| | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

Frankfurt University
of Applied Sciences

Faculty 2: Computer Science and Engineering

Deployment of Android, Haiku, and Google Fuchsia
in Containers and Virtual Machines with Web-UI
Access via Apache Guacamole

— Master Thesis —

Submitted in order to obtain the academic degree

High Integrity Systems (M.Sc.)

submitted on August 11, 2025 by

Jatinkumar Nakrani
Matr. Nr.: 1386383

First Supervisor . Prof. Dr. Christian Baun
Second Supervisor : Prof. Dr. Thomas Gabel

Declaration

| thus certify that the work included in this thesis, which is named Deployment of Android, Haiku, and Google Fuchsia
in Containers and Virtual Machines with Web-Ul Access via Apache Guacamole, is the outcome of my own independent

investigation, which was conducted under the guidance of Professors Prof. Dr. Christian Baun and Prof. Dr. Thomas
Gabel.

| further declare that:

= No other academic degree or certification at this or any other institution has received this thesis, in whole or in
part.

= Every source and piece of information used to prepare this thesis has been appropriately cited and acknowledged.
= Any help obtained during the study process has been specifically mentioned.

= All ethical guidelines have been closely followed, and ethical permission has been acquired whenever appropriate.

This statement demonstrates my dedication to academic integrity and is made in compliance with Frankfurt University
of Applied Sciencespolicies.

Frankfurt, August 11, 2025

Jatinkumar Nakrani

“Education is the best friend. An educated person is respected everywhere. Education beats the beauty and
the youth.”

— Chanakya
“We are kept from our goal not by obstacles but by a clear path to a lesser goal.”

— Bhagavad Gita

Acknowledgements

It has been a difficult but worthwhile journey to finish this thesis, and | am incredibly appreciative of the several people
and institutions that helped make it happen.

First and foremost, | want to express my sincere gratitude to Prof. Dr. Christian Baun, my first supervisor, for his
important advice, knowledge, and unwavering support during this project. His encouraging words and perceptive criticism
were very helpful in determining the course of this thesis. My second supervisor, Prof. Dr. Thomas Gabel, has my sincere
gratitude for his insightful criticism and scholarly viewpoint, which significantly improved the caliber of my work.

Additionally, | would like to thank Frankfurt University of Applied Sciences’ Faculty of Computer Science and Engineering
for providing the tools and a first-rate research environment for this study. | also want to express my gratitude to my
peers and colleagues for their encouraging conversations, encouragement, and companionship along this trip.

I would also like to express my gratitude to my current employment, LensWare International GmbH, for their kind
assistance in giving the laptop for configurations, research materials, and flexibility that allowed me to manage my work
and thesis obligations. Their support and comprehension were crucial to this project’s success.

| would especially like to express my gratitude to my family and friends for their continuous support, encouragement,
and patience during my academic career. In times of uncertainty, their emotional support served as my compass.

Last but not least, | would like to express my gratitude to the open-source communities that created Android, Haiku OS,
Google Fuchsia, and Apache Guacamole for their crucial contributions that enabled this study.

Abstract

Highly evolving operating systems, both stable and production-ready platforms, as well as experimental and research-
oriented kernels, require an urgent possibility to unify and reproduce the test environments. The given project responds
to that necessity by planning and realizing a multi-operating system virtualization framework based on QEMU/KVM on
a Linux-based host, and Android-x86, Haiku OS, and Google Fuchsia as the example operating systems to test drive.
The primary focus of the project was to provide a secure and fully browser-based and clientless remote access solution
using Apache Guacamole, and thus eliminate the necessity of specialized client software programs, and provide cross
platform support.

The project was developed under Ubuntu 24.04 LTS utilizing hardware-enforced virtualization so as to be as effective
as possible. The one that took care of virtualization was QEMU/KVM, and vm lifecycle was taken care through
virt-manager and libvirt. Android-x86 and Haiku OS were deployed, configured, and able to be integrated into the
Apache Guacamole platform, which streamed its graphical user interface over VNC to any modern web browser. Using
this methodology, high-quality access on a consistent basis to remote areas could be provided independent of host-specific
drivers or applications. Test of such systems was based on analyzing the usage of CPU, memory speed, boot time, and
GUI latency. The findings based on repeated tests helped to establish stable and predictable results and affirm that the
framework was performant in relation to supporting both operating systems under similar conditions.

The situation with Google Fuchsia was more complicated. The project bootstrapped the source code of OS using fx
build system and booted them in FEMU the Fuchsia emulator. Although the OS booted and was usable via a serial shell,
graphical output was not possible because of unfinished virtual GPU support and framebuffer initialization state under
the QEMU/KVM. These limitations are in line with the hardware known limits of compatibility posted in the Fuchsia
developer community.

All virtual machines acquired VNC endpoints restricted to the localhost interface only, meaning that no direct and
unauthenticated connection was possible using the outside sites. Apache Guacamole was the secure Web gateway.
Although in this project Docker was not used in the deployment process, Apache Guacamole could also be containerized
to allow additional process isolation and ease maintenance. This would enable the users to log in to the system
using a single security-controlled point, after which they would operate the virtual machines. Snapshots were also
used extensively in configuration and testing, and allowed instant software rollback in case of an error, and extensive
downtimes were saved in the process. This testbed was specifically designed to be modular, in such a way that operating
system images, network configurations and resource allocations could be changed without affecting the rest of the system.

As demonstrated by the project, the integration of QEMU/KVM and Apache Guacamole is a flexible, lightweight and
scalable platform able to offer multiple operating systems in an isolated but single standalone environment remotely.
The solution is most appropriate in academic laboratories, OS development workshops, thin-client deployments and
comparative studies where the emphasis is on rapid provisioning and high availability. Maturity of the guest operating
system, availability of compatible drivers, and hardware graphics feature enhancements are also pointers in the success
of such deployments, highlighted by the results. The graphical constraints in using Google Fuchsia emphasize the need
to insert the GPU passthrough or a more developed virtual GPU driver in future releases of the testbed.

In the future, Adding more operating systems into the mix would be more comprehensive; for example, a distribution of
BSDs, or server-oriented distributions with containers as a focus. Comparison of other remote display protocols like SPICE
or WebRTC could show latency or performance gains on a specific workload. Using orchestration tools to automatically
deploy and monitor would also increase scalability and decrease manual configuration overhead.

Keywords — Virtualization, QEMU/KVM, Apache Guacamole, Android-x86, Haiku OS, Google Fuchsia, Remote Desk-
top, VNC, FEMU, GPU Passthrough, Operating System Evaluation.

Contents

Acknowledgements
Abstract

1 Introduction

1.1 Background
1.2 Motivation
1.3 Problem Statement L
1.4 Objectives
1.5 Scope and Limitations
1.6 Methodology Overview
1.7 Structure of the Project

2 State Of Art

2.1 Android OS Architecture and Deployment
2.2 Haiku OS Overview and Virtualization Support
2.3 Virtualization Support for Haiku
2.4 Fuchsia OS: Microkernel Architecture and Development Status
25 QEMU/KVM Virtualization
2.6 VNC and RDP Protocols
2.7 Apache Guacamole and noVNC L

3 System Design

3.1 Hostsystemsetup
3.2 0S Deployment Strategy
3.3 Remote Access Architecture L
3.4 Security Consideration L
3.5 System Diagram

4 Implementation

4.1 Android Setup in QEMU with Web Access
4.2 Haiku Setup in QEMU with Web Accesso
4.3 Fuchsia Setup Attempt and Shell Access L
4.4 Apache Guacamole Configuration
45 Network and Access Configuration

5 Evaluation and Testing

5.1 Functional and GUI Testing Overview

10
12
13
15

16
16
18
23
27
29

35
35
41
49
57
63

66

CONTENTS

I ‘ FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

5.2 System Performance and Resource Utilization 68
5.3 Fuchsia-Specific Boot and CLI Behaviour. 69
5.4 Comparative Analysis of OS Behavior 72
5.5 Troubleshooting Summary and Observations 75
6 Conclusion 77
6.1 Summary of Work 77
6.2 Justification of Objectives 78
6.3 Limitations L 81
6.4 Recommendations and Future Research Scope L 82
List of Abbreviations 83
Appendices 84
Bibliography 85

List of Figures

~N o b w0 NN =

[0}

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Screenshot of uname -a showing Ubuntu 24.04.1 LTS host system 16
Screenshot of RAM and Swap Memory Statistics viafree-h 16
Terminal Output of Iscpu Confirming Virtualisation Support 17
Screenshot of Virtual Machine Manager (virt-manager) Interface 18
Fuchsia Emulator Boot Screen Showing ASCII Logo on Serial Console 20
Fuchsia OS Serial Console Shell Running via fx on Ubuntu 24.04 Host 20
QEMU/KVM Storage Pool Configuration Showing qcow?2 Disk Images for Android and Haiku Virtual

Machines e 22
Remote Access Architecture Diagram L 24
Apache Guacamole Web Interfaceo 25
Remote Access Flowchart 25
Host Fuchsia OS Running in Serial Shell Mode on Ubuntu Host 26
Discord Query Posted by Jatinkumar on Fuchsia Support Channel 27
Remote Access Flow- Browser-Based GUI Access 30
Storage Layout and Network Configuration for Virtual Machines 31
Product bundle error e 32
Bundle Setup Failure Screenshot 32
Build Success but Runtime Failure 33
Diagram of Architecture of the virtualisation-based testbed used to deploy and manage three guest oper-

ating systems. L L L 34
Virtual Machine Manager interface launched to begin Android VM creation. 35
Initial VM creation step with local install media option selected., 36
File browser opened to locate the Android ISO file., 36
Android-x86 1SO successfully selected for installation. 37
DroidVNC-NG password configuration screen inside Android-x86 37
Manual selection of Android-x86 9.0 as the guest operating system. 38
Allocation of 3GB RAM and 2 CPU cores for optimal performance. 39
Storage configuration using a 20GB qcow? virtual disk. 39
VM named and prepared for advanced configuration. Lo 40
Advanced VM configuration finalised; installation initiated. 40
Launch screen of Virtual Machine Manager used to initiate Haiku VM setup 41
Selection of local installation media for creating a Haiku virtual machine 42
Browsing local storage to locate the Haiku ISO image 42
Configuration of guest OS settings for the Haiku system, 43
Final pre-installation review screen for the Haiku virtual machine 43

‘ FRANKFURT
UNIVERSITY

LlST OF FIGURES OF APPLIED SCIENCES

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68
69

70
71

Haiku desktop loaded from ISO in live environment 44
Partitioning tool launched to prepare disk for Haiku installation 44
Midway through copying system files to the virtual disk 45
Confirmation of successful Haiku OS installation 45
Final prompt before restarting into installed Haiku OS 46
AGMS VNC server package extracted within the Haiku filesystem 46
Terminal window displaying the startup process of the VNC server 47
Active VNC session initialized and ready for browser access 47
AGMS VNC server showing password protection setup in Haiku 48
Chrome browser opening Guacamole interface on the host system 49
Output of ffx platform preflight check showing successful validation 49
Bootstrap script execution retrieving source tree and manifest files 0oL 50
Bash profile configuration with Fuchsia environment variables 51
Product target configuration using fx set command - Phase 1. 52
Product configuration confirmation - Phase 2 52
System Resource Monitor Dashboard 53
Fuchsia emulator target with type "core.x64" in "Product” state., 53
Fuchsia emulator target with type "terminal.x64" in "Product” state. 54
Fuchsia emulator target with type "workbench_eng.x64” in "Product” state. 54
Fuchsia emulator boot process stalled at staticlogo 55
FFX target list showing active emulator instance L Lo 56
Serial shell access displaying root directories in Fuchsia 57
Guacamole source configuration using configure 58
guacd service status showing active daemon 58
WAR file deployed into Tomcat9 webapps directory 59
JDBC extension placed into Guacamole extensions directory L. 59
Edited guacamole.properties for MySQL DB connection 59
Apache Guacamole Login Page 60
Android used port :5 . .. L 61
Haiku used port :3 61
Guacamole Dashboard Listing Android and Haiku VMs 62
Android and Haiku VM Desktops in Browser L 62

brctl show command output displaying network bridges - docker0 (STP disabled) and virbrO (STP enabled). 63

virsh net-list command showing the "default” virtual network in active state with autostart and persistent

settings enabled. L 63
Guacamole Browser Error Message 63
Network Flow Diagram for Remote VM Access via Guacamole 65
Android-x86 GUI access via Guacamole with Terminal Emulator visible 66
Virtual Machine Manager showing Haiku VM in active running state 67

\

‘ FRANKFURT
UNIVERSITY

LlST OF FIGURES OF APPLIED SCIENCES

72
73
74
75
76
7
78

Chrome DevTools: Android GUI performance monitoring via Guacamole 68
Virtual Machine Manager showing Haiku OS running with stable CPU usage 69
Fuchsia Emulator Boot and CLI Interaction Flow 71
Android OS Analysis L 72
Haiku OS Analysis e 73
Fuschia OS Analysis 73
Comparative Metrics Across Operating system Chart 75

i

List of Tables

1 Comparative Features of VNC and RDP Protocols for Remote Desktop Access in Virtualized Environments 15

2 Host system specifications L 17

3 Resource Allocation and Access Type for Guest Operating Systems in QEMU/KVM Virtual Environment. 21

4 Performance Summary Comparison Table 69
Comparative Metrics Across Operating Systems 74
6 Objectives Achievement Summary Table 81

VIII

1. Introduction

Chapter 1 introduces the motivation and scope of this project, framing the need for a unified virtualization testbed
to compare emerging and legacy operating systems. It outlines the research questions, project objectives, and success
criteria, emphasizing browser-based access without client installs. The chapter also describes the host hardware and
software environment-Ubuntu 24.04 on an HP EliteBook 850 G8-and defines key terms such as QEMU, KVM, Zircon
microkernel, and Guacamole. A high-level project roadmap and chapter organization set expectations for the subsequent
implementation, evaluation, and discussion.

1.1 Background

Virtualisation is a vital technology pillar in the modern computing world, which enables the resourceful allocation,
isolation and control of numerous operating systems (OSes) on a single physical host. This feature enables system
administrators, developers and researchers to gain a flexible platform to test software, conduct environment simulations
and run heterogeneous workloads without assuming the cost of dedicated hardware on each system. There are Type
1 (bare-metal and sometimes called hosted) and Type 2 (hosted) hypervisors that are traditionally described as
virtualisation. The current work is combined with the combination of QEMU with a KVM (Kernel-based Virtual
Machine) where QEMU simulates the hardware, and KVM offers hardware-assisted virtualisation via the Linux kernel to
allow a near-native guest OS performance.

