String[] navMenuTitles;

private TypedArray navMenuIcons;

private ArrayList<NavDrawerItem> navDrawerItems;

private NavDrawerListAdapter adapter;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mTitle = mDrawerTitle = getTitle();

91

Appendix A. Appendix

// load slide menu items

navMenuTitles = getResources().getStringArray(R.array.nav_drawer_items);

// nav drawer icons from resources

navMenuIcons = getResources()

.obtainTypedArray(R.array.nav_drawer_icons);

mDrawerLayout = (DrawerLayout) findViewById(R.id.drawer_layout);

mDrawerList = (ListView) findViewById(R.id.list_slidermenu);

navDrawerItems = new ArrayList<NavDrawerItem>();

// adding nav drawer items to array

// Home

navDrawerItems.add(new NavDrawerItem(navMenuTitles[0],

navMenuIcons.getResourceId(0, -1)));

// Find People

navDrawerItems.add(new NavDrawerItem(navMenuTitles[1],

navMenuIcons.getResourceId(1, -1)));

// Photos

navDrawerItems.add(new NavDrawerItem(navMenuTitles[2],

navMenuIcons.getResourceId(2, -1)));

// Communities, Will add a counter here

navDrawerItems.add(new NavDrawerItem(navMenuTitles[3],

navMenuIcons.getResourceId(3, -1)));

// Pages

navDrawerItems.add(new NavDrawerItem(navMenuTitles[4],

navMenuIcons.getResourceId(4, -1)));

// Encode Audio on Image

navDrawerItems.add(new NavDrawerItem(navMenuTitles[5],

navMenuIcons.getResourceId(5, -1)));

// Decode Audio from Image

navDrawerItems.add(new NavDrawerItem(navMenuTitles[6],

navMenuIcons.getResourceId(6, -1)));

// Help

navDrawerItems.add(new NavDrawerItem(navMenuTitles[7],

navMenuIcons.getResourceId(7, -1)));

// Recycle the typed array

navMenuIcons.recycle();

mDrawerList.setOnItemClickListener(new SlideMenuClickListener());

// setting the nav drawer list adapter

92

A.4. Source Code

adapter = new NavDrawerListAdapter(getApplicationContext(),

navDrawerItems);

mDrawerList.setAdapter(adapter);

// enabling action bar app icon and behaving it as toggle button

getActionBar().setDisplayHomeAsUpEnabled(true);

getActionBar().setHomeButtonEnabled(true);

mDrawerToggle = new ActionBarDrawerToggle(this, mDrawerLayout,

R.drawable.ic_drawer, //nav menu toggle icon

R.string.app_name, // nav drawer open - description for accessibility

R.string.app_name // nav drawer close - description for accessibility

) {

public void onDrawerClosed(View view) {

getActionBar().setTitle(mTitle);

// calling onPrepareOptionsMenu() to show action bar icons

invalidateOptionsMenu();

}

public void onDrawerOpened(View drawerView) {

getActionBar().setTitle(mDrawerTitle);

// calling onPrepareOptionsMenu() to hide action bar icons

invalidateOptionsMenu();

}

};

mDrawerLayout.setDrawerListener(mDrawerToggle);

if (savedInstanceState == null) {

// on first time display view for first nav item

displayView(0);

}

}

/**

* Slide menu item click listener

* */

private class SlideMenuClickListener implements

ListView.OnItemClickListener {

@Override

public void onItemClick(AdapterView<?> parent, View view, int position,

long id) {

// display view for selected nav drawer item

displayView(position);

}

93

Appendix A. Appendix

}

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.main, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

// toggle nav drawer on selecting action bar app icon/title

if (mDrawerToggle.onOptionsItemSelected(item)) {

return true;

}

// Handle action bar actions click

switch (item.getItemId()) {

case R.id.action_settings:

return true;

default:

return super.onOptionsItemSelected(item);

}

}

/* *

* Called when invalidateOptionsMenu() is triggered

*/

@Override

public boolean onPrepareOptionsMenu(Menu menu) {

// if nav drawer is opened, hide the action items

boolean drawerOpen = mDrawerLayout.isDrawerOpen(mDrawerList);

menu.findItem(R.id.action_settings).setVisible(!drawerOpen);

return super.onPrepareOptionsMenu(menu);

}

/**

* Diplaying fragment view for selected nav drawer list item

* */

private void displayView(int position) {

// update the main content by replacing fragments

Fragment fragment = null;

switch (position) {

case 0:

fragment = new HomeFragment();

break;

94

A.4. Source Code

case 1:

fragment = new EncodeTextToImage();

break;

case 2:

fragment = new DecodeTextFromImage();

break;

case 3:

fragment = new EncodeTextToAudio();

break;

case 4:

fragment = new DecodeTextFromAudio();

break;

case 5:

fragment = new EncodeAudioToImage();

break;

case 6:

fragment = new DecodeAudioFromImage();

break;

case 7:

fragment = new Help();

break;

default:

break;

}

if (fragment != null) {

FragmentManager fragmentManager = getFragmentManager();

fragmentManager.beginTransaction()

.replace(R.id.frame_container, fragment).commit();

// update selected item and title, then close the drawer

mDrawerList.setItemChecked(position, true);

mDrawerList.setSelection(position);

setTitle(navMenuTitles[position]);

mDrawerLayout.closeDrawer(mDrawerList);

} else {

// error in creating fragment

Log.e("MainActivity", "Error in creating fragment");

}

}

@Override

public void setTitle(CharSequence title) {

mTitle = title;

95

Appendix A. Appendix

getActionBar().setTitle(mTitle);

}

/**

* When using the ActionBarDrawerToggle, you must call it during

* onPostCreate() and onConfigurationChanged()...