Remote access to graphical environments with or without virtualised execution has become especially important at
educational laboratories, thin-client systems, and distributed development. Apache Guacamole and noVNC allow users
to manipulate virtual machines via a standard web browser, allowing controlling of a virtual machine without requiring a
proprietary client application. Such solutions are based on HTML5 and WebSocket rendered, converting VNC or RDP
protocol streams to browser-compatible ones. They are more portable, less complex in terms of a client, and they are
more compatible between devices than they were with previous setups.

This project aims at examining how three operating system platforms including Android, Haiku and Google Fuchsia
can be deployed into a QEMU/KVM virtualisation stack extended with remote graphical access using either Apache
Guacamole or noVNC. The platforms were chosen to help explain opposing design philosophies and mature stages.
Android is based on a Linux kernel, which is still one of the most used operating systems across the world; QEMU-based
virtualisation is possible due to the availability of x86-compatible ISO images. Based on the heritage of the former BeOS,
Haiku is a fast, light, open-source desktop operating system that operates with extremely high efficiency, responsiveness,
and low resource utilisation, and has built-in support to be used as a VNC server, allowing it to be easily integrated to
remote desktop operations.

By comparison, Fuchsia is a microkernel based operating system made by Google and uses the proprietary Zircon kernel.
It differs significantly with monolithic architectures because it bundles user-space services into accessible modules,
employs a capabilities-based security model and employs asynchronous inter-process communication. Its graphical user
interface is achieved using Flutter, Google declarative Ul framework, and Scenic, a customised compositor. Specifically,
Fuchsia does not currently contain published ISO images; installation requires user- Level compilation with the fx build
system, which in general takes more than 100 GB of disk space and requires about 6 to 9 hours of compile time on
typical development hardware.

In QEMU it is also possible to access Fuchsia via a command-line; however, displaying the Ermine shell or session_manager
has been unreliable, possibly due to incomplete GPU acceleration, the lack of such support in virtio-gpu to provide
a pass-through virtual GPU, and the unstable nature of Fuchsia graphical stack operating without a graphical user
interface. The recreation and reconfiguration attempts did not allow the development of a stable GUI past the boot

I ‘ FRANKFURT

CHAPTER 1. INTRODUCTION OF APPLED SCIENCES

logo. All configuration processes, build logs, boot up, and community-based fixes are thus documented in the project
hence providing an up-to-date inhibitors to the graphical integration in QEMU settings.

Android and Haiku, on other hands, rode on their own prebuilt ISO-image installations, which are usually around 700
MB-1.5 GB, and were sure to replicate in QEMU with the assurance of a constant graphic appearance and VNC-or
RDP- connected remote control. Apache Guacamole can be used on their desktop environments to provide complete
browser-based interaction, with keyboard, mouse and clipboard support.

The main idea of the project is to test, analyze and implement these operating systems in a fully integrated remotely
accessible QEMU/KVM setting. Particular consideration is given to compatibility, practical behaviour, resource utilisation
under constraint and usability through browser based interfaces. Close consideration is given to the issues faced during
the work on Fuchsia, documenting progress made in the direction of graphical integration, and describing technical gaps
to be explored.

1.2 Motivation

The ability to install and remotely access multiple operating systems by using a unified, virtualised infrastructure
has many advantages in the modern, diversified computing environment in research, development and the education
environment. An increased focus on cross platform support, modular kernel systems, and less client side dependency,
has increased the pressure on the need to find evaluation tools that allow examination of various operating systems in a
managed, repeatable and easily accessible manner.

The current project tasks itself with exploring how architecturally different operating systems, both stable and experi-
mental, react to hardware supporting virtualisation and web-based access patterns. In this end, the project will choose
three opposing systems as Android, Haiku as well as Google Fuchsia. Android, a well-established Linux-based mobile
operating system deployed to both consumer and embedded devices, presents an example of what traditional Linux
mobile Linux environment entails; Haiku, the stand-alone single-user desktop system, inspired by BeOS and aimed at
being responsive and minimal overhead, can be viewed as the source of ideas to a simple-and-minimalist architecture.
and Fuchsia, still under development by Google, assumes a different approach to the operating system architecture,
which can be called ground-breaking, and which is based on a microkernel Zircon, an asynchronous mess.

At the same time, the increasing popularity of web-based remote-access tools, such as Apache Guacamole, and noVNC,
enable direct transfer of graphical desktop environments through a web browser, bypassing the need to deal with native
clients, and reducing the risk of exposure to underlying virtual machines. This model is strongly consistent with the
modern tendency to cloud computing to use virtual laboratories and thin-client systems where the ability to be portable
and quickly installed has the utmost importance.

1.3 Problem Statement

Operating system virtualization has been a mature technique in application to research and development of systems.
However, standard virtualization methods often create even non-trivial problems with integration when deploying OS
platforms that are drastically different in terms of architecture, maturity and support of tools. Whereas well-known main
stream operating systems (e.g. Linux or Windows) will be typically mounted by hypervisors with extensive graphical
support, other less understood or still under development platforms (e.g. Haiku and Google Fuchsia) will require targeted
concern in terms of configuration, compatibility and performance testing.

The topic of concern that is tackled in this project includes the problematic issue of implementing and testing three
technically divergent operating systems, namely, Android, Haiku, and Google Fuchsia, on a single virtualized framework
(QEMU/KVM) to be accessed through graphical user interfaces that are provided by the browser with Apache Guacamole

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 1. INTRODUCTION OF APPLIED SCIENCES

and noVNC. The plan is to check their remote access operation capacity, explore their virtualization patterns and record
the system-level issues emerging.

Android and Haiku are sold in prebuilt ISO images, and standard display output is in both VNC and RDP servers.
Fuchsia, however, is not an ISO and requires building Google source code via Google fx build tool. Building a normal
application requires more than 100 GB of disk storage and 8-10 hours of compilation time on a typical development
server with SSD disk storage using a quad-core processor. In addition to that, Fuchsia graphical interface, and built on
the Scenic compositor and Flutter- based Ermine shell, is not consistently renderable in QEMU due to the absence of
explicit GPU passthrough support and session shell configuration. Even in GUI deployment, where QEMU targets the
logo normally appears on a black screen, as of current public builds, output will commonly freeze with the initial, frozen
Fuchsia logo.

The traditional virtualization also presupposes the availability of a windowing system or graphical shell that can mix
with VNC or RDP protocols. Lack of a cohesive pipeline in Fuchsia and the quality of the capabilities of QEMU to
use the built-in hardware to emulate unaccelerated graphics make integration challenging with applications like Apache
Guacamole. This restriction restricts the performance of Fuchsia to shell-level access unless physical hardware, including
the Intel NUC or Pixel devices, but not covered in this project, is used.

Cross-comparatively, Android, Haiku, and Fuchsia require uniform measures, among which:
= The use of CPU and memory (can be checked, e.g. through htop, virt-top, and virsh domstats)
= Boot time (i.e. the period it takes a computer to boot and reach the GUI/shell)

= Latency (delay in remote display and responsiveness of inputs tested with browser developer tools and tracing
networks).

The primary challenge here is supporting, enabling, and comparing these systems on a uniform basis, and the further
challenge is developing and partially maintaining an under-development and non-fully virtualized and non-fully integrated
with traditional graphical desktop protocols, OS (Fuchsia), which is the newer upcoming successor to Android.

By extension, this project aims at attempting:

= Provide an automatable, modular and documented installation procedure to get these three operating systems
deployed in QEMU/KVM.

= Test their usability and efficiency by being able to access it through web-based graphical interfaces.

= Give an open report of the constraints laboratory, especially in the Fuchsia instance, in accordance with casual
testing, construct production, and community-based, observed data.

1.4 Objectives

The objectives of this project are as follows:

1. To deploy Android, Haiku, and Fuchsia in QEMU/KVM virtual machines on a Linux-based host.
2. To enable web-based access to each virtual machine using Apache Guacamole.

3. To evaluate functional and performance characteristics of the Android and Haiku VMs in terms of CPU load,
memory usage, boot time, and remote access latency.

4. To document and analyse the challenges encountered during the deployment of Fuchsia, particularly the absence
of graphical interface support in QEMU.

5. To provide a detailed setup and testing guide for all operating systems, enabling replication of results and
future extensions.

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 1. INTRODUCTION OF APPLIED SCIENCES

1.5 Scope and Limitations

The current project examines virtualization and remote web-based access of three architected different operating system
Android, Haiku, and Google Fuchsia into QEMU/KVM-based system on a Linux host. Twofold is the aim: to check
how they perform on a virtualized environment, and to compare their compatibility with browser-based graphical access
facilities like Apache Guacamole and noVNC.

The objects of the work also involve the following:

» Setting up a Ubuntu 24.04.1 LTS host with the QEMU/KVM and Virtual Machine Manager (virt_manager) to
manage virtual-machines.

= Installing Android and Haiku on publicly accessible ISO images and running them through VNC/RDP based acces-
sibility with the aid of Apache Guacamole.

= Compiling Google Fuchsia OS is source with the official fx toolchain and trying to automatically boot it in graphical
FEMU.

= Tracking the performance of the monitoring own tools on both the guest and the host sides including the in-guest
resource-monitors and the Ubuntu System Monitor tool on the host. These are some of the limitations that have
been recognized:

= although OS Fuchsia was successfully constructed and booted up to a shell-level interface, access to the graphical
interface could not be gained within QEMU, even though several configuration and session-shell efforts were
undertaken.

= The testing environment was not built to employ GPU passthrough and external devices, including any Intel NUCs
or Pixel devices, both of which have been identified to provide a better experience with Fuchsia graphical stack
e.g. (Scenic, Ermine).

= Only QEMU-based virtualization on a single host system is evaluated: no other hypervisors (such as Proxmox,
VMware) and no other container-based alternatives were taken into consideration.

Their benchmarking performance of performance consists only of CPU utilisation, memory utilisation and disk input
output and network band bandwidth; no kernel tracing and hardware acceleration profiling.

1.6 Methodology Overview

The approach that has been applied in this project, is a systematic and reproducible strategy towards the implementation
and assessment of operating systems on the virtualised, browser-based platform. The research goes on in the following
discrete steps:

1. System Setup of Host System

The research was carried out on the Ubuntu 24.04.1 LTS Linux host. QEMU and KVM accelerators were used as
virtualisation infrastructure, and Virtual Machine Manager (virt_manager) provided guest machine management.
Remote access was implemented exclusively using Apache Guacamole deployed via manual setup.

2. Operating System Degree Of Deployment

Android and Haiku were provisioned by using official ISO images, and then some basic configurations of display
and networking were performed to allow sessions to be accessed over VNC. Fuchsia is built by the fx tool based
on workbench_eng.x64, and the workstation was decrypted. The build operation was done under the same host
machine, and the generated image was run through FEMU.

‘ FRANKFURT

CHAPTER 1. INTRODUCTION ml APPLED SCIENCES

3. Set Up of Remote Access

Each guest OS was included in the Guacamole frontend through an existing protocol VNC or RDP, corresponding
with the capacity of the guest. Both of the protocols were enabled to access browsers through local networks.

4. Performance Monitoring

Such monitoring of resource utilisation was carried out via in-system tools, as well as Guacamole (VNC) sessions
of Android guest system and Haiku guest system. At the same time, system monitor provided in Ubuntu was used
to observe the system-wide CPU, memory, disk, and network usage when the VM is running.

5. Documentation and Troubleshooting

Records of each build and each configuration step and the outcome of the tests, especially pertaining to Fuchsia,
were kept. The list of technical challenges faced during the research is described in the screenshots, the terminal
logs and descriptive notes.

1.7 Structure of the Project

The current project is organized into six chapters and follows one another in the sequence of the following stages of
the project, starting with conceptual background and concluding with technical implementation and evaluation. In this
respect, a specific outline is provided, placing the sequence of developments into the stage of realization as follows:

1. Introduction

Gives a project credence in its stated motivations, expresses objectives, and characterizes the technical environment.
It also shapes the problem statement, objective scope, appropriate limitations and the framework of methods,
followed.

2. Theory and Technology Background

Inspects the main theoretical and technological foundations of the project, specifically focusing on virtualization
(QEMU/KVM), remote desktop technology (Apache Guacamole) and the operating systems that will be explored,
Android, Haiku, and Fuchsia. The discussion has included earlier pertinent studies, architecture variations and
justifications used to choose the three operating systems.

3. Architecture of Systems and Design

Describes how the testbed will be configured: network topology, the virtual machine configuration policy, resource
allocation and the integration of the remote desktop gateway. Diagrams and specific parts are given to show the
design and assembly of each virtualized operating system.

4. Implementation

Evidence of the feasibility of Android, Haiku, and Fuchsia practical implementation and deployment in a virtualiza-
tion framework. This section expounds on the installation processes, configuration phases, and manually compiled
and deployed Guacamole server, as well as the browser-based remote access management workflows.

5. Evaluation and Testing

Data of the introduced metrics and tools to measure the virtual machine performance, that is, the CPU utilization,
the memory consumption, the disk 1/O, and the network behavior. The chapter also documents issues that were
experienced during the testing, such as problems that occurred in the Fuchsia graphical user interface under FEMU.

6. Conclusion and perspective

Overview of the main outcomes of the project research, distillation of important findings, and possible future
enhancements a temporary GPU passthrough, implementation of the use of actual physical devices, and broader
automation by using orchestration tools.

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 1. INTRODUCTION OF APPLIED SCIENCES

7. Bibliography and Appendices

Complete list of referred literature (books, journals, forums and software documentation). There are installation
logs and configuration files that have been developed as a part of the project.

2. State Of Art

The current chapter 2 gives an extensive overview of the major technologies and systems relevant to this project. It
provides a technical overview of the three discussed operating systems, Android, Haiku and Fuchsia, exploring them by
their architecture, compatibility with virtualisation, and modern state of development. The deeper virtualisation platform
(QEMU/KVM), the remote desktop protocols (VNC and RDP), and the tools (Apache Guacamole or noVNC) that allow
web-based access to the graphical user interface are also considered in the chapter. Lastly, it outlines the assessment
measures it uses to gauge the functionality and effectiveness of every one of the virtualized operating systems.

2.1 Android OS Architecture and Deployment

Android is the common operating system that is a free source of Google. It was launched in the year 2008, but it has
gained popularity now. It is initially focused on smartphones and tablets, but its modular platform and extensive hardware
support allowed it to support a wide range of devices, including televisions, wearable devices, embedded systems and, in
the case of this project, virtualized desktop [5].

Android System Architecture

Essentially, the architecture of Android runs off a layered design with 5 important components:

1. Linux Kernel (v4.x — v6.x)

On the minimum level, Android operates based on an altered Linux kernel. This layer handles services that are central
to the system, i.e., process management, memory allocation, device drivers, and inter-process communication.
Android also enjoys the hardware abstraction and the security paradigm that comes along with the Unix-based
systems with the help of the Linux kernel [37].

2. Hardware Abstraction Layer (HAL)

HAL is one of the common interfaces located between the higher-level services in Android and the lower-level device
drivers. It hides the particulars of the hardware (e.g., camera, audio, GPS), and provides application developers the
capability to develop applications without requiring any knowledge of the hardware details [16].

3. Native Libraries and Android Runtime (ART)

This package consists of basic libraries and are written using C/C++ languages, and it includes WebKit, SQLite,
OpenGL and SSL. It is also installed with Android Runtime (ART) which substituted the previous Dalvik Virtual
Machine. ART applies ahead-of-time (AOT) compilation: to install an application, it converts the application
bytecode into machine-specific code to enhance performance and minimize battery use [4].

4. Application Framework

The framework layer gives APIs that are Java / Kotlin-based, and they facilitate the development of applications.
System serves Ul, information exchange, and application state Uls through fragments such as Activity Manager,
Content Provider and Package Manager. Windows management, notifications, and telephony are also located in
this level [26].

5. System Applications

Android is bundled with a series of system applications like the settings panel, dialer, browser, and launcher; these
are the systems that can be seen and used by the end-users to use the functionality of the system. These are the
applications that are constituted on the framework and communicate with the kernel and the runtime differently.

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

Virtualization of Android

Forks including Android-x86, Bliss OS and PrimeOS are the main reasons Android is compatible with x86 hardware,
as they recompile Android with support of a standard PC. Android-x86, specifically, is an advanced project, due to
which it offers bootable ISO images, aiming at application on desktops and virtual machines [5]. This work made use
of Android-x86_64 1SO to install Android as a guest operating system operating within a QEMU/KVM virtualised
environment on a Linux-based host (Ubuntu 24.04.1 LTS).

The deployment utilised the virt-manager (based on libvirt) in the management of VM resources and devices. Access
to the system was remotely provided through Apache Guacamole, the web gateway by offering the VNC-based session
control. Important considerations on virtualisation are:

Enabling KVM acceleration of the improvement of CPU emulation.

Specifying Video QXL or virtio-GPU to have graphical output through VNC.
= Clipboard and resolution sync: install spice-vdagent or open-vm-tools, when available.

= Ensuring that hardware sensors and 3D acceleration are disabled because of VM compatibility problems.

Between the first attempts of booting, it showed nothing but a black screen on VNC. this was fixed by explicitly updating
the GRUB boot arguments and changing the type of processor acceleration (nomodeset) and rendering [5].

Limitations and Considerations

Although Android works largely decently under QEMU, there are still constraints:
= Officially no support for virtualization by Google in Android-on-VM use-cases.
= The lack of GPUs limits graphics capabilities in virtual systems.

= Absence of continuous input support, particularly in the case of non-touch VNC clients.

= Poor Desktop Ul that has not been optimised: Android has not been naturally optimised to use desktop/mouse-
based interfaces.

Even still, Android-x86 is a viable option as an andriod testing method in virtualized environments due to its good stability
and acceptable usability through the remote platforms via Apache Guacamole or the browser-based remote clients.

2.2 Haiku OS Overview and Virtualization Support

The Haiku operating system is an open source operating system, the aim of which is to carry on the legacy of an OS
(BeOS) developed in the 1990s, which has media centred goals. Haiku is actively developed since 2001 and is aimed at
personal computing use, and is very responsive, minimalistic, and efficient. Unlike many modern operating systems that
rely on a multitude of third-party components, Haiku is developed as a unified, monolithic codebase, which allows for
tighter integration between system components and a relatively lightweight footprint [28].

Haiku Architecture

Haiku is a modular but closely coupled architecture in terms of a monolithic kernel. It is done primarily in C4++ and is
aimed at providing a stable and predictable user experience. The following are the main layers that form the OS:

Kernel Layer- The NewOS kernel is the inspiration of the kernel called Haiku which offers low-level system services
multitasking, management of memories, drivers of many devices, and administration of files. It uses preemptive

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

multitasking and supports symmetric multiprocessing (SMP), which is beneficial for modern multi-core CPUs.

App Server- An important element of the graphical user interface of Haiku, the App Server manages windows, drawing
and rendering. It is designed for high performance and integrates tightly with the input server and the GUI toolkit
(Haiku Interface Kit). APl and Kit Interface- Haiku has a POSIX-compliant API layer and a Be API (object-oriented
and written in C++). Haiku Interface Kit has given tools to developers to create native applications with the principles
of the system's user interface.

Package Management and File System -Haiku supports Be File System (BFS), which includes extended file attributes
and journaling. Package management is based on .hpkg files, and the system supports live package activation, which
enables atomic system updates and rollbacks [28].

Network Driver and Network Stack- Haiku includes a modular network stack supporting standard protocols (IPv4, IPv6,
TCP/UDP, DHCP) and a growing set of device drivers for wired and wireless networking.

2.3 \Virtualization Support for Haiku

Haiku has quite decent compatibility with popular virtualization interfaces like QEMU/KVM, VirtualBox and VMware.
For this project, (R1/Betab — Release Notes, 2024) was used and deployed as a guest operating system within a
QEMU/KVM environment managed via Virt-Manager on Ubuntu 24.04.1 LTS.

A Haiku I1SO image was loaded by means of UEFI and legacy BIOS. Virtual machine settings were:

= Standard VGA or virtio-vga must be supported to allow video.
= Display: VNC output capable Apache Guacamole.
= CPU: 2 virtual CPUs with KVM-based acceleration.

= Memory: 2-4 GB RAM allocation.

Disk: 4GB-10 GB qcow? virtual disk image.

Performance of virtualized was steady, and the memory footprint was low as well as CPU footprint. The GUI was smooth
even through remote desktops such as VNC, and the system kept loading fast, unlike Android or Fuchsia. To enhance
the GUI responsiveness and mouse control, the "Mouse Integration Add-On" in Haiku was enabled. However, since
Haiku is not widely optimized for modern virtual GPU drivers (e.g., virtio-GPU or QXL), graphical acceleration remained
limited. Moreover sound was not supported experimentally under QEMU, and some USB devices refused to work unless
they were passed through specifically via libvirt configurations.

The possibilities and the weaknesses in virtual Environments.

Strengths:

= Light: Haiku consumes minimal resources that make it perfectly suited to deployment in VMs, even on low-end
specifications.

= Satisfactorily quick boot time: Cold boots failed to layout more than 10 seconds in the majority of the cases.

= Consistent desktop environment: Haiku does not need to be customized because it consists of a consistent desktop
environment.

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

Limitations:

= Poor support of modern hardware drivers, particularly high-end GPU and audio hardware.
= There is no third-party support in using the application as the platform remains niche.

= No native support for remote desktop protocols (e.g., no native VNC server)—VNC server inside the OS using
Haiku deport.

With all these issues, there was one thing that was in the scale of this project that Haiku was one of the more reliable
and easily virtualized systems.

2.4 Fuchsia OS: Microkernel Architecture and Development Status

Introduction to Fuchsia OS

It was in 2016 when fuchsia, an open-source operating system being created by Google was discovered as experimental.
Fuchsia is not based on the Linux kernel, as Android or Chrome OS are, but instead is based on a new and purpose-built
microkernel named Zircon. The project represents Google's attempt to create a scalable, secure, and modular operating
system suitable for a range of devices, from embedded systems to desktops [14]. The fuchsia is not supposed to substitute
Android and Chrome OS in the near future, instead to experiment with new OS models with high security profiles, flexible
composition architecture and better system updateability. As of mid-2025, Fuchsia has been officially deployed on a lim-
ited number of Google Nest smart home devices, with ongoing internal experimentation on other hardware platforms [31].

Zircon Microkernel

The core of Fuchsia is the Zircon, a capability-based microkernel that is highly modular and granular in the management
of resources. Unlike monolithic kernels (like Linux), microkernels aim to run only the most essential services in kernel
mode such as scheduling, memory management, and inter-process communication (IPC) while delegating everything else
to user space [38].

Key Features of Zircon:

= Preemptive multi-threaded scheduler

= Service and drivers in the user-space

= Secure IPC fine-grained capabilities

= Real-time and embedded use-case support

= On-the-fly loading of system components using the Component Framework v2

Zircon interacts with userspace through FIDL (Fuchsia Interface Definition Language), a language-agnostic IPC
mechanism that defines APIs and their bindings in multiple languages.

System Architecture and Component Framework

Fuchsia uses a componentized architecture, in which system services, even applications and even low-level drivers, are
isolated to separate software components. These components are assembled into realms (execution contexts) and run
with precise capability permissions, improving security and maintainability.

The Component Framework v2, introduced with recent Fuchsia builds, provides:

= Dependency injection

10

I ‘ FRANKFURT

CHAPTER 2. STATE OF ART OF APPLED SCIENCES

= Capability routing (e.g., allowing a component access to the network, file system, etc.)

= Lifecycle management (start, stop, restart policies), Sandboxing and tight isolation

The intended functionality of this architecture is to address problems that are prevalent in monoliths, including
cross-component failure, long update cycles, and bad security boundaries.

Virtualization and GUI Challenges

Unlike Android and Haiku, Fuchsia lacks the ISO image or system image, pre-built in support of generic x86 virtualization.
To test it in a virtual machine (VM), the OS must be manually built from source, a process that takes 8-12 hours on
average modern hardware.

The build process involves:

Cloning the Fuchsia Git repository (requires over 50 GB of storage)
= Setting up the Fuchsia build environment using fx (Fuchsia's CLI tool)
= Choosing a board target (e.g. workbench_eng)

= The files can be built with GN and Ninja build systems

Despite using qemu-x64 as a build target, many testers (including the author of this project) report that GUI-based
shells (e.g., Ermine or Scenic) either fail to launch or only display the Fuchsia logo on screen in virtual machines. This
is happening in the case when the build is successful, and the guest kernel is booting. Only text-based shell (console)
access is functional in most virtualization environments [36].

Known GUI issues include:

= = |nability to have virtio-gpu acceleration in QEMUs built
= Virtualized environments - incomplete display stack initialization

= Lost virtualized framebuffers drivers

As of July 2025, hardware-based deployment (e.g., on Pixelbooks or Intel NUCs) remains the only consistently successful
approach to running Fuchsia with full graphical capabilities. Current Development and Status (as of 2025).

Current Development and Status (as of 2025)

» Fuchsia is under active development with thousands of monthly commits by Google engineers [8].

= Nest Hub devices are the only official deployment site on which Fuchsia uses a custom user interface layer known
as Armadillo in production.

= The access to its developer remains closed; although the source is open, it does not have a public SDK to allow
third-party app development when not starting with a core system.

= Several system components, such as Netstack, Scenic (Ul stack), and Driver Framework v2, are still under test or
not production-grade.

» QEMU/KVM can also perform GUI testing, but it is currently experimental and has only partial success in shell-only
environments.

11

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

Relevance to This Project

Although it had not been possible to get full graphical access to Fuchsia within a virtual environment in the course of
this project, extensive work had been done to:

= Compile Fuchsia with source on Ubuntu 24.04.1 LTS by using fx.
= Test multiple target boards (e.g., core.x64, workstation.x64).
= Use analysis of system activity as reported by console and kernel log during boot process;

= Request feedback of the community and developers through GitHub and mailing lists.

2.5 QEMU/KVM Virtualization

Introduction to Virtualization

Virtualization basically involves the abstraction of computing resources: operating systems, servers, storage arrays, etc.,
and bringing them out of their physical substrates, thus allowing many OS instances to exist on any single server.
This arrangement not only augments hardware utilization but also streamlines system testing and condenses software
development cycles [19]. In the case of the recent research, virtualization enables the comparative deployment and
comparative analysis of three operating systems, including Android, Haiku, and Fuchsia, in a calculative and replicable
real-world experimentation.

QEMU: Overview and Capabilities

QEMU (Quick EMUIator) constitutes an open-source machine emulator and virtualizer capable of executing operating
systems and applications for one hardware platform on another. When used in conjunction with Kernel-based Virtual
Machine (KVM), QEMU achieves near-native performance on supported hardware through hardware-assisted virtualiza-
tion (e.g., Intel VT-x or AMD-V).

Key features of QEMU:

= Emulation of diverse CPU architectures (x86, ARM, RISC-V, etc.)

= Live migration and snapshot backup USB, disk and network device pass-through. This product supports such image
formats as QCOW?2 and RAW.

= Support of virt-manager integration to manage VM in GUI mode.

Flexibility, scriptability, and the headless nature of QEMU make QEMU particularly useful in the research context, where
VMs are accessible remotely over VNC or SPICE.

KVM: Native Virtualization with Linux

Linux's Kernel-based Virtual Machine (KVM) extends the operating system into a Type-1 hypervisor that exposes
hardware virtualization enhancements (Intel VT-x or AMD-V) to QEMU and thereby enhances guest performance.

Other KVM features are:

= Better and efficient use of CPU through hardware virtualization, Memory ballooning of dynamic RAM, and Memory
allocation

= VFIO and virtio drivers /O devices emulation

= Options for real-time performance tuning.

12

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

Since the QEMU/KVM virtual machines are run as distinct Linux processes, property-level separation and Linux-specific
monitoring tools compatibility are retained.

virt-manager and libvirt

To streamline virtualization management, Virtual Machine Manager (virt-manager) is employed in concert with libvirt, a
toolkit that abstracts hypervisor APIs and supervises VM lifecycles [24]. virt-manager furnishes a graphical user interface
for the creation, modification, and monitoring of virtual machines.

libvirt offers command-line control, XML-based configuration, and daemon-based VM orchestration. For the present
project, QEMU/KVM virtual machines were generated and administered via virt-manager on an Ubuntu 24.04.1 LTS
host system [34]. This was set up as a fixed and performance-boasted Linux operating environment compatible with
testing the test operating systems.

Limitations in the Context of This Study

QEMU/KVM s a reliable Android and Haiku test layer of virtualized operating systems, but QEMU/KVM has several
limitations on Fuchsia testing:

» Fuchsia does not have ISO images and one has to build the full source and hand-deploy it.

= QEMU's GPU support (e.g., virtio-gpu) is insufficient for Fuchsia’s Scenic GUI stack. Wayland, Vulkan acceleration
in QEMU: No out-of-the-box support of Wayland or Vulkan acceleration of Fuchsia guests in QEMU.

In spite of such limitations, one could access shell access of Fuchsia through gemu-x64 target. The upcoming additions
to the features of virtualization in Fuchsia can fix the existing GUI rendering problems.

Summary

QEMU/KVM, coupled with virt-manager, gives the researcher or a developer a powerful, flexible environment to simulate
complex operating-system environments. Despite the successful combination of Android and Haiku, Fuchsia had special
difficulties because of its emergent premise and inability to combine well with the existing virtualization layers.