*/

@Override

protected void onPostCreate(Bundle savedInstanceState) {

super.onPostCreate(savedInstanceState);

// Sync the toggle state after onRestoreInstanceState has occurred.

mDrawerToggle.syncState();

}

@Override

public void onConfigurationChanged(Configuration newConfig) {

super.onConfigurationChanged(newConfig);

// Pass any configuration change to the drawer toggls

mDrawerToggle.onConfigurationChanged(newConfig);

}

}

A.4.3 StegoEncryption

package com.protectMSG.stego.operation;

import java.io.UnsupportedEncodingException;

import java.security.InvalidKeyException;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import javax.crypto.BadPaddingException;

import javax.crypto.Cipher;

import javax.crypto.IllegalBlockSizeException;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.spec.SecretKeySpec;

import com.protectMSG.exception.StegoException;

import android.annotation.SuppressLint;

96

A.4. Source Code

import android.util.Base64;

public class StegoEncryption {

private static final String TAG = "StegoEncryption";

@SuppressLint("TrulyRandom")

public static String encrypt1(String message, String password) throws Exception

{

String salt = "StegoSalt";

message = salt+message;

SecretKeySpec key = new SecretKeySpec(padPassword(password), "AES");

Cipher c = Cipher.getInstance("AES");

c.init(Cipher.ENCRYPT_MODE, key);

byte[] encVal = c.doFinal(message.getBytes());

String encrypted=Base64.encodeToString(encVal, Base64.DEFAULT);

return encrypted;

}

public static String decrypt1(String message, String password) throws

StegoException

{

String salt;

Cipher c;

String decryptedValue = null;

try {

c = Cipher.getInstance("AES");

SecretKeySpec key = new SecretKeySpec(padPassword(password), "AES");

c.init(Cipher.DECRYPT_MODE, key);

byte[] decordedValue = Base64.decode(message.getBytes(), Base64.DEFAULT);

byte[] decValue;

decValue = c.doFinal(decordedValue);

decryptedValue = new String(decValue);

salt = decryptedValue.substring(0, 9);

if(salt.equals("StegoSalt"))

{

decryptedValue = decryptedValue.substring(9);

}else{

// Throw error

throw new StegoException("Wrong Passoword");

}

} catch (Exception e) {

97

Appendix A. Appendix

e.printStackTrace();

throw new StegoException("Wrong Passoword");

}

return decryptedValue;

}

public static byte[] encrypt(byte[] message, String password) throws Exception

{

String salt = "StegoSalt";

SecretKeySpec key = new SecretKeySpec(padPassword(password), "AES");

Cipher c = Cipher.getInstance("AES");

c.init(Cipher.ENCRYPT_MODE, key);

//

byte[] encVal1 = c.doFinal(salt.getBytes());

String encrypted=Base64.encodeToString(encVal1, Base64.DEFAULT);

byte[] encVal2 = encrypted.getBytes();

System.out.println("encVal2.length " +encVal2.length);

System.out.println("message.length " +message.length);

byte[] result = new byte[encVal2.length + message.length];

// copy a to result

System.arraycopy(encVal2, 0, result, 0, encVal2.length);

// copy b to result

System.arraycopy(message, 0, result, encVal2.length, message.length);

//

return result;

}

public static byte[] decrypt(byte[] message, String password) throws Exception

{

Cipher c = Cipher.getInstance("AES");

SecretKeySpec key = new SecretKeySpec(padPassword(password), "AES");

c.init(Cipher.DECRYPT_MODE, key);

//

byte[] salt = Arrays.copyOfRange(message,0,25);

byte[] saltByte = Base64.decode(salt, Base64.DEFAULT);

byte[] decSalt = c.doFinal(saltByte);

String saltString = new String(decSalt);

System.out.println("saltString "+saltString);

if(!saltString.equals("StegoSalt")){

throw new StegoException("Wrong Passoword");

}

98

A.4. Source Code

byte[] messageByte = Arrays.copyOfRange(message,25,message.length);

//

return messageByte;

}

private static byte[] padPassword(String password){

int keyLength = 128;

byte[] keyBytes = new byte[keyLength / 8];

// explicitly fill with zeros

Arrays.fill(keyBytes, (byte) 0x0);

// if password is shorter then key length, it will be zero-padded

// to key length

byte[] passwordBytes;

try {

passwordBytes = password.getBytes("UTF-8");

int length = passwordBytes.length < keyBytes.length ? passwordBytes.length :

keyBytes.length;

System.arraycopy(passwordBytes, 0, keyBytes, 0, length);

} catch (UnsupportedEncodingException e) {

e.printStackTrace();

}

return keyBytes;

}

}

A.4.4 StegoOperation

package com.protectMSG.stego.operation;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.RandomAccessFile;

import java.nio.MappedByteBuffer;

import java.nio.channels.FileChannel;

import android.graphics.Bitmap;

import android.os.Environment;

import android.util.Log;

99

Appendix A. Appendix

public class StegoOperation {

private static final String TAG = "StegoOperation";

public byte[] encode(byte bytes[], String encode_text, boolean isPasswordLocked)