2.6 VNC and RDP Protocols

Remote desktop protocols help in accessing of the graphical interface to virtual machines using distant clients. In
the present study, Virtual Network Computing (VNC) and Remote Desktop Protocol (RDP) were employed to enable
graphical interaction with guest operating systems running in QEMU/KVM virtual machines. The two protocols also
allow the control of the headless operating systems via web browsers using Apache Guacamole and noVNC.

Virtual Network Computing (VNC)

VNC is a protocol-independent, and platform-independent protocol of remote access allowing graphical desktop sharing
over a network. Its operation is based on Remote Framebuffer (RFB), wherein the server transmits the frame buffer
(display) to the client, while the client sends keyboard and mouse events back to the server.

Key Features:

= Works across unrelated operating systems (cross-platform)
= Support broad in virtualization environment (open source)

= It consumes a very low amount of client-side resources

13

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

= Uses TCP (commonly port 5900-+display number)

= Lacks encryption by default (often tunnelled through SSH or wrapped in Guacamole for secure use)

In this project, VNC servers have been activated in QEMU virtual machines and served by Apache Guacamole to allow
a graphical interaction with Android and Haiku OS guests in-browser.

Limitations:

= No indigenous sound relaying
= Compression lower than RDP, hence the use of increased bandwidth

= Single-session generation is not so effective in multi-user scenarios.

Despite these limitations, VNC was chosen for this project because of its compatibility with QEMU and broad support
within open-source ecosystems [32].

Remote Desktop Protocol (RDP)

RDP is a proprietary protocol that Microsoft has developed to have enhanced compression and security in the remote
desktop connection. It enables users to access a remote Windows or some Linux machine with the help of RDP servers
such as xrdp or freerdp.

Advantages over VNC:

= Improved compression, causing a smoother performance across low bandwidth links

= Audio redirection is supported, sharing of the clipboard, etc., printer support, In-built encryption and authentication
processes

= Can carry out several user sessions at once

However, RDP was not the primary protocol used in this project due to limited out-of-the-box support in the target
operating systems (Android and Haiku). Although xrdp is possible to install on Linux-based systems, Android-x86 and
Haiku need a specific compilation procedure, which adds complexity and instability to the virtual environment.

A tabular comparison as Table 1 is given next to VNC and RDP, two of the more well-known remote-desktop protocols
that are used in a virtualized environment. VNC is native to QEMU and has a wide open-source compatibility, but, in
turn, has less sophisticated features like forwarding sound and poor encryption. In comparison, RDP provides a better
compression ratio, allows multi-session and includes more extensive security features, but it requires more configuration
work in Linux-based guest environments. For the ends of the current project, VNC was preferred due to its compatibility
with QEMU at the command line level and flexibility of configuration.

For this project, VNC was the primary choice, enabled in QEMU via the -vnc flag and accessed through Guacamole [6].
These tools gave access to the website without any local client installation, which met the accessibility objectives of the
project.

Security Considerations

Both VNC and RDP are, by design, safe. VNC is unencrypted, unless it is tunnelled over SSH, or wrapped over HTTPS
with Guacamole. RDP provides stronger authentication, but known vulnerabilities require proper configuration (e.g., using
TLS and disabling older protocol versions).

14

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 2. STATE OF ART OF APPLIED SCIENCES

Feature VNC RDP
Protocol Type Remote Framebuffer (RFB) Microsoft Proprietary
Audio Support (by default) Yes
Compression Basic Advanced
Security None (can be tunneled) TLS + NLA
Multi-session Support Limited Supported
Integration in QEMU Native Requires extra configuration

Table 1: Comparative Features of VNC and RDP Protocols for Remote Desktop Access in Virtualized Environments

2.7 Apache Guacamole and noVNC

Apache Guacamole is a clientless remote desktop gateway, which can be written using open-source software and is
available without a client. Apache Guacamole allows individuals to log in to systems via their browsers using VNC,
RDP, and SSH. Due to the above features of being secure, scalable and platform independent, it is becoming popular in
student laboratories and corporate network configurations. What really sets it apart is that it needs no client software—so
it works smoothly with HTML5-compatible browsers, which matters a lot in virtual lab systems, distance-learning
platforms, and thin-client setups [6].

Technically, Guacamole is pegged on two components, namely, the Guacamole client that is implemented fully in a
browser using JavaScript and HTML5, and the guacd daemon that converts established protocols, e.g. VNC or RDP, to
protocols that the web can process. Such a divided architecture means that Guacamole is very portable, firewall-friendly
and device-indifferent.

When it is mentioned about virtualization, Guacamole is frequently paired with QEMU/KVM or Proxmox to expose
virtual machines (VMs) through the browser [9]. It is also compatible with Linux-based back ends, provides session
management features, file transfer, synchronization of the clipboard and authentication add-ons such as LDAP and
logins over a database. This has presented it as an enterprise-friendly alternative to large-scale academic testbeds as well
as remote VM management in multi-user virtual settings.

Recent literature highlights Guacamole’s role in:

= Remote OS access in the form of cloud computing labs [30].
= Cybersecurity training on a virtual test environment [17].

= Distance learning and education on thin-client architecture [23].

These use cases focus on the capability of Guacamole to provide a uniform access experience that supports comparing
virtualized operating systems, in this case, Android and Haiku.

15

3. System Design

In this chapter, the author discusses the architectural design and strategy deployed in utilising the multi-operating system
in a virtualized Linux environment; the operating systems used are Android, Haiku and Fuchsia. The virtualization aspect
of design focuses on QEMU/KVM in a guest environment with the help of Apache Guacamole as the application to
allow the graphical interface of the virtual machine on the browser. The chapter elaborates on host setup, the operating
system deployment plans, remote access provisions, as well as security measures. System interaction diagram in the case
of a high-level as well is also provided so as to depict the communication amongst system components. This structural
design makes it possible to properly follow the implementation in the following chapter, as it is reproducible, scalable,
and suits the current virtualization trends of virtualization.

3.1 Host system setup

This section presents a comprehensive overview of the virtualisation host system used to deploy and test the three
selected operating systems—Android, Haiku, and Fuchsia. The setup was designed to ensure high compatibility with
KVM/QEMU virtualisation, enable remote GUI access, and support real-time performance monitoring. The host
environment was based on Ubuntu 24.04.2 LTS, a stable Linux distribution known for long-term support and reliability.

Host Operating System and Hardware Configuration

In this project, the given hosts system is HP EliteBook 850 G8 Notebook PC chosen due to a powerful processor, VT
support, and adequate RAM and data storage facilities. Intel VT-x hardware acceleration, a requirement of operating
with the virtual machine with QEMU/KVM, is supported by its configuration.

Linux nakrani-HP-EliteBook-850-G8-Notebook-PC 6.14.0-24-generic #24~24.04.3-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 7 16:39:17 UTC 2 x86_64 x86_64 x86_64 GNU/Linux

Figure 1: Screenshot of uname -a showing Ubuntu 24.04.1 LTS host system

Here, Figure 1 shows the Screenshot of uname -a showing Ubuntu 24.04.1 LTS host system.
The free -h command output is also captured below to showcase RAM and swap availability:
= RAM (Total): 15 GiB
= RAM (Free): 10 GiB
= Swap: 4 GiB

shared buff/cache available
663M1 2.7G1 12G1

Figure 2: Screenshot of RAM and Swap Memory Statistics via free -h

Here, Figure 2, shows the memory summary using free -h.

16

CHAPTER 3. SYSTEM DESIGN

I ‘ ‘VK/\N(HHH
UNIVERSITY
OF APPLIED SCIENCES

JArchitecture:
CPU op-mode(s):
Address sizes:
Byte Order:
CPU(s):
On-line CPU(s) list:
[Vendor 1D:
Model name:
CPU family:
Model:
Thread(s) per core:
Core(s) per socket:
Socket(s):
Stepping:
CPU(s) scaling MHz:
CPU max MHz:
CPU min MHz:
BogoMIPS:
Flags:

[Virtualization features:
Virtualization:
Caches (sum of all):
Lid:
L1i:

NUMA node(s):

NUMA node@ CPU(s):
[Vulnerabilities:

Gather data sampling:

Ghostwrite:

Itlb multihit:

Litf:

Mds:

Meltdown:

Mmio stale data:

Reg file data sampling:

Retbleed:

Spec rstack overflow:

Spec store bypass:

Spectre vi1:

Spectre v2:

Srbds:

Tsx async abort:

Xx86_64

32-bit, 64-bit

39 bits physical, 48 bits virtual
Little Endian

8

0-7

GenuinelIntel

11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GH
6

140

3%

4200.0000

400.0000

4838.40

fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpl mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm consta
nt_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulgdg dtes64 monitor ds_cpl vmx est tm2 ssse3
sdbg fma cx16 xtpr pdecm pcid ssed_1 ssed_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx fi16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_1
2 cdp_12 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmil avx2 smep bmi2 erms invpcid rdt_a avx512f avx5
12dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbvl xsaves split_lock_detect user tk dthe
rm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdg avx512_vnni avx512_b
italg avx512_vpopcntdq rdpid movdiri movdir64b fsrm avx512_vp2intersect md_clear ibt flush_li1d arch_capabilities

VT-x

192 KiB (4 instances)
128 KiB (4 instances)
5 MiB (4 instances)
8 MiB (1 instance)

1
0-7

Vulnerable

Not affected

Not affected

Not affected

Not affected

Not affected

Not affected

Not affected

Not affected

Not affected

Mitigation; Speculative Store Bypass disabled via prctl

Mitigation; usercopy/swapgs barriers and _ user pointer sanitization
Mitigation; Enhanced / Automatic IBRS; IBPB conditional; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Not affected

Not affected

Figure 3: Terminal Output of Iscpu Confirming Virtualisation Support

Here, Figure 3 presents the output of Iscpu, confirming the processor model (Intel i5-1135G7) and the availability of
virtualisation flags (VT-x support).

Details
HP EliteBook 850 G8 Notebook PC
Intel Core i5-1135G7 @ 2.40 GHz (4C/8T)
Intel Xe Graphics (TGL GT2)
16.0 GiB DDR4
512.1 GB SSD
T76 Ver. 01.21.00
Ubuntu 24.04.2 LTS 64-bit
GNOME 46
Wayland
Linux 6.14.0-24-generic

Category
Hardware Model

Processor

Graphics
Memory (RAM)

Disk Storage

Firmware Version

Operating System
GNOME Version

Windowing System

Kernel Version

Table 2: Host system specifications

Source: [3]

Here, Table 2 shows host System Specifications.

17

| l FRANKFURT

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

Hypervisor and Management Layer

This project was based on QEMU as an emulator, and hardware-assisted virtualization was handled using KVM (the
Kernel-based Virtual Machine). The following packages were installed:

= gemu-kvm

= libvirt-daemon-system
= libvirt-clients

= bridge-utils

= virt-manager

The installation was done using the following commands:

sudo apt update
sudo apt install -y gemu-kvm libvirt-daemon-system libvirt-clients bridge-utils virt-manager

Virtual Machine Manager = = &

File Edit View Help

o9 b 1@

» QEMUKVM

Figure 4: Screenshot of Virtual Machine Manager (virt-manager) Interface

Here, Figure 4 shows the virt-manager interface, listing all virtual machines and their running states.

3.2 OS Deployment Strategy

The operating system (OS) deployment strategy in this project centers on installing and configuring three distinct
guest operating systems-Android-x86, Haiku OS, and Google Fuchsia within a QEMU/KVM virtualized environment on
Ubuntu 24.04.1 LTS. Both systems were chosen due to the architectural peculiarity and the possibility of testing related
to remote access. The deployment procedure highlighted on the accessibility of the graphical interface, responsiveness
in the system as well as the compatibility of the system with the browser-based tools like the Apache Guacamole.

Environment and Platform of Virtualization

The deployment process used QEMU (Quick Emulator) with KVM (Kernel-based Virtual Machine) acceleration. QEMU
provides full system emulation, while KVM offers near-native performance using hardware virtualization extensions (Intel
VT-x or AMD-V). This combination enabled efficient and flexible emulation of guest OS environments [3].

18

‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN UFIAPPHH!SU(\J(!S

Virtual Machine Manager (virt-manager) served as the frontend management interface for creating and configuring
virtual machines, allowing control over disk images, CPU allocation, network bridging, and graphical settings. Android
was built on the x86-based hypervisor virtualized environment, whose core was based on libvirt, which abstracted the
interaction with the hardware and controlled VM lives using a common API.

Deployment Breakdown by OS

1. Android-x86 9.0 (Pie)

= |t was installed with a disk image as a .qcow2 image using the virt-manager.
= It is set up with 2 CPU cores, 2 GiB RAM, and 16 GiB storage.

= GUI access enabled through DroidVNC-NG (installed via apk file).

= The access to which is via Apache Guacamole over VNC.

= Image file: android-x86-9.0.qcow? - [12], [33].

2. Haiku OS (Nightly Build, x86_64)

= [nstalled out of an official nightly .iso and transformed to .qcow2 by virt-manager.

= |t is configured P1, 1 CPU core, 1 GiB RAM, and 8 GiB disk space.

= VNC server installed using AGMS VNC 4.0 for BeOS, configured through [13], [1], [2].
= Image file: android-x86-9.0.qcow? - [12], [33].

3. Fuchsia OS (Build from Source)

Google's Fuchsia OS is a next-generation, capability-based operating system that diverges fundamentally from
traditional Linux-based systems by employing the Zircon microkernel instead of the monolithic Linux kernel [7]. In
light of this, Fuchsia needs custom source compilation, specific tooling, and a custom emulation environment to
be deployed. This made the deployment much harder than Android or Haiku.

Although the official Fuchsia emulator is capable of GUI output through the framebuffer, GPU passthrough
features are also necessary, which (until recently) were incompatible with most commodity devices. Therefore, on
the HP EliteBook 850 G8 host, only serial console access was possible [27].

Build and Boot Environment

To run Fuchsia on a FEMU virtualized environment, the steps provided by Google as an official guide were used, among
which are:

= A git clone of the Fuchsia Source Tree.

Setting Up the Fuchsia Environment via ffx (Fuchsia CLI tool) and other scripts(fx, jiri).
= Building Fuchsia with GN/Ninja, for x64.

= Starting with FEMU by means of a custom fx emu command which creates an emulated environment with a serial
console.

The following minimum hardware (host operating system) allocation was used FEMU:

= CPU Cores: 4
= RAM: 16 GiB

= Disk: 80-90 Gib to 130-140 GiB: the size is a matter of hardware configuration

19

I ‘ FRANKFURT

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

FREEFEE
FIFrErTr 1
rr

A ot
TPIFIETIreeT

Figure 5: Fuchsia Emulator Boot Screen Showing ASCII Logo on Serial Console

= Access Type: FEMU (GUI not working) and shell script

This Figure 5 screenshot confirms that the Fuchsia emulator successfully loaded the kernel and initialised the serial shell
interface before user input.