{

Log.i(TAG,"encode()");

byte img[] = bytes;

byte msg[] = encode_text.getBytes();

byte len[] = bitConversion(msg.length);

System.out.println("len.length"+len.length);

byte header[];

byte[] encoded_image = null;

if(isPasswordLocked){

byte byte1 =(byte) 0xFF;

header = new byte[] {byte1,byte1,byte1,byte1};

}

else{

byte byte1 =(byte) 0x00;

header = new byte[] {byte1,byte1,byte1,byte1};

}

try

{

encoded_image=encodeText(img, len, 0);

encoded_image=encodeText(img, header, 32);

encoded_image=encodeText(img, msg, 64); //4 bytes of space for length:

4bytes*8bit = 32 bits

}

catch(Exception e)

{

e.printStackTrace();

}

return encoded_image;

}

public byte[] encodeAudio(byte bytes[], String encode_text, boolean

isPasswordLocked)

{

Log.i(TAG,"encode()");

byte img[] = bytes;

byte msg[] = encode_text.getBytes();

byte len[] = bitConversion(msg.length);

System.out.println("len.length"+len.length);

byte header[];

100

A.4. Source Code

byte[] encoded_image = null;

if(isPasswordLocked){

byte byte1 =(byte) 0xFF;

header = new byte[] {byte1,byte1,byte1,byte1};

}

else{

byte byte1 =(byte) 0x00;

header = new byte[] {byte1,byte1,byte1,byte1};

}

try

{

encoded_image=encodeText(img, len, 44);

encoded_image=encodeText(img, header, 76);

encoded_image=encodeText(img, msg, 108); //4 bytes of space for length:

4bytes*8bit = 32 bits

}

catch(Exception e)

{

e.printStackTrace();

}

return encoded_image;

}

//added by me

public byte[] encode(byte bytes[], byte encodebyte[], boolean isPasswordLocked)

{

Log.i(TAG,"encode()");

byte img[] = bytes;

byte msg[] = encodebyte;

byte len[] = bitConversion(msg.length);

byte[] encoded_image = null;

byte header[];

if(isPasswordLocked){

byte byte1 =(byte) 0xFF;

header = new byte[] {byte1,byte1,byte1,byte1};

}

else{

byte byte1 =(byte) 0x00;

header = new byte[] {byte1,byte1,byte1,byte1};

}

try

{

encoded_image=encodeText(img, len, 0);

encoded_image=encodeText(img, header, 32);

101

Appendix A. Appendix

encoded_image=encodeText(img, msg, 64); //4 bytes of space for length:

4bytes*8bit = 32 bits

}

catch(Exception e)

{

e.printStackTrace();

}

return encoded_image;

}

public String decode(byte bytes[])

{

Log.i(TAG,"decode()");

byte[] decode;

try

{

decode = decodeText(bytes);

return(new String(decode));

}

catch(Exception e)

{

e.printStackTrace();

return "";

}

}

public String decodeAudio(byte bytes[])

{

Log.i(TAG,"decode()");

byte[] decode;

try

{

decode = decodeTextFromAudio(bytes);

return(new String(decode));

}

catch(Exception e)

{

e.printStackTrace();

return "";

}

}

public byte[] decodeBytes(byte bytes[])

{

102

A.4. Source Code

Log.i(TAG,"decode()");

byte[] decode = null;

try

{

decode = decodeText(bytes);

}

catch(Exception e)

{

e.printStackTrace();

}

return decode;

}

private byte[] bitConversion(int i)

{

Log.i(TAG,"bit_conversion()");

byte byte3 = (byte)((i & 0xFF000000) >>> 24); //0

byte byte2 = (byte)((i & 0x00FF0000) >>> 16); //0

byte byte1 = (byte)((i & 0x0000FF00) >>> 8); //0

byte byte0 = (byte)((i & 0x000000FF));

return(new byte[]{byte3,byte2,byte1,byte0});

}

private byte[] encodeText(byte[] image, byte[] addition, int offset)

{

Log.i(TAG,"encode_text()");

if(addition.length + offset > image.length)

{

Log.e(TAG,"File not long enough!");

throw new IllegalArgumentException("File not long enough!");

}

//loop through each addition byte

for(int i=0; i<addition.length; ++i)

{

//loop through the 8 bits of each byte

int add = addition[i];

for(int bit=7; bit>=0; --bit, ++offset)

{

int b = (add >>> bit) & 1;

image[offset] = (byte)((image[offset] & 0xFE) | b);

}

}

System.out.println("Final image byte lenght"+image.length);

return image;

103

Appendix A. Appendix

}

private byte[] decodeText(byte[] image)

{

Log.i(TAG,"decode_text()");

int length = 0;

int offset = 64;

for(int i=0; i<32; ++i)

{

length = (length << 1) | (image[i] & 1);

}

byte[] result = new byte[length];

//loop through each byte of text

for(int b=0; b<result.length; ++b)

{

//loop through each bit within a byte of text

for(int i=0; i<8; ++i, ++offset)

{

result[b] = (byte)((result[b] << 1) | (image[offset] & 1));

}

}

return result;

}

private byte[] decodeTextFromAudio(byte[] image)

{

Log.i(TAG,"decode_text()");

int length = 0;

int offset = 108;

//loop through 32 bytes of data to determine text length

for(int i=44; i<76; ++i)

{

length = (length << 1) | (image[i] & 1);

}

byte[] result = new byte[length];

//loop through each byte of text

for(int b=0; b<result.length; ++b)

{

//loop through each bit within a byte of text

for(int i=0; i<8; ++i, ++offset)

{

result[b] = (byte)((result[b] << 1) | (image[offset] & 1));

}

}

104

A.4. Source Code

return result;

}

public int decodeAudioLen(byte[] image)

{

Log.i(TAG,"decode_text()");

int length = 0;

for(int i=0; i<32; ++i)

{

length = (length << 1) | (image[i] & 1);

}

return length;

}

public static Bitmap convertToMutable(Bitmap imgIn) {

Log.i(TAG,"convertToMutable()");

try {

File file = new File(Environment.getExternalStorageDirectory() +

File.separator + "Temp.jpg");

RandomAccessFile randomAccessFile = new RandomAccessFile(file, "rw");

// get the width and height of the source bitmap.

int width = imgIn.getWidth();

int height = imgIn.getHeight();

Bitmap.Config type = imgIn.getConfig();

FileChannel channel = randomAccessFile.getChannel();

MappedByteBuffer map = channel.map(FileChannel.MapMode.READ_WRITE, 0,

imgIn.getRowBytes()*height);

imgIn.copyPixelsToBuffer(map);

imgIn.recycle();

System.gc();// try to force the bytes from the imgIn to be released

imgIn = Bitmap.createBitmap(width, height, type);

map.position(0);

//load it back from temporary

imgIn.copyPixelsFromBuffer(map);

//close the temporary file and channel , then delete that also

channel.close();

randomAccessFile.close();

// delete the temp file

file.delete();

} catch (FileNotFoundException e) {

105

Appendix A. Appendix

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

return imgIn;

}

}

A.4.5 AudioRecording

package com.protectMSG.util;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import android.os.Environment;

import android.util.Log;

public class AudioRecording {

private static final String TAG = "AudioRecording";

public static String getFilename(){

String filepath = Environment.getExternalStorageDirectory().getPath();

File file = new File(filepath,Constant.AUDIO_RECORDER_FOLDER);

if(!file.exists()){

file.mkdirs();

}

return (file.getAbsolutePath() + "/" + System.currentTimeMillis() +

Constant.AUDIO_RECORDER_FILE_EXT_WAV);

}

public static String getTempFilename(){

String filepath = Environment.getExternalStorageDirectory().getPath();

File file = new File(filepath,Constant.AUDIO_RECORDER_FOLDER);

if(!file.exists()){

file.mkdirs();

}

106

A.4. Source Code

File tempFile = new File(filepath,Constant.AUDIO_RECORDER_TEMP_FILE);

if(tempFile.exists())

tempFile.delete();

return (file.getAbsolutePath() + "/" + Constant.AUDIO_RECORDER_TEMP_FILE);

}

public static void deleteTempFile() {

Log.i(TAG, "deleteTempFile()");

System.out.println("deleteTempFile >> ");

File file = new File(getTempFilename());

file.delete();

}

public static void copyWaveFile(String inFilename, String outFilename) {

Log.i(TAG, "copyWaveFile()");

System.out.println("copyWaveFile >> ");

FileInputStream in = null;

FileOutputStream out = null;

long totalAudioLen = 0;

long totalDataLen = totalAudioLen + 36;

long longSampleRate = Constant.RECORDER_SAMPLERATE;

int channels = 2;

long byteRate = Constant.RECORDER_BPP * Constant.RECORDER_SAMPLERATE * channels

/ 8;

byte[] data = new byte[Constant.bufferSize];

try {

in = new FileInputStream(inFilename);

out = new FileOutputStream(outFilename);

totalAudioLen = in.getChannel().size();

totalDataLen = totalAudioLen + 36;

WriteWaveFileHeader(out, totalAudioLen, totalDataLen,longSampleRate,

channels, byteRate);

while (in.read(data) != -1) {

out.write(data);

}

in.close();

out.close();

} catch (FileNotFoundException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

107

Appendix A. Appendix

}

}

public static void WriteWaveFileHeader(FileOutputStream out, long totalAudioLen,

long totalDataLen, long longSampleRate, int channels, long byteRate)

throws IOException {

Log.i(TAG, "WriteWaveFileHeader()");

byte[] header = new byte[44];

header[0] = ’R’; // RIFF/WAVE header

header[1] = ’I’;

header[2] = ’F’;

header[3] = ’F’;

header[4] = (byte) (totalDataLen & 0xff);// Problem here - diff

header[5] = (byte) ((totalDataLen >> 8) & 0xff);

header[6] = (byte) ((totalDataLen >> 16) & 0xff);

header[7] = (byte) ((totalDataLen >> 24) & 0xff);

header[8] = ’W’;

header[9] = ’A’;

header[10] = ’V’;

header[11] = ’E’;

header[12] = ’f’; // ’fmt ’ chunk

header[13] = ’m’;

header[14] = ’t’;

header[15] = ’ ’;

header[16] = 16; // 4 bytes: size of ’fmt ’ chunk

header[17] = 0;

header[18] = 0;

header[19] = 0;

header[20] = 1; // format = 1

header[21] = 0;

header[22] = (byte) channels;

header[23] = 0;

header[24] = (byte) (longSampleRate & 0xff);

header[25] = (byte) ((longSampleRate >> 8) & 0xff);

header[26] = (byte) ((longSampleRate >> 16) & 0xff);

header[27] = (byte) ((longSampleRate >> 24) & 0xff);

header[28] = (byte) (byteRate & 0xff);

header[29] = (byte) ((byteRate >> 8) & 0xff);

header[30] = (byte) ((byteRate >> 16) & 0xff);

header[31] = (byte) ((byteRate >> 24) & 0xff);

header[32] = (byte) (2 * 16 / 8); // block align

header[33] = 0;

header[34] = Constant.RECORDER_BPP; // bits per sample

header[35] = 0;