Access and Interface Strategy

B $ ffx emu start
Auto resolving networking to user-mode. For more information see https://fuchsia.dev/fuchsia-src/development/build/emulator#networking
Logging to "/home/jatin/.local/share/Fuchsia/ffx/emu/instances/fuchsia-emulator/emulator.log"
Waiting for Fuchsia to start (up to 60 seconds)...
Emulator is ready.
c § fx shell
Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run "fx metrics’
To opt in or out, run 'fx metrics <enable|disable>

Figure 6: Fuchsia OS Serial Console Shell Running via fx on Ubuntu 24.04 Host

Although the official Fuchsia emulator supports framebuffer-based GUI output, GPU passthrough capability is required,
which was not supported in the test hardware, an HP EliteBook 850 G8. In this environment, therefore, graphical access
was not possible as VNC or RDP. The backup approach was the serial shell interface through fx shell command that
connects to the serial console of the emulated environment. The basic command-line interface of Fuchsia could then be
accessed to validate the system. This shell is an entry-level command-line interface to Fuchsia, which can be used to

20

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

perform some basic tests of system functionality and boot sequence checks.,

Figure 6 screenshot shows the active serial screen of Fuchsia OS connected with fx shell, which means that Fuchsia was
successfully booted in CLI mode, although the GUI did not work.

Setbacks and Limitations

Although the user through the official guide step by step, there are a number of problems that caused the failure of the
GUI deployment:

1. An error is encountered when trying to render on the Gentoo GPU using Ubuntu 24.04 TLS Host. The emulator
could not display anything more than the bootloader, even with accelerated QEMU and hardware virtualization
turned ON. This was traced to framebuffer support issues and a lack of proper GPU pass-through [27].

2. Fuchsia Issue #425120578: Emulator Display Stuck on Boot The upstream issue reported on Fuchsia's bug tracker
confirms that GUI boot gets stuck or crashes due to compatibility mismatches with Ubuntu host systems and
non-Google hardware [14].

3. Intel GPUs have no support in Emulation Mode. Fuchsia's rendering pipeline expects supported GPU drivers, which
are available only for specific platforms (e.g., Pixelbook, NUC). The Intel Xe GPUs involved in this project are not
supported for use with QEMU-based emulator GUI output.

4. Community Feedback- Other developers on YCombinator and AndroidPolice complained of the same difficulty. The
OS, while promising, is still in an experimental phase for non-Google hardware deployment [15], [22].

Outcome and Current Status

In this arrangement, the GUI was not able to start up or test, even though the shell interface was in working order. There
will be, consequently:

= Fuchsia was left headless and could be reached through fx shell.
= Under such a constraint, GUI-based testing and remote access through VNC were out of the question.

= The guest OS did not have the same capacity to integrate into the Apache Guacamole dashboard as Android and
Haiku.

This demonstrates the early-stage nature of Fuchsia for open virtual deployment and highlights the need for GPU
passthrough or dedicated hardware (e.g., Pixelbook, Intel NUC) for complete system emulation.

GuestCPU 0OS CPU Cores RAM Disk Access Type

Android 2 3 GiB 20 GiB VNC via Guacamole
Haiku 2 2 GiB 4 GiB VNC via Guacamole
Fuchsia 4 16 GiB min. 80-90 max. 130-140 GiB FEMU/ Shell access

Table 3: Resource Allocation and Access Type for Guest Operating Systems in QEMU/KVM Virtual Environment.
Source: [13]

Each configuration profile was used in the deployment of each of the operating systems. QEMU/KVM allowed adjusting
allocations according to the demands that a given system had. Table 3 gives a comparative description of the resource
allocation and access mechanism upon which each guest OS is deployed in QEMU/KVM. The Android-x86 virtual
machine had 2vCPUs, 3GiB of RAM and a 20GiB qcow?2 disk image and was accessed using VNC through Apache
Guacamole. Likewise, Haiku OS VM had 2 vCPU, 2 GiB RAM and 4 GiB disk but with Guacamole access. Due to the

21

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPUED SCIENCES

ongoing limitations of Fuchsia's graphical interface in virtualized environments, the system was booted with 4 vCPU, 16
GiB RAM, and a min. 80-90 max. 130-140 GiB disk (depends on hardware), and accessed through the serial shell interface.

Disk and Image Management

Any given guest operating system employed the gcow2 image format, which was dynamic in disk allocation. Libvirt was
used to manage the default storage place of such pictures, which was /var/lib/libvirt/images. Here, Figure 7 displays the
default storage pool (/var/lib/libvirt/images) used by QEMU/KVM for storing virtual machine disk images in .qcow?2
format.

Two volumes are configured:

= android-x86-9.0.qcow? that is allocated 20 GiB.

= haikunightly.qcow?2 size: 4 GiB.

This confirms the provision of persistent storage of guest OS instances in the default libvirt-managed directory. The
qcow?2 format supports snapshots, compression, and dynamic resizing, making it ideal for virtualization workloads [3].
Qcow? stands for "QEMU Copy-On-Write version 2,” which enables efficient storage usage and layered image snapshots.
See Figure 7.

QEMU/KVM - Connection Details B &5 &
File

Qverview Virtual Networks Storage

1g3 default Details XML
Filesystem Directory
! Egg?tl;n?%?rectory MName: default
Size: 380.72 GiB Free [86.63 GiB In Use
Location: Jvar/lib/libvirt/images
State: || Active

Autostart: On Boot

Volumes @ C

android-x86-9.0.qcow2 20.00 GiB qcow2 android-x86-9.0
haikunightly.qcow2 4.00GiB qcow2 haikunightly

Figure 7: QEMU/KVM Storage Pool Configuration Showing gcow2 Disk Images for Android and Haiku Virtual Machines

Virtual Disk Format and Networking

Each of the virtual machines was based on QCOW?2 disk images, which allowed snapshotting and on-the-fly resizing.
Networking was set to be through NAT mode, where outbound traffic was open so that updates or any package could
communicate. To remote-control the GUI of the VMs, QEMU ran VMs with the port that the VNC sessions listened
to facing localhost, connecting to Apache Guacamole internally. Virtual machines were all of the qcow2 format, which

22

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

makes it possible to dynamically resize or reset disk space. The networking was enabled on NAT mode, allowing outbound
access to the internet and isolating guest OSs to the external networking. For remote GUI streaming, VNC services on
each guest OS were bound to the host's localhost interface and accessed internally via Apache Guacamole's HTML5
interface.

Automation Support and Snapshot Support

The virtualisation environment was designed to support snapshotting of virtual machine (VM) states using libvirt and virt-
manager. This was particularly useful in the iterative process of installing Android and Haiku systems, when connecting
to a VNC server, tweaking appearance or debugging a GUI or installing a software package usually took trial-and-error.
The use of snapshots meant that setup times were dropping as the system could be returned to a clean state much faster
without the need to restore the system to its full state. The creation and control of snapshots was done via the GUI of
virt-manager, where both live and offline snapshot functionality is available. This made the design highly modular and
test-friendly, allowing each guest OS to be restored before any experimental changes [24], [35].

3.3 Remote Access Architecture

One of the essential parts of the project was the possibility of remote access to the guest operating systems (Android-x86,
Haiku OS, and Fuchsia OS) installed under a QEMU/KVM virtualized system by means of a browser session. The main
goal was to provide real-time graphical access, which did not require the use of local client software installation. They
managed to do this with the Apache Guacamole and Shell, which used the VNC protocol to forward the display using
framebuffer.

Overview System Design

The access model was developed using the layered architecture in which each guest VM would send its graphical shell
across using VNC, which could be viewed using a web client linked up to the gateway Guacamole. This allowed seamless
session initiation and input capture through a browser [18].

QEMU/KVM VNC Configuration

To enable remote graphical access without requiring additional client installations, each guest virtual machine (VM)
was configured using QEMU’s built-in VNC (Virtual Network Computing) server. The functionality naturally enables
lightweight usage, the virtual machines can be accessed and managed without dedicated displays devices and peripheral
software on the host system. That is why the VNC mode of QEMU is very applicable in the headless system and remote
access applications. The boot process of each VM was invoked using the -vnc flag and this aired the graphical console
to a port which was allocated to the VM and was also bound to the local host.

The scheme allowed that several guest systems, including Android, Haiku and Fuchsia, could be allocated each a separate
display port, and simultaneously controlled.

Moreover, each operating system was configured to automatically launch its graphical user interface (GUI) on boot.
This dispensed with any necessity to log in to the console by hand or redirect the display into the VM and made an easy
hands-off transition between the boot prompt and a full graphical interface after a VNC connection was made. This
minimalist and flexible configuration provided a reliable backend for remote access via Apache Guacamole, enabling the
simultaneous testing of multiple operating systems, even without physical monitors or external client software [3].

This diagram Figure 8 illustrates the overall architecture:
Guest OS (VNC Output) - QEMU/KVM Host — Apache Guacamole — Browser Client

23

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

Guest OS
(VNC Output)
y A 4
QEMU/KVM
Host
’ v .
Apache
Guacamode
p A 4 .
Browser Client

Figure 8: Remote Access Architecture Diagram

Apache Guacamole Gateway

Figure 9 shows the Guacamole login page, listing configured OS sessions.

= Apache Guacamole is a clientless remote desktop gateway, written in HTML5. It was a connection point to get to
the guest OSes using VNC in this project.

= Installed via manual set-up. In /etc/guacamole/user-mapping.xml, the user had to map each VM manually.
= Connected to localhost VNC ports (e.g., 5905 for Android, 5903 for Haiku).

= The web interface will be exposed in the form of local authentication.

System Flow and Access Logic
The end-to-end access cycle followed this sequence:

1. User opens browser — Guacamole portal loads.
2. User logs in — selects guest OS.
3. Guacamole connects to VM's localhost VNC port.
4. Guest OS GUI streamed via HTML5 canvas.
5. Keyboard/mouse input transmitted in real-time.
This Figure 10 outlines the user-to-guest interaction lifecycle, showing browser — Guacamole — VNC — QEMU VM.

Security and Access Control

In this project, remote access architecture was ensured with specific attention given to localized security. All VNC
ports were bound to localhost inside the host system and could only be accessed through the browser by using Apache

24

I ‘ ‘H{/\N(\UR\
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

v @ Apache Guacamole x o+ - m %

€« G @ localhost:8080/guacamole/#/ 0% & OO ¢

S

APACHE GUACAMOLE
Username

Password

Figure 9: Apache Guacamole Web Interface

Source: [6]
B 1) HTTP/ WebSocket Guacamole
rowser (Web Proxy)
(Client) - Gaucd (Daemon)

2) VNC Protocol (RFB)
Port: 5900/N

VNC Server
(Running on VM)

3) VM Display

Virtual Machine
(Linux / Windows)

Figure 10: Remote Access Flowchart

Guacamole. This makes sure that raw framebuffer data never travels off the machine in the clear, which means the
attack surface is highly decreased. The Apache Guacamole interface itself was optionally secured using HTTP Basic
Authentication, and in production environments, it can be reverse-proxied behind Nginx to enable HTTPS with TLS
encryption [18]. Even though this project was implemented in a restricted setting, later versions can support a more

25

‘ FRANKFURT

CHAPTER 3. SYSTEM DESIGN u!»\pmﬁ?;ﬁifilli

efficient user identity verification, enabling features such as multi-user session management using LDAP or SQL-based
Guacamole configurations.

Remote Access Limitations

Although the graphical remote access of Android and Haiku virtual machines was successfully implemented, there were
significant limitations that were realized, especially when Fuchsia OS was to be involved. Because it is experimental and
depends on the Zircon microkernel, at present, Fuchsia does not have comprehensive VNC or framebuffer rendering
when used in QEMU-based environments on non-Google platforms. After successfully booting using fx shell command
into a serial shell, the system did not show any GUI output. Efforts to display the graphical sessions using VNC turned
into blank screens or crashes of the emulators, according to the reports and feedback of developers and the community.
This hardware limitation is due to the fact that GPU passthrough is not supported, and the inability to use Intel Xe
graphics on the HP EliteBook 850 G8 host.

This Figure 11 screenshot demonstrates the terminal-based interface of the operating system Fuchsia, which is accessed
with the help of the fx shell command typed in after starting the emulator. The result is a confirmation that the Fuchsia
CLI was successfully accessed in serial shell mode, and it enumerates the main directories associated with the core system
bin blob, boot and pkgfs. This mode was the only operative interface because the graphical rendering did not work.
It highlights the headless configuration's operational status, despite limitations for browser-based platforms like Apache
Guacamole.

g sh Q = al

B S ffx emu start
Auto resolving networking to user-mode. For more information see https://fuchsia.dev/fuchsia-src/development/build/emulator#networking
Logging to "/home/jatin/.local/share/Fuchsia/ffx/emu/instances/fuchsia-emulator/emulator.log"”
Waiting for Fuchsia to start (up to 60 seconds)...
Emulator is ready.

B $ fx shell
Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run 'fx metrics’
To opt in or out, run 'fx metrics <enable|disable>

Figure 11: Host Fuchsia OS Running in Serial Shell Mode on Ubuntu Host

As part of the troubleshooting process during the Fuchsia OS deployment, the user Jatinkumar engaged with the official
Fuchsia Discord channel to seek community guidance [27], [14]. Once the successful completion of all stages of builds, the
emulator always ran into a dead end after the presentation of the name of Fuchsia. A message was posted summarizing
the issue and including screenshots of the emulator state and diagnostic attempts (see Figure 12). This outreach was an
active accountability to the Fuchsia developer community, and a showcase of cases not being reported well, even with
correct configuration and compatibility with the environment. This outreach reflected proactive engagement with the
Fuchsia developer community and demonstrated transparent reporting of unresolved boot limitations despite accurate
configuration and environment compatibility.

26

I ‘ ‘H{/\N(HHH
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

v @ -Discord | #fuchsia| Fuc x + - B x

€ G % discord.com/channels/835268677472485376/862383609317400596 * O L O

fuchsia felcome to #fi Please use t el for t F As areminder of the #rule: ersations s emain focused on fe S % A &

» 7 e
[hev] @ unkemr &P ®/5;

| am currently using Ubuntu 24 TLS and have been following the official documentation to build Fuchsia OS. | have completed all the necessary steps for building the S, and | did not encounter any errors during
the build pr
mu start, the emu , but | can only bar. Unfort am unable tointeract

urations are supported, but the issue p out to se e co perienced a similar

e current state of the emulator.

Thank you in advance.
fuchsia

v # intros

) Jatinkumar

Figure 12: Discord Query Posted by Jatinkumar on Fuchsia Support Channel
Source: https://discord.com/channels/835268677472485376,/862389609317400596

3.4 Security Consideration

The virtualization environment designed for this project emphasizes localized security, ensuring that virtual machine
(VM) access and system integrity are maintained without relying on external exposure. Given that all guest operating
systems—Android-x86, Haiku OS, and Fuchsia—were accessed through remote protocols such as VNC or serial shell
interfaces, special care was taken to contain access within the host network while ensuring that remote connectivity was
still functional for the user.

Host-Level Isolation and VNC Containment

Its architecture was based on QEMU/KVM, and each virtual machine was set up with VNC output directed to the
localhost interface only. This made sure that there was no framebuffer or graphical data sent on the open networks. The
system, instead of exposing VNC sessions directly, used Apache Guacamole as an intermediate. Any remote access of
the GUI was through Apache Guacamole, which safely communicated to VNC-bound ports on localhost. Guacamole was
a secure web-based proxy and pulled display streams off localhost and displayed it to the user in an HTML5 browser
interface. This technique was abstract and restrictive on exposure and kept the network level of isolation and while the
same time supporting interactive sessions.

Moreover, Guacamole itself was running in a Docker container, and it added one more point of isolation on an application
level. This containerized environment limits access to the Guacamole service and guarantees minimal privilege execution
during its operations on the host system.

Authentication and Access Management

The virtualization environment that is developed under this project highlights the localized security so that the access of
virtual machine (VM) and system integrity are preserved without the need to depend on exposure. Since all Android-x86,

27

I ‘ FRANKFURT

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

Haiku OS, and Fuchsia were retrieved using remote protocols, i.e., VNC, or serial shell connection, all endeavors were
made to ensure that the access remained within the host LAN and at the same time, the user was able to communicate
effectively with the remote machine.

Host-Level Isolation vnc containment

The system was based on the architecture of QEMU/KVM, in which every virtual machine was set up with VNC output
strictly attached to the localhost port. This made sure that there was no framebuffer or visual representation data sent
across broadcast networks. Instead of exposing VNC sessions directly, the system continuously used Apache Guacamole
in the middle. Any web-based GUI claim was connected with Apache Guacamole, which safely connected VNC-bound
ports in localhost. As a safe web-based proxy, Guacamole obtained display streams on the localhost and displayed them
to the user interface, constrained in the browser interface (HTML5). The approach was not only abstract and restricted
the visibility but also supported a network-level isolation with the capability of an interactive session [18].

In addition, it can be kept in mind that Guacamole installation in this project was native, but can also be hosted in a
Docker container to have another isolation layer at the application level, too.

Authorization and Access Control

The default web interface in the Guacamole gateway in the current installation made it possible to use the basic
authentication. Each of the users had to log in through the browser and then start their VM session. SQL-based
authentication and LDAP interaction have not been enabled, but were fully supported in the project implementation
and will be the future-proof method to use in deployments requiring multiple users and at higher levels of security. The
guacamole was the only access tool in the test, and all the remote sessions went through a verified gateway.

Further, all VNC ports used by QEMU were actually mapped to loopback to avoid access by other machines on the
network. Only the predefined component Guacamole service had been permitted to access these ports, and this continued
to be the backend of the host system.

Considerations of encryption and TLS

Although encryption using TLS was not established in this version of the system, given that it is still in its developmental
and single-user stages, the architecture can support safe modifications. For example, Guacamole's frontend can easily
be reverse-proxied behind Nginx or Apache HTTP Server to provide HTTPS encryption, especially when integrated
with Let's Encrypt certificates or internal certificate authorities. In real-world use, this would keep all data-in-transit, i.e
keyboard and mouse input, secure even against possible interception. The Guacamole documentation provides several
ways of adding TLS support and HTTPS proxying.

TLS encryption can be regarded as a requirement in production-quality deployments. Because the Guacamole container
is available locally only and not connected to the external networks, encryption-in-transit was not a priority in its
implementation. This would enable the Security Guacamole sessions to be secure enough to be used in an enterprise or
educational setting, particularly when combined with two-factor authentication (2FA) plugins, SQL user management,
or LDAP-based role segregation.,

Snapshot Rollback and Data Integrity

Data integrity and recovery were also given some security consideration. Snapshots were important in having stable system
states. Using libvirt's native snapshot capabilities, the user was to create pre-configuration and post configuration VM
checkpoints. In case of an operating system misconfiguration or application failure, it was possible to revert the VM to
the same state by using these snapshots in a short period of time. The mechanism was most helpful in the implementation
of iterative configuration of Android and Haiku virtual machines when installation procedures were different in different
packages and services [25], [24]. Snapshots provided non-destructive testing as well, particularly when there was VM-level
configuration of the network or desktop service experimentation in areas that required installing VNC servers within the

28

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

guest OS.

3.5 System Diagram

In this part, the author provides an architecture of the virtualization-based testbed to deploy and manage three guest
operating systems, including Android-x86, Haiku OS, and Fuchsia OS. The system incorporates virtualization technology,
remote access software and security mechanisms to allow isolated and controlled environments to conduct comparative
tests.

Architecture Overview

The bottom of the system is the host operating system, which is Ubuntu 24.04.2 LTS installed in HP EliteBook 850
G8 with 16 GiB of NAND flash memory and 11th Gen Intel Core i5 processor. This machine has hardware-assisted
virtualization (VT-x), which has been confirmed through the Iscpu outputs. The virtualization level includes QEMU as
the hardware emulator and KVM as the hypervisor, giving performance-optimised virtualisation and access to hardware at
the native level. The libvirt APl is used to control these components, and the virt-manager is the graphical interface that
can be used to define, launch, and monitor virtual machines. The guest OS level contains Android-x86, Haiku OS, and
Fuchsia OS, which have a minimalized set of resources (CPU, RAM, disk) and a particular access protocol accordingly
to their support of GUI. Android and Haiku have a graphical interface, accessible using VNC, whereas Fuchsia can only
be accessed through a serial shell interface (because the implementation does not support a GPU passthrough).

Remote Access Flow

The architecture provides a user GUI access (through the browser) to the guest operating systems with Apache
Guacamole serving as a web gateway. Through Virtual machines, VNC servers are only bound to the localhost and
cannot be exposed to the external network. Apache Guacamole, when run under Docker, passes authenticated traffic to
these VNC endpoints and provides them through a normal HTML5 canvas in any current web browser. This eliminates
the need for client-side software, fulfilling the project’s objective of a platform-independent and lightweight access model.
In case a graphical rendering did not work, an instance of Fuchsia- the system had serial shell access only. Android and
Haiku were viewed in Guacamole only because the emulator was not ready to run VNC-based graphical tools. Fuchsia
was not connected to the Guacamole system, and its functioning was via Serial Shell. VMs are accessible at addresses
such as http://localhost:6080/vnc.html and allow direct GUI rendering through browsers on supported guests. The
snapshot function in this system is also enabled through Virt-Manager and libvirt. It can be rolled back and recovery
done, particularly when doing some installations or configurations of software within Android and Haiku virtual machines
[25].

Figure 13 shows Ubuntu Host — QEMU/KVM + libvirt — Android/Haiku (GUI via VNC) & Fuchsia (Serial Shell) —
Apache Guacamole (Android/Haiku only) — Browser Client. The Fuchsia VM was not considered part of the Guacamole
pipeline, and only shell interactions were supported.

Reflection on Fuchsia Deployment

In the course of Fuchsia OS deployment, it was observed that an error on the configuration of product bundles arose so
that the emulator could not boot the intended system image. This section documents the error, its resolution, and the
implications for Fuchsia's experimental deployment tooling. The bug appeared when trying to launch the Fuchsia emulator
by calling this command: fx emu. The Fuchsia emulator comes with a product bundle that needs downloading and a
correct set-up on the host system, yet on first setup, an error occurred of incomplete or missing bundle configuration.

29

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 3. SYSTEM DESIGN OF APPLIED SCIENCES

Remote Access Flow - Browser-Based GUI Access

Ubuntu Host

24.04.2LTS N
|
]
]
L]
]
QEMU/KVM + libvirt :
Hypervisor .
i
)
]
]
k | ¥
Guest Operating Systems Emulator Based
Android-x86 Android-x86 Fuchsia OS
GUI via VNC GUI via VNC Serial Shell Only

|—¢

Apache Guacamole
Android/Haiku Only

Browser Client
Platform Independent

Browser-Based GUI Access Flow

1. Ubuntu Host -> QEMU/KVM + libvirt Hypervisor
2. GUl-enabled VMs accessible via browser: i
e Android-x86: WYNC (port 5905) -> Apache Guacamole -> Browser |
e Haiku OS: VNC (port 5903) -> Apache Guacamole -> Browser i
3. Fuchsia OS: Serial console access only i
¢ No GUl interface available !
e Terminal-based interaction through host system |

Figure 13: Remote Access Flow- Browser-Based GUI Access

30

‘ FRANKFURT

CHAPTER 3. SYSTEM DESIGN u!»\pmﬁ?;ﬁifilli

Network and Storage Layer

The network was set up in NAT mode so that virtual machines were able to reach the internet and get updated
information as well as packages, but could not be reached by external networks. All VNC traffic, WebSocket streams and
shell interfaces were restricted to the localhost interface to have better security. Retaining of VMs was in the QCOW?2
format with disk storage, it supported dynamic allocation, compression, and snapshotting. These virtual disks were
stored in the default libvirt image directory (/var/lib/libvirt/images) and managed through virt-manager's graphical
interface. Check Figure 14.

Internet
External Metwork

L UpdatesPackages

NAT Mode Configuration
VMs -= Internet Access
External -= VMs Blocked

l

Ubuntu Host (localhost)
Security Boundary
WNC Traffic WebSocket Shell Interface
|
' 1
Virtual Machines Emulator
Android-x86 Haiku Fuchsia OS
VNC: 5905 WNC: 5903 Serial Console Only
QCOW2 Virtual Disks Ends Here - No Storage Layer
I
1
Storage Layer
Mvar/lib/libvirt/images/
Dynamic Compression Snapshot Backup
Allocation Support Capability Support
Managed via virt-manager GUI

Security Configuration

Android: droidWYNC-NG on 5905

E . WNC Server: 192.168.122.x (NAT) i
i Fuchsia: serial console (no GUI) - Isolated access i

Figure 14: Storage Layout and Network Configuration for Virtual Machines

31

I ‘ ‘VK/\N(HHH

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

Actual Screenshots Documenting the Issue:

1. Product Bundle Error Screenshot: As seen in Figure 15, when attempting to run the Fuchsia emulator after a
successful build, the system displayed a "product bundle” error that prevented proper emulator initialization.

nakrani@nakrani-HP-EliteBook-850-G8-Notebook-PC: ~/fuchsia

% cd fuchsia/
: $ ffx enu start
Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run 'fx metrics
To opt in or out, run ‘fx metrics <enable|disable>

Error loading product bundle: Could not find product bundle in "/home/nakrani/fuchsia/out/fuchsia.x64-release/obj/build/images/fuchsia/fuchsia/product_bundle”

Figure 15: Product bundle error

2. Bundle Setup Failure Screenshot: The next trial to resolve the bundle problem, Figure 16 also caused a fault,
meaning more configuration issues with the product bundle system.

nakrani@nakrani-HP-EliteBook-850-G8-Notebook-PC: ~/fuchsia

: $ fx set fuchsia.x64 --with //bundles:tools --release
Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect,
To opt in or out, run “fx metr

x64-release
[Nudge] You have set --release, -- https://fuchsia.dev/fuchsia-src/development/build/build_systen/fuchsia_build_system_overview#quick_comparison
(Silence nudge with ‘ffx confi ui.nudges.balanced false')
Unresolved dependenct
//:developer_universe_packages(//build/toolchain/fuch:
needs //bundles: tools(//build/toolchain/fuchsi

error running "/home/nakrani/fuchsia/build/regenerator”: exit status 1
: $

Figure 16: Bundle Setup Failure Screenshot

32

I ‘ ‘H{/\N(HHH

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

3. Build Success but Runtime Failure: Although compilation was successful (Figure 17 showing 100% build com-
pletion), the dynamic run-time environment did not initialize the GUI components properly.

pnakrani-HP-EliteBook-850-G8-Notebook-PC: ~/fuchsia

[Running without networking enabled and no interactive console;
there will be no way to communicate with this emulator.
Restart with --console/--monitor or with networking enabled to proceed.
$ fx set fuchsia.x64 --release
Please opt in or out of fx metrics collection.
You will receive this warning until an option lected.
To check what data we collect, run 'fx metrics
To opt in or out, run 'fx metric: able|disable>

[The build directory for this build a

[Nudge] You have . c ced: htt .de sta-src/development /build/build_systen/fuchsia_build_system_overview#quick_comparison
(Silence nudge with “ffx c

Generating Ninja outputs file to

(dfuchsla in_tree_idk
$ fx build

Please opt in or out of fx metrics collection.
You will recetve this warning until an op! selected.
To check what data we collect fx e .
To opt in or out, run 'fx metrics <enable|disable>

ninja: Entering directory °/home/nakrani/fuchsia/out/fuchsia.x64-releas
09](8) BAZEL //build/baze
ver and connecting to
11](8) CXX obj/src/dev
301(7) ACTION //build/inage x
WARN Hardlink at ot yet readable
WARN Hardlink 0607de els abfedal 11 not readable, falling back to copy
WARN Hardlink a - bd274af1206d8F2f9" not yet readable
® WARN Hardlink sitory 6a1d06 e78eb808eb79 e 4 d6" not yet readable
WARN Hardlink i epost 3 5690efff9 a {11 not readable, falling back to copy
:00 WARN Hardlink er-fi epo 345be78eb8) Still not readable, falling back to copy
:30](0) ACTION //:test- 6

Figure 17: Build Success but Runtime Failure

Interaction Cycle

The user interaction cycle gets instantiated as the host comes up with VMs using the virt-manager. All guest operating
systems are started with the initialisation of their GUI or shell interface and wait to receive input in VNC or serial ports.
The Guacamole web interface, which is built on Docker, redirects connections to the VNC socket to the respective VNC.
Through the Guacamole web portal, the users are logged in and communicate with the guest OS through the internal
browser.

Figure 18 shows (diamgram showing: User Browser — Guacamole Web Ul — VNC(localhost) — Android/Haiku Display.

Fuchsia access continued to be out of this flow and was executed through fx shell only using the host terminal. This modular
flow is a clean break between host and guest environment, in addition to offering minimal attack surfaces (exposure of
the network), as well as offering a similar user experience across operating systems with varied GUI capabilities.

33

| | FRANKFURT

CHAPTER 3. SYSTEM DESIGN OF APPLED SCIENCES

Virtualization-Based Testbed Architecture

Host Operating System
Ubuntu 24.04.2 LTS
HP EliteBook 850 G8 | 16 GiB RAM | 11th Gen Intel Core i5

Hardware-assisted virtualization (VT-x)

Y

Virtualization Layer

QEMUJ/KVM libvirt virt-manager
Hardware Emulator Management API| GUI Interface
+ Hypervisor + Snapshots

/ ~
/ Guespperating Systems \

Android-x86 Haiku OS Fuchsia OS Direct CLI
GUI via VNC GUI via VNC Serial Shell Only Serial Shell
v/ Guacamole Access v Guacamole Access X No GUI Access Fuchsia Only

\ i

.