108

A.4. Source Code

header[36] = ’d’;

header[37] = ’a’;

header[38] = ’t’;

header[39] = ’a’;

header[40] = (byte) (totalAudioLen & 0xff);// Problem here- diff

header[41] = (byte) ((totalAudioLen >> 8) & 0xff);

header[42] = (byte) ((totalAudioLen >> 16) & 0xff);

header[43] = (byte) ((totalAudioLen >> 24) & 0xff);

out.write(header, 0, 44);

}

}

A.4.6 Utility

package com.protectMSG.util;

import java.io.File;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.net.Uri;

import android.os.Environment;

import android.util.Log;

import android.view.Gravity;

import android.view.LayoutInflater;

import android.view.View;

import android.widget.TextView;

import android.widget.Toast;

import com.protectMSG.operation.R;

public class Utility {

private static final String TAG = "Utility";

static String AUDIO_RECORDER_FOLDER="";

public static String getImageSDLocation() {

Log.i(TAG, "getImageSDLocation");

String filepath = Environment.getExternalStorageDirectory().getPath();

109

Appendix A. Appendix

System.out.println("filepath >> "+filepath);

File file = new File(filepath, Constant.MAIN_FOLDER);

if (!file.exists()) {

file.mkdirs();

}

File file1 = new File(filepath+"/"+Constant.MAIN_FOLDER,Constant.IMAGE_FOLDER);

if (!file1.exists()) {

file1.mkdirs();

}

return Environment.getExternalStorageDirectory()+"/protectMSG/Image";

}

public static String getAudioSDLocation() {

Log.i(TAG, "getAudioSDLocation");

String filepath = Environment.getExternalStorageDirectory().getPath();

File file = new File(filepath, Constant.MAIN_FOLDER);

if (!file.exists()) {

file.mkdirs();

}

File file1 = new File(filepath+"/"+Constant.MAIN_FOLDER,Constant.AUDIO_FOLDER);

if (!file1.exists()) {

file1.mkdirs();

}

return Environment.getExternalStorageDirectory()+"/protectMSG/Audio";

}

public static String generateImageFileName() {

Log.i(TAG, "generateImageFileName()");

return (getImageSDLocation() + "/" + "Image_" + System.currentTimeMillis() +

Constant.PNG_FILE_EXT_WAV);

}

public static String generateAudioFileName() {

Log.i(TAG, "generateAudioFileName()");

return (getAudioSDLocation() + "/" + "Audio_" + System.currentTimeMillis() +

Constant.AUDIO_RECORDER_FILE_EXT_WAV);

}

public static String generateResultAudioFileName() {

Log.i(TAG, "generateAudioFileName()");

return (getAudioSDLocation() + "/" + "Audio_Message_" +

System.currentTimeMillis() + Constant.AUDIO_RECORDER_FILE_EXT_WAV);

}

static public boolean resetExternalStorageMedia(Context context) {

if (Environment.isExternalStorageEmulated())

110

A.4. Source Code

return (false);

Uri uri = Uri.parse("file://" + Environment.getExternalStorageDirectory());

Intent intent = new Intent(Intent.ACTION_MEDIA_MOUNTED, uri);

context.sendBroadcast(intent);

return (true);

}

public static void showCustomAlert(String text,Activity activity,String errorType)

{

Context context = activity.getApplicationContext();

// Create layout inflator object to inflate toast.xml file

LayoutInflater inflater = activity.getLayoutInflater();

// Call toast.xml file for toast layout

View toastRoot = inflater.inflate(R.layout.toast, null);

TextView text1 =(TextView) toastRoot.findViewById(R.id.text);

text1.setText(text);

if(errorType.equalsIgnoreCase("info")){

text1.setTextColor(Color.parseColor("#7BD4A8"));

}else if(errorType.equalsIgnoreCase("warning")){

text1.setTextColor(Color.parseColor("#FFC800"));

}if(errorType.equalsIgnoreCase("error")){

text1.setTextColor(Color.parseColor("#DF151A"));

}

text1.setTypeface(Customfontloader.getTypeface(activity,1));

Toast toast = new Toast(context);

// Set layout to toast

toast.setView(toastRoot);

toast.setGravity(Gravity.BOTTOM,0, 0);

toast.setDuration(Toast.LENGTH_LONG);

toast.show();

}

}

A.4.7 Validate

package com.protectMSG.operation;

import java.io.File;

import com.protectMSG.util.Utility;

111

Appendix A. Appendix

import android.annotation.SuppressLint;

import android.app.Activity;

import android.util.Log;

public class Validate {

private final static String TAG = "Validate";

public static boolean validatePassword(String password) {

if(password.length()>0){

if (password.length() < 3 || password.length() > 15) {

return true;

} else {

return false;

}

}else{

return false;

}

}

public static boolean validateEncodeText(String encodeText) {

if (encodeText.length() < 1 || encodeText.length() > 50) {

return true;

} else {

return false;

}

}

public static boolean validateFileSize(String fileType, String fileName,Activity

activity) {

boolean isValid = false;

if (fileType.equalsIgnoreCase("Audio")) {

// TODO

} else if (fileType.equalsIgnoreCase("Image")) {

// TODO

File file = new File(fileName);

System.out.println("File size"+file.length());

Utility.showCustomAlert("File size"+file.length(),activity,"error");

if(file.length()>2621440){

isValid = true;

}

}

return isValid;

}

112

A.4. Source Code

@SuppressLint("DefaultLocale")

public static boolean validateFileExtension(String fileName,String fileType) {

if (fileType.equalsIgnoreCase("Audio")) {

// TODO

if(fileName.toLowerCase().endsWith(".wav")){

return false;

}

else{

System.out.println("Browsed dest file extension must be .txt");

return true;

}

} else if (fileType.equalsIgnoreCase("Image")) {

// TODO

if(fileName.toLowerCase().endsWith(".jpg")

||fileName.toLowerCase().endsWith(".jpeg")

||fileName.toLowerCase().endsWith(".png")){

return false;

}

else{

System.out.println("Browsed dest file extension must be .txt");

return true;

}

}

return false;

}

public static String validateFile(byte[] image)

{

Log.i(TAG,"validateFile()");

int length = 0;

// int offset = 32;

int offset = 64;

byte byteZero=(byte) 0x00;

byte byteOnes=(byte) 0xFF;

int byteZeroCount = 0;

int byteOnesCount = 0;

String result="NotEncoded";

for(int i=32; i<36; ++i)

{

length = (length << 1) | (image[i] & 1);

}

113

Appendix A. Appendix

if(length == 0){

result="EncodedWithoutPassword";

}else if(length == 15){

result="EncodedWithPassword";

}else{

result="NotEncoded";

}

return result;

}

public static String validateAudioFile(byte[] image)

{

Log.i(TAG,"validateFile()");

int length = 0;

String result="NotEncoded";

for(int i=76; i<80; ++i)

{

length = (length << 1) | (image[i] & 1);

}

if(length == 0){

result="EncodedWithoutPassword";

}else if(length == 15){

result="EncodedWithPassword";

}else{

result="NotEncoded";

}

return result;

}

}

A.4.8 Encode Audio To Image XML

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"

android:background="#2E2E2E" >

114

A.4. Source Code

<LinearLayout

android:orientation="horizontal"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="#2E2E2E"

>

<TextView

android:id="@+id/headerTextView"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:layout_marginLeft="@dimen/activity_horizontal_margin"

android:fontFamily=""

android:gravity="center_horizontal"

android:paddingBottom="22dp"

android:paddingTop="22dp"

android:shadowColor="@color/list_background"

android:text="ENCODE QUICK VOICE MESSAGE TO IMAGE"

android:textColor="@android:color/holo_blue_dark"

android:textSize="25sp"

android:textStyle="italic" />

<Space

android:layout_width="0dp"

android:layout_weight="1"

android:layout_height="20dp" />

<TextView

android:id="@+id/shareError"

android:layout_width="153dp"

android:layout_height="wrap_content"

android:gravity="center_vertical"

android:text="Share Audio"

android:visibility="invisible"

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp"

android:textStyle="italic"

/>

<Button

android:id="@+id/shareButton"

style="?android:attr/buttonStyleSmall"

android:layout_width="43dp"

115

Appendix A. Appendix

android:layout_height="43dp"

android:background="@drawable/sharebutton" />

</LinearLayout>

<TextView

android:id="@+id/enterPasswordTextView"

android:layout_width="match_parent"

android:layout_height="40dp"

android:gravity="center_vertical"

android:text="Enter Password"

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp"

android:layout_marginLeft="@dimen/activity_horizontal_margin"/>

<LinearLayout

android:orientation="horizontal"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="#2E2E2E"

>

<EditText

android:id="@+id/passwordEditView"

android:layout_width="260dp"

android:layout_height="wrap_content"

android:ems="10"

android:hint="**************"

android:textColor="@android:color/holo_green_light"

android:inputType="textPassword"

android:layout_marginLeft="@dimen/activity_horizontal_margin" />

<TextView

android:id="@+id/errorPasswordTextView"

android:layout_width="match_parent"

android:layout_height="40dp"

android:gravity="center_vertical"

android:visibility="invisible"

android:text="Enter valid password"

android:textColor="@android:color/holo_red_light"

android:textSize="22sp"

android:layout_marginLeft="5dp"/>

</LinearLayout>

<LinearLayout

android:id="@+id/recordAudioLayout"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="visible"

116

A.4. Source Code

android:paddingTop="5dp"

android:layout_marginLeft="@dimen/activity_horizontal_margin">

<TextView

android:id="@+id/recordAudioTextView"

android:layout_width="200dp"

android:layout_height="40dp"

android:gravity="center_vertical"

android:text="Record Audio"

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp" />

<Button

android:id="@+id/buttonRecord"

android:layout_width="96dp"

android:layout_height="96dp"

android:background="@drawable/recordaudiobackground"

android:text="Record" />

</LinearLayout>

<LinearLayout

android:id="@+id/audioFileLayout"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="invisible"

android:paddingTop="5dp"

android:layout_marginLeft="@dimen/activity_horizontal_margin">

<TextView

android:id="@+id/audioFileTextView"

android:layout_width="200dp"

android:layout_height="40dp"

android:layout_gravity="left"

android:gravity="left|center_vertical"

android:text="Audio File Selected "