Remote Access Gateway

Apache Guacamole
(Docker Container)
VNC = HTMLS5 Canvas

Browser Client
Platform Independent
http:/flocalhost:6080/vnc.html

Legend:—— VNC Access = Serial Access = Web Gateway VNC bound to localhost prevents external exposure

Snapshot functionality available for Android-x86 and Haiku OS via virt-manager

Figure 18: Diagram of Architecture of the virtualisation-based testbed used to deploy and manage three guest operating
systems.

34

4. Implementation

Chapter 4 describes the end-to-end work of virtualization and the access framework. It starts with describing the Android
and Haiku VM configuration processes in QEMU/KVM, such as ISO configuration and Creation, resource configuration
and installing the filesystem. Then, it explains the Fuchsia build from-source process, which emphasizes the environment
bootstrap,product configuration, headless emulator start and shell access even without a GUI (Section 4.3). Then follows
the compilation and deployment of the Apache Guacamole manual, including the establishment of guacd, the use of
Tomcat-based webapp deployment, JDBC authentication, and connection configuration of Android and Haiku (Section
4.4). Last but not least, NAT networking and port forwarding scheme is provided, which allows binding the VNC port on
every VM to localhost, ensuring its easy to access through the browser with the help of Guacamole (Section 4.5). All the
commands and configuration files, as well as screenshots, are presented throughout to make reproduction possible.

4.1 Android Setup in QEMU with Web Access

In setting up the Android environment in the QEMU/KVM virtualized system, it started with loading the official Android-
x86 9.0 ISO image from the Android-x86 project site [10]. This ISO was chosen because it can run well with the x86
architecture, and it is stable on KVM-based virtual machines. The virtual machine configuration was performed through
a graphical user interface of Virtual Machine Manager (virt-manager), which manages QEMU/KVM instances. When
the user opened virt-manager, it began the configuration process, and the user clicked the option called Local install
media (ISO), then clicked the Browse Local search option and loaded the Android ISO that was downloaded. This step
is represented in Figure 19, which shows the launch interface and ISO selection process. Figure 20 explains the main
interface of virt-manager at startup.

Virtual Machine Manager o =) &
File Edit View Help

(5

QEMU/KVM

Figure 19: Virtual Machine Manager interface launched to begin Android VM creation.

35

CHAPTER 4.

IMPLEMENTATION

| I FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

New VM X

Create a new virtual machine

Connecktion: QEMU/KVM

Choose how you would like to install the operating system
© Localinstall media (IS0 image or CDROM)
Network Install (HTTP, HTTRS, or FTR)
Import existing disk image

Manual install

Cancel Back Forward

Figure 20: Initial VM creation step with local install media option selected.

Figure 20 shows the first stage of creating a new VM using local installation media.

New VM x

ate a new virtual machine

Choose ISO or CDROM install media:

No media selected ~ Browse...

Choose the operating system you are installing:
Q Waiting for install media / source

Automatically detect from the installation media /source

Cancel Back Forward

Figure 21: File browser opened to locate the Android 1SO file.

36

CHAPTER 4. IMPLEMENTATION

I | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

Error! Reference source not found. and Figure 22 illustrate the file selection process from the local system.

Figure 22 illustrates the file selection process from the local system.

Locate ISO media volume X

Details XML

179 Downloads Size: 385.27 GiB Free / 82.07 GiB In Use
Filesystem Directory (Y et var/lib/libvirt/images|

Volumes @ C

Volumes -~ Size Format Used By

[+ BN N <] cancel choose Volume

Figure 22: Android-x86 ISO successfully selected for installation.

(android-x86-9.0 on QEMU/KVM D & xw

File virtual Machine Vview Send Key

=9 » noe - B <«

droidVNC-NG Admin Panel

Settings
Port
Password
Access Key
Start on Boot

Start Delay (s)

File Transfer

Scaling

View Only

Mouse Cursors

Permissions Dashboard

Figure 23: DroidVNC-NG password configuration screen inside Android-x86

37

| l FRANKFURT

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

The Android remote GUI session exploits Apache Guacamole, which requires authentication of the user before being
allowed to connect to the Android virtual machine running the DroidVNC-NG server, hence securing the Android virtual
machine. The VNC system was set up in such a way that it always demanded a password to access before any remote
connection could be achieved Figure 23.

The automatically executed detection option was automatically turned off to prevent improper configuration, and the
Android-x86 9.0 profile was specifically selected among the options on the compatibility list, so that QEMU configured
the hardware options appropriate to the needs of the Android kernel and services. This interface is detailed in Figure 24,
where the user sets the operating system type manually.

New VM ®

m Create a new virtual machine

Choose ISO or CDROM install media:

oads/android_x86/android-xB6_64-9.0-r2.iso = ~ Browse...

Choose the operating system you are installing:

Q |android-x86 9.0 &

Automatically detect From the installation media / source

Cancel Back Forward

Figure 24: Manual selection of Android-x86 9.0 as the guest operating system.

Subsequent configuration involved allocating hardware resources appropriate for Android’s graphical environment. The
memory allocation was set at a minimum 3 GB RAM and 2 CPU cores in order to have maximum performance without
straining the host system, as shown in Figure 25. A 20GB dynamic QCOW?2-format virtual disk was then configured, so
it is possible to make a snapshot and use the space optimally.

This disk setup appears in Figure 26. The configuration pre-check box of the Customize pre-install configuration was
checked to enable extensive pre-review and alteration of the VM configuration to be made before the setup is completed.
The type of name followed was android-x86-9.0-2, and all settings were confirmed prior to commencement of installation.
This step of the procedure, with its configuration screen and install-trickner, can be seen in Figure 27 and Figure 28.

38

| FRANKFURT

CHAPTER 4. IMPLEMENTATION OFAPPIL.ES'SVJSSQE

New VM X

Create a new virtual machine

Choose Memory and CPU setkings:

Memory: | 3072] - 4+
Up to 15676 MiB available on the host
CPUs: | 2 - 4+

Up to 8 available

Cancel Back Forward

Figure 25: Allocation of 3GB RAM and 2 CPU cores for optimal performance.

New VM *

Create a new virtual machine

Enable storage For this virtual machine

© Create a diskimage For the virtual machine

20.0 — + |GiB

Select or create custom storage

Cancel Back Forward

Figure 26: Storage configuration using a 20GB qcow?2 virtual disk.

39

CHAPTER 4.

IMPLEMENTATION

| I FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

New VM X

Create a new virtual machine

Ready to begin the installation

Mame: | android-x86-9.0

T

05: Android-x86 9.0

Local CDROM/ISO

2048 MIiB

4

20.0 GIB ...ibvirt/images/android-x86-3.0.qcow2

Customize configuration before install

» Network selection

Cancel Back Finish

Figure 27: VM named and prepared for advanced configuration.

File WVirtual Machine View Send Key

=@ » 10 - B

Os information
@B Performance

{:} CPUs Name:

Memory uuID:

Basic Details

HF Controller USB 0
HF Contreller VirtIO Serial 0
HF Controller PCIO
mF Controller IDEQ
{@4 UsB Redirector 1

Add Hardware

android-x86-9.0 on QEMU/KVM

android-x86-9.0

907cdb14-3ed4-4c8e-8365-b98d233c035F

Boot Options Status: .| saved
@ IDE Disk 1 Title:
(+) IDEcDROM 1 -
4 Description:
t Nicie2Tar
@ Tablet
) Mouse
Keyboard Hypervisor Details
D Display Spice Hypervisor: KVM
Sound ich6 Architecture: x86_64
= Serial 1 Emulator: fusr/bin/gemu-system-x86_64
= Channel (spice) Chipset: 440FX
C] Video VGA Firmware: BIOS

Figure 28: Advanced VM configuration finalised; installation initiated.

After the VM with Android ISO was already launched, the installation of the Android operating system directly to the

40

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

virtual disk was performed, whereupon reboot, Android became operational in its default setup environment, where
Wi-Fi was configured to proceed with access to the web. But even with a successful deployment, remote access did not
work out that well. The first attempt in connecting Android GUI via a VNC server and loading the latter on browser
clients presented a blank screen. This was resolved by using a workaround that was found in the community issue
tracker, Issue #35 on Github [29], in which the users shared that the framebuffer was inactive when the VNC server
was the only server available. To fix this, the application was initially downloaded through F-Droid [33], and then, the
implementation of the framebuffer occurred. It was only then that the DroidVNC-NG VNC server was installed, which
eventually allowed the GUI to be visualized via VNC.

After this setup, the localhost VNC port of the virtual machine was pointed locally and combined with Apache Guacamole,
according to the configuration of the system. Guacamole is also linked with the VNC stream and allows the Android
graphical world to be accessed through a browser. shows the layered architecture of the system in a visual way which
explains this mechanism. Figure 8 illustrates the hardware behind it, the host Ubuntu OS, the KVM/QEMU virtualization
layer, the Android OS, which has a VNC server running on it, and a Guacamole server to allow the Chrome web browser in
the host machine to access the remote session. The layered stack emphasises how virtualization, local loopback networking
and Guacamole integration can be used to provide a fully functional remote desktop to the Android-x86 guest operating
system in a controlled, browser-based environment.

4.2 Haiku Setup in QEMU with Web Access

The QEMU machine or the host system was a Linux machine in which the Haiku operating system was virtualized, where
the aim was to remotely access the system using a web browser. It was also accomplished by closely adhering to the
documentation presented on the official site of the Haiku project, namely the documents at the links https://www.haiku-
os.org/guides/virtualizing/KVM [13] and https://www.haiku-os.org/get-haiku/installation-guide [21] and assuming
compatibility and proper installation in a virtualized infrastructure.

Virtual Machine Manager D e G
File Edit View Help

.

QEMU/KVM

Figure 29: Launch screen of Virtual Machine Manager used to initiate Haiku VM setup

41

| I FRANKFURT

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

The process started by executing the Virtual Machine Manager (virt-manager) which is a GUI utility to control QE-
MU/KVM environments. The interface loaded successfully, as depicted in Figure 29.

New VM ®

m Create a new virtual machine

Connection: QEMU/KVM

Choose how you would like to install the operating system
© Localinstall media (150 image or CDROM)
Network Install (HTTP, HTTPS, or FTP)
Import existing disk image
Manual install

Cancel Back Forward

Figure 30: Selection of local installation media for creating a Haiku virtual machine

New VM X

m Create a new virtual machine

Choose ISO or CDROM install media:

Downloads/haiku-ribetas-x86_64-anyboot.iso =~ Browse...

Choose the operating system you are installing:
Q0 Haiku Nightly|

Automatically detect from the installation media /source

Cancel Back Forward

Figure 31: Browsing local storage to locate the Haiku ISO image

To start creating the VM, the installation method selected was “Local install media,” which enabled the use of a pre-

42

| I FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

CHAPTER 4. IMPLEMENTATION

downloaded Haiku ISO file (Figure 30). The ISO file was then located from the local storage (Figure 31) and selected for
the VM installation. After that, automatic identification of the OS was deactivated, and system parameters, including
architecture and memory, were configured manually as shown in Figure 32.

New VM b4

reate a new virtual machine

Choose Memory and CPU settings:

Memory: | 2048| -+
Up to 15676 MIB available on the host
CPUs: | 2 -+

Up to 8 available

Cancel Back Forward

Figure 32: Configuration of guest OS settings for the Haiku system

Once the system configuration was finalized, the installer transitioned to the final pre-installation review screen (Figure
33), before booting into the Haiku ISO environment. The Haiku live desktop then loaded within the virtual machine,
confirming successful 1ISO execution (Figure 34).

New VM X

m Create a new virtual machine

Ready to begin the installation

ame: | [IETTT !

0S: Haiku Nightly
Local CDROM/ISO
Memory: 2048 MiB
PUs: 2
rage: 4.0 GiB ... ib/libvirt/images/haikunightly.qcow2

Customize configuration before install

> Network selection

Cancel Back Finish

Figure 33: Final pre-installation review screen for the Haiku virtual machine

43

I ‘ FRANKFURT

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

haikunightly on QEMU/KVM - o x

File VvirtualMachine Vview SendKey

Figure 34: Haiku desktop loaded from ISO in live environment

The physical setup was done with the local GUI setup wizard of Haiku. The first step involved launching the partitioning
tool to prepare the virtual disk for installation (Figure 35). The copying of system files to the selected disk then took
place, as Figure 36 shows. The wizard confirmed successful installation in Figure 37, followed by bootloader setup (Figure
38) and the final reboot prompt (Figure 39).

haikunightly on QEMU/KVM 5 0@

File VirtualMachine View send Key

= 0 ne - @ s

ools
A | ¢ Hakunasto
- System, but there

your system. Clic

Install from: | Haiku - 1.37 GiB N

onto: | Please choose target -
> Show optional packages

Setup partitions...

Figure 35: Partitioning tool launched to prepare disk for Haiku installation

44

CHAPTER 4. IMPLEMENTATION

| I FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

haikunightly on QEMU/KVM
File wvirtual Machine Vview Send Key

=0 » nNeoe - - S

Tools

N
‘HA I K LI Press the ‘Begin' button to install from Haiku' onto Haiku'.

Install from: | Haiku- 137 GiB o

- Haiku- 1.37 GiB [/dev/disk/atapi/0/master/0] (Be File System)
 Haiku-4.00 Gi block/0/0]

> show optional packages

Figure 36: Midway through copying system files to the virtual disk

haikunightly on QEMU/KVM
File virtual Machine View Send Key

= » neoe - B

Tools

o
H A I K LI, Performing installation.

Install from Haiku-1.37GiB N

Install progress: gec-13.3.0_2023_08_10-1-x86_64.hpkg
I

317 of 469
[

Figure 37: Confirmation of successful Haiku OS installation

45

| I FRANKFURT
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

haikunightly on QEMU/KVM D O

File VirtualMachine View Send Key

=0 »no - % v

[] Drivesetup [

Disk Partition
Device
‘ The partition "Haiku" has been successfully
formatted.
H
z
| Device | File system Ok | Freespace | Blocksize | Physical blocksiz *|
B @ rdevidisk/atapi/0/master/raw 2048 204
&3 /dev/disk/atapi/0/master/0 Be File System Haiku /boot 137 Gie 430.94 MiB 2048 204
Idev/disk/atapi/0/master/1 FAT32 File System HAIKU ESP 281 miB 512 204
B ¢ /devidiskivirtualivirtio_block/0/raw 4.00 GiB 512 51
Idev/diskivirtualivirtio_block/0/0 Be File System Haiku 4.00GiB 2048 51

Figure 38: Final prompt before restarting into installed Haiku OS

To prepare Haiku for remote access, the AGMS VNC server was installed. The server binary for Haiku was acquired from
https://github.com/agmsmith /VNC-4.0-BeOS-Server [2] extracted into the filesystem, as shown in Figure 39. The server
was launched from the terminal Figure 40 and started listening for incoming VNC connections Figure 41.

haikunightly on QEMU/KVM 5 6 ¢

File virtual Machine View Send Key
=0 »neoe - ® v

Find...

v show replicants
Mount
Deskbar preferences...