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp" />

<ImageView

android:id="@+id/audioImageView"

android:contentDescription="Audio File"

android:layout_width="40dp"

android:layout_height="40dp"

android:layout_gravity="left"

android:paddingLeft="50dp"

android:background="@drawable/audiofile"

117

Appendix A. Appendix

/>

<TextView

android:id="@+id/audioTextView"

android:layout_width="wrap_content"

android:layout_height="40dp"

android:layout_marginRight="10dp"

android:layout_gravity="left"

android:gravity="left|center_vertical"

android:paddingLeft="2dp"

android:text=""

android:textColor="@android:color/holo_green_light"

android:textSize="22sp" />

<ImageView

android:id="@+id/playImageView"

android:layout_width="40dp"

android:layout_height="40dp"

android:layout_gravity="left"

android:paddingLeft="5dp"

android:background="@drawable/playerplay"

/>

</LinearLayout>

<LinearLayout

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_marginLeft="@dimen/activity_horizontal_margin" >

<TextView

android:id="@+id/browseAudioTextView"

android:layout_width="153dp"

android:layout_height="60dp"

android:gravity="center_vertical"

android:text="Browse Image"

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp"

android:textStyle="italic"

/>

<Button

android:id="@+id/browseButton"

android:layout_width="50dp"

android:layout_height="52dp"

android:background="@drawable/folderbutton" />

</LinearLayout>

118

A.4. Source Code

<LinearLayout

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_marginLeft="@dimen/activity_horizontal_margin" >

<TextView

android:id="@+id/capturePictureTextView"

android:layout_width="153dp"

android:layout_height="60dp"

android:gravity="center_vertical"

android:text="Capture Picture"

android:textColor="@android:color/holo_blue_light"

android:textSize="22sp"

android:textStyle="italic"/>

<Button

android:id="@+id/captureButton"

android:layout_width="50dp"

android:layout_height="52dp"

android:background="@drawable/camerabutton" />

</LinearLayout>

<ImageView

android:id="@+id/imageView"

android:layout_width="match_parent"

android:layout_height="0dip"

android:layout_weight="0.34"

android:layout_marginLeft="@dimen/activity_horizontal_margin"/>

<TextView

android:id="@+id/errorText"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="invisible"

android:text="error"

android:textColor="@android:color/holo_red_light" />

<LinearLayout

android:layout_width="match_parent"

android:layout_height="0dip"

android:layout_weight="1"

android:gravity="bottom"

android:orientation="vertical" >

<Button

android:id="@+id/encodeAudioButton"

android:layout_width="260dp"

119

Appendix A. Appendix

android:layout_height="wrap_content"

android:background="@drawable/button"

android:textColor="@android:color/white"

android:text="Encode Data"

android:textSize="23sp"

android:layout_marginLeft="@dimen/activity_horizontal_margin"/>

</LinearLayout>

</LinearLayout>

120

Appendix B

Glossary

2D Two Dimension

3DES Triple Data Encryption Standard

ABI Application Binary Interface

ADB Android Debug Bridge

ADT Android Developer Tools

AES Advanced Encryption Standard

AIFF Audio Interchange File Format

API Application Programming Interface

AVD Android Virtual Device

BMP Bitmap

CPU Central Processing Unit

DDMS Dalvik Debug Monitor Server

DES Data Encryption Standard

121

Appendix B. Glossary

DESX A variant of Data Encryption Standard

DVM Dalvik Virtual Machine

FAT32 File Allocation Table 32

GIF Graphics Interchange Format

GUI Graphical User Interface

IDE Integrated Development Environment

JAVA EE Java Platform, Enterprise Edition

JDK Java Development Kit

JEPG Joint Photographic Experts Group

LRU Least Recently Used

LSB Least Significant Bit

MP Megapixel

NIST National Institute of Standards and Technology

PCM Pulse Code Modulation (

PDU Protocol Data Unit

PNG Portable Network Graphics

RAM Random Access Memory

SD Card Secure Digital Card

SDK Software Development Kit

SPN Substitution-Permutation Network

SSL Secure Sockets Layer

122

TIFF Tagged Image File Format

UI User Interface

WAV Waveform Audio File Format

XML Extensible Markup Language

123

Bibliography

[1] Silvia Torres-Maya, Mariko Nakano-Miyatake and Héctor Perez-Meana, An Image

Steganography Systems Based on BPCS and IWT, In Proceedings of the 16th IEEE Inter-

national Conference on Electronics, Communications and Computers (CONIELECOMP

2006)

[2] Moazzam Hossain, Sadia Al Haque, and Farhana Sharmin, Variable Rate Steganography

in Gray Scale Digital Images Using Neighborhood Pixel Information in The International

Arab Journal of Information Technology, Vol.7, No.1, January 2010

[3] Elżbieta Zielińska, Wojciech Mazurczyk, Krzysztof Szczypiorski, Trends in Steganography

in Communications of the ACM, Vol. 57 No. 3, Pages 86-95

[4] Gary C. KesslerAn, Overview of Steganography for the Computer Forensics Examiner July

2004, Forensic Science Communications.

[5] Smartphones vs. Digital Cameras, 24 July 2013, LOS ALTOS, California

http://www.ireachcontent.com

[6] The Android SDK Installation https://developer.android.com/sdk/installing/index.html

[7] C. Yi-zhen, et al., An adaptive steganography algorithm based on block sensitivity vectors

using HVS features in Image and Signal Processing (CISP), 3rd International Congress on,

2010, pp. 1151-1155, ISBN: 978-1-4244-6513-2.

[8] Digital Image File Types http://users.wfu.edu/matthews/misc/graphics/formats/formats.html

125

http://www.ireachcontent.com
https://developer.android.com/sdk/installing/index.html
http://users.wfu.edu/matthews/misc/graphics/formats/formats.html

Bibliography

[9] Android Navigation Drawer http://developer.android.com/training/implementing-

navigation/nav-drawer.html

[10] Evolution of Steganography http://stegano.net

[11] Monkey Tool http://developer.android.com/tools/help/monkey.html

[12] Suite 48 Analytics, a report on 24 July 2013 http://suite48a.com

[13] The Wall Street Journal, a statistic, http://liesdamnedliesstatistics.com/2013/09/the-digital-

camera-market-continues-to-drop-thanks-to-smartphones.html

[14] Michael Burton and Donn Felker,Android application development for dummies, 2nd edition

23 October 2012, ISBN-10: 1118387104 ISBN-13: 978-1118387108

[15] Google I/O Conference 2014

[16] Info on Android http://developer.android.com/about/index.html

[17] Mobile Technology Fact Sheet http://www.pewinternet.org

[18] Simon Khalaf, The Rise of the Mobile Addict, 22 April 2014 http://www.flurry.com

[19] Christopher Ratcliff, 65% of global smartphone owners use Android OS: stats 21 February

2014, https://econsultancy.com

[20] Maeve Duggan, Photo and Video Sharing Grow Online, 28 October 2013,

http://www.pewinternet.org

[21] Mobile Statistics, http://www.mobilestatistics.com

[22] C. Vanmathi, S. Prabu, A Survey of State of the Art techniques of Steganography in Interna-

tional Journal of Engineering and Technology, Feb-Mar 2013, Vol 5,ISSN : 0975-4024

[23] Chandramouli, R Analysis of LSB based image steganography techniques,pages 1019 - 1022

vol.3 in Image Processing, 2001. Proceedings. 2001 International Conference on (Volume:3)

ISBN:0-7803-6725-1

[24] Tutorials Point, http://www.tutorialspoint.com/

126

http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://developer.android.com/training/implementing-navigation/nav-drawer.html
http://stegano.net
http://developer.android.com/tools/help/monkey.html
http://suite48a.com
http://liesdamnedliesstatistics.com/2013/09/the-digital-camera-market-continues-to-drop-thanks-to-smartphones.html
http://liesdamnedliesstatistics.com/2013/09/the-digital-camera-market-continues-to-drop-thanks-to-smartphones.html
http://developer.android.com/about/index.html
http://www.pewinternet.org
http://www.flurry.com
https://econsultancy.com
http://www.pewinternet.org
http://www.mobilestatistics.com
http://www.tutorialspoint.com/

Bibliography

[25] Tech Target, http://searchsoftwarequality.techtarget.com/

[26] Android SDK, https://developer.android.com/sdk/index.html

[27] Simple Developer, http://simpledeveloper.com

127

http://searchsoftwarequality.techtarget.com/
https://developer.android.com/sdk/index.html
http://simpledeveloper.com

	Acknowledgement
	Abstract
	Declaration
	List of figures
	List of tables
	Introduction
	Background
	Evolution of Steganography
	Approach
	Chapters at a Glance

	Literature Review
	Digital Steganography
	Digital Carrier Methods
	Steganalysis
	Image File Types
	Audio File Types
	Bit depth
	Sample rate

	Cryptography
	Symmetric Encryption
	Asymmetric Encryption
	Data Encryption Standard (DES)
	Advanced Encryption Standard (AES)

	Android
	Android Operating System
	Highlights of Android
	Android Platform Components
	Android SDK
	System Requirement
	Operating Systems
	Development Tools

	Installation and Configuration
	Eclipse
	Configuring Eclipse for ADT
	Android Virtual Device Manager

	Android Activity Lifecycle
	Android Process Status
	Activity State
	Activity Lifecycle Methods

	Android App Components

	Design and Requirement Analysis
	Scope
	Functional Requirement
	Non Functional Requirement
	Use Case

	Architecture
	Application Flow
	Encryption Used
	LSB Technique
	Encode Data Packet
	Algorithm
	Package Model
	User Interface Design

	Implementation
	Project Specification
	Tools Used
	Android Command Line Tools
	BinaCompa
	Checkstyle

	Emulator
	protectMSG
	Program Inputs
	Encode text to image
	Decode text from image
	Decode
	Encode text to audio
	Decode text from audio
	Encode audio into image
	Decode audio from image
	Supporting Features

	Class Diagram

	Evaluation
	Test Strategy
	Testing Scope
	Test method
	Functionality Test
	User Interface Test
	Monkey Testing
	Device Oriented Test

	Non-Functional Requirements Evaluation
	Challenges Confronted
	Emulator Setup
	Encryption Key Generation

	Conclusion
	Summary
	Future Enhancements
	Validity for the message
	Other input file type
	Hide an image in a cover image
	Hide an audio in a cover audio

	Appendix
	Screenshots
	Use Case
	Test Case
	Source Code
	EncodeTextToImage
	MainActivity
	StegoEncryption
	StegoOperation
	AudioRecording
	Utility
	Validate
	Encode Audio To Image XML

	Glossary
	Bibliography