Shutdown...

Recent documents
Recent folders

i ActivityMonitor Recent applications

% BePDF =

‘5 g:;acc::\rmap 1 Demos >
1 Desktop applets 3,

ey Grrererences o

< Devices

(G DiskProbe

(@ DiskUsage

£ Drivesetup

& Expander

3 HaikuDepot

<& Icon-0-Matic

) Installer

& Magnify

2 Mmail

& MediaConverter

3 MediaPlayer

& MidiPlayer

(£, SerialConnect
& SoftwareUpdater
& SoundRecorder
<& styledEdit

& Terminal

5 Vision

@ WebPositive

Figure 39: AGMS VNC server package extracted within the Haiku filesystem

46

CHAPTER 4. IMPLEMENTATION

|] FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

v O Haikuos. X+

« ¢ © loalhostaosaiuacmol

v @ Apache Guscamole 5+
& e © lalhstaosausamole/s/
RECENT CONNECTIONS

ALL CONNECTIONS

D Androidos
O Hauos

- N
w

Haiku BeBook home Quick Tour User Guide Trash

Terminal Edit Settings
> vncserver portnumber=5993

Tue Jul 22 @2:15:41 2025

MEie) 219am
P Tracker

&) Terminal

ServerMain:

Tue Jul 22 @2:

ServerMain:
ipa

Tue Jul 22 @2:

Connections:
SConnection:
SConnection:

Tue Jul 22 02:

Connections:

Tue Jul 22 @2:

Connections:
SConnection:
SConnection:
VNCSConnST:
VNCSConnST

Starting vncserver, $Revision: 1.34 §, was compiled on Oct 14
2019 at 20:26:23.

15:44 2025
Listening on port 5003

18:13 20825

accepted: 192.168.122.1::57366

Client needs protocol version 3.8
Client requests security type VncAuth{2)

18:20 2025
closed: 192.168.122.1::57366 (Clean disconnection)

18:52 2025
accepted: 192.168.122.1::35698

Client needs protocol version 3.8

Client requests security type VncAuth(2)

Server default pixel format depth 24 (32bpp) little-endian rgb8ss
Client pixel format depth 24 (32bpp) little-endian rgbses

Figure 40: Terminal window displaying the startup process of the VNC server

Figure 41: Active

HaikuOs Androios

VNC session initialized and ready for browser access

47

wad KOO

2 jatin -

CHAPTER 4. IMPLEMENTATION || e

OF APPLIED SCIENCES

To enhance security, the AGMS VNC Server password authentication was set to enable it to provide remote graphical
access. Figure 42 illustrates this and proves that there is secure access setup within the Haiku.

haikunightly on QEMU/KVM
File WVirtual Machine View Send Key

=0 » no - %5 8

v ® :
home Tracker
£ Terminal

[] Terminal: home: vncserver

Terminal Edit Settings

Welcome to the Haiku shell.

~> wncpasswd

Password: Password

Verify: Password

> WnCserver portnumber-59e3

Tue Jul 22 02:15:41 2025
ServerMain: Starting vncserver, SRevision: 1.34 $, was compiled on Oct 14
2019 at 20:26:23

Tue Jul 22 02:15:44 2025
ServerMain: Listening on port 5903

Figure 42: AGMS VNC server showing password protection setup in Haiku

Apache Guacamole was installed in the host system to grant access to the VM through the browser. A Chrome browser
launched the Guacamole dashboard interface (Figure 43). When getting access to the interface, they were offered a page
where they were to enter authentication credentials.

48

I ‘ ‘H{/\N(HHH
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

Mo ciscamole x4 _ e x
LR Y e ————— Oes &0 O:
EDIT CONNECTION £ Jatin «
e

Locat
Protocot

CONCURRENCY LIMITS

Encryption:

PARAMETERS

Network

Hostname: (102 10812258
port: £
Authentication
Username:

Password: e
Display

Read-orly:

Swap red/biue components: &

Cursar 3]

Color depth: True coe (328 ¥
Force lossless compression:

Clipboard

VNC Repeater

Destination host:

Figure 43: Chrome browser opening Guacamole interface on the host system

4.3 Fuchsia Setup Attempt and Shell Access

Downloading and Preparing the Fuchsia Source

The Fuchsia OS implementation followed Google's official documentation available at Fuchsia.dev [11].The setup process
began with installing essential development dependencies on the Ubuntu host system using the following command:

sudo apt install curl file git unzip

The Fuchsia OS implementation followed Google's official documentation available at Fuchsia.dev [11]. The setup
process began with installing essential development dependencies on the Ubuntu host system using the following
command: This installation ensured that all required tools for downloading, extracting, and managing the Fuch-
sia source code were available on the development environment. Once the host system was ready with the required
dependencies, the SDK of fuchsia was downloaded and compatibility with the platform was well tested through the ffx tool:

curl -s0 https://storage.googleapis.com/fuchsia-ffx/ffx-linux-x64 && chmod +x ffx-linux-x64 &&
./ffx-linux-x64 platform preflight

:-§ curl -sO https://storage.googleapis.com/fuchsia-ffx/ffx-1inux-x64 8& chmod +x ffx-linux-x64 && ./ffx-linux-x64 platform preflight
Running pre-flight checks...

Found all needed build dependencies: curl, git, unzip

Found supported graphics hardware: Intel Corporation TigerLake-LP GT2 [Iris Xe Graphics] (rev 01)
Found tuntap device named 'gemu' for current user
KVM is enabled for the current user
Found ssh binary and $HOME/.ssh directory.
Everything checks out! Continue at https://fuchsia.dev/fuchsia-src/get-started

Figure 44: Output of ffx platform preflight check showing successful validation

The preflight check is a crucial step that validates the host system’s capability to build and run Fuchsia OS. This
validation process examines system requirements, available resources, and compatibility factors. The environment

49

I ‘ ‘VK/\N(HHH

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

successfully passed all preflight checks, confirming that the host machine was adequately prepared for source download
and compilation processes. This successful validation is demonstrated in Figure 44. The host machine passed all
prerequisite checks required for building and running Fuchsia OS, including system compatibility and resource availability.

Following the successful preflight validation, the complete Fuchsia source tree was downloaded using the official bootstrap
script:

curl -s "https://fuchsia.googlesource.com/fuchsia/+/HEAD/scripts/bootstrap?format=TEXT" | base64
--decode | bash

The preflight check is a crucial step that validates the host system'’s capability to build and run Fuchsia OS. The involved
parties consider system requirements, the available resources and compatibility issues in this validation process. The
environment also passed all of the preflight tests meant to ensure that the host machine was properly set up to prepare
the source download and compile accomplishments. This is confirmed by reasonable validation shown in Figure 45. The
host machine had cleared all the pre-requisite conditions necessary in building and running Fuchsia OS, such as system
compatibility and system resource availability.

15 curl -sO https://storage.googleapis.con/fuchsia-ffx/ffx-1linux-x64 && chmod +x ffx-linux-x64 && ./ffx-linux-x64 platform preflight
Running pre-flight checks...

Found all needed build dependencies: curl, git, unzip

Found supported graphics hardware: Intel Corporation TigerLake-LP GT2 [Iris Xe Graphics] (rev 01)

Found tuntap device named 'gemu' for current user

KVM is enabled for the current user

Found ssh binary and SHOME/.ssh directory.
Everything checks out! Continue at https://fuch .dev/fuchsia-src/get-started

d SHOME
$ curl -s "https://fuchsia.googlesource.com/fuchsia/+/HEAD/scripts/bootstrap?format=TEXT" | base64 --decode | bash

01:15:49.773] Please opt in or out of analytics collection. You will receive this warning until an option is selected.
To check what data we collect run:
To opt-in run:
To opt-out run:

lcipd bootstrapped to path:"/home/nakrani/fuchsia/.jiri_root/bin/cipd"

Please add /home/nakrani/fuchsia/.jiri_root/bin to your PATH

01:15:53.360] Please opt in or out of analytics collection. You will receive this warning until an option is selected.
To check what data we collect run:

To opt-in run:

To opt-out run:

[01:15:53.371] Please opt in or out of analytics collection. You will receive this warning until an option is selected.
To check what data we collect run:

To opt-in run:

To opt-out run:

[01:15:53.514] Updating all projects
: Creating manifest: integration

Figure 45: Bootstrap script execution retrieving source tree and manifest files

Environment Configuration and Tool Setup

Once the source download was done, this was followed by proper configuration of the Fuchsia development toolchain.
This has been done by editing the shell profile to contain the required path variables and source scripts:

nano ~/.bash_profile

The following critical environment variables were added to ensure proper tool accessibility:

export PATH="/fuchsia/.jiri_root/bin:$PATH
source ~/fuchsia/scripts/fx-env.sh

These environment modifications were then applied to the current session using:

source ~/.bash_profile

50

I ‘ ‘VK/\N(HHH

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

With the environment set up right, some key Fuchsia development tools were brought online, such as the fx CLI and jiri
build system. The firewall was then set up done to provide appropriate connectivity of the network to the development
environment:

fx setup-ufw

Figure 46 shows the bash profile configuration process, where environment variables were properly set for Fuchsia
development tools.

m nakrani@nakrani-HP-EliteBook-850-G8-Notebook-PC: ~ x
GNU nano 7.2 J/home /nakrani/.bash_profile
PATH=~/fuchsia/.jiri_root/bin
source ~/fuchsia/scripts/fx- .sh

[Read 2 lines]

M8 Write out Al Where Is & Cut Wl Execute W® Location BV Undo B Set Mark To Bracket By Previous & Back
il Read File A Replace Al Paste BB Justify Wl Co To Line iBlE Redo B8 Copy Where Was B Next i Forward

Figure 46: Bash profile configuration with Fuchsia environment variables

Product Configuration and Build Process

The development environment was configured to build the workbench_eng.x64 product target using the fx configuration
system:

fx set workbench_eng.x64 --release

This step of configuration is essential since it adjusts the specified board target (x64), kernel configuration, choices of
drivers, and product-specific elements. The fx set command determines the compilation parameters of all builds. The
two-phase configuration process is shown in Figure 47 and Figure 48 where there is the setting of a product target, which
is then confirmed.

51

‘ FRANKFURT

CHAPTER 4. IMPLEMENTATION ml APPLED SCIENCES

: § fx list-products
Please opt in or out of fx metrics collection.

You will receive this warning until an option is selected.

To check what data we collect, run "fx metrics’

To opt in or out, run "fx metrics <enable|disable=

bringup
bringup_with_tests
core
core_size_limits

core_with_dfv2_fuzzing
core_with_f2fs
core_with_minfs
fuchsia
microfuchsia_eng

terminal_with_netstack2
workbench_eng

Figure 47: Product target configuration using fx set command - Phase 1

: S fx list-boards
Please opt in or out of fx metrics collection.
You will receive this warning until an option 1s selected.
To check what data we collect, run "fx metrics’
To opt in or out, run "fx metrics <enable|disable>

riscve4d
vim3
vim3-reduced-perf-variation

X64-reduced-perf-variation

Figure 48: Product configuration confirmation - Phase 2

With the intent of gauging the flexibility of the build and components structure of Fuchsia, several system products were
built with fx set and built through fx build. User used various products such as core, terminal, Fuchsia and workbench_eng.
In the case of the Fuchsia product, it just generated an error and would not build, whereas on the rest of the products, the
same was happening; the Fuchsia emulator runs but just posts the Fuchsia logo. The Fuchsia builds require an average
of 8 tol0 hours, depending on the number of users and 100 per cent CPU throughput being used by all four cores, as
revealed in Figure 49.

52

‘ FRANKFURT

CHAPTER 4. IMPLEMENTATION ml APPLED SCIENCES

= Processes (T} Resources [@ Filesystems = - O x

tmin Sosecs aDsecs 30secs Wsecs 0secs
[cPut 100.0% [|cPu3 100.0% (I CPUS 100.0% [CPU7 100.0%
[cPu2 100.0% [cPU4 100.0% [BB CPUG 100.0% [CPUS 100.0%

~ Memory and Swap
—— | = —_—
m 0 Dsecs 05ees 0secs 0
Q Memory 9 Swap
5.9GB (35.8%) of 16.4 GB 4
M %
Cache6.5GB 749.0 MB (17.4%) of 4.3 GB
~ Network
[
/1
I wws e 0secs B s
Receiving 118 bytes/s Sending 232 bytes/s
Total Received 622.4 MiB Totalsent 23.0MiB
~ Disk
e Dsecs T 3o 0secs Towe
Reading 32.0KiB/s Writing 12.2 MiB/s
Total Read 8.7GIB Total written 24.2GiB

Figure 49: System Resource Monitor Dashboard

Each product defines a different layer of functionality, ranging from minimal CLI environments to full graphical user
interfaces as shown in Figure 50, Figure 51 and Figure 52.

Products Tested in Fuchsia Build Environment:

1. core

A barebones configuration of the Fuchsia system, which can be used to test the kernel and drivers, is its core
product. It contains basic kernel such as Zircon kernel and basic services of the shell, but does not have a user
interface. This product was able to compile and execute to CLI, so it can be used in headless activities, as well as
in diagnostic testing.

$ ffx target list
Please opt in or out of fx metrics collection.

You will receive this warning until an option is selected.
To check what data we collect, run 'fx metrics’

To opt in or out, run "fx metrics <enable|disable=>

NAME SERIAL TYPE STATE ADDRS/IP MANUAL
fuchsia-emulator <unknown= core.x64 Product [127.0.0.1:42843] N

Figure 50: Fuchsia emulator target with type "core.x64” in "Product” state.

53

I ‘ FRANKFURT

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

2. terminal

The add-on builds on the core build with features that are terminal-oriented, allowing a more interactive command-
line experience. It does have necessary drivers and shell applications, but no graphical shell. The constructed terminal
product has been well constructed and could be accessed through CLI(fx Shell), and it was useful in command-line
diagnostics.

S ffx target list

Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run "fx metrics’
To opt in or out, run “fx metrics <enable|disable>

NAME SERIAL IMEE STATE ADDRS/IP MANUAL RCS
fuchsia-emulator <unknown=> terminal.x64 Product [127.0.0.1:41277] N Y

Figure 51: Fuchsia emulator target with type "terminal.x64" in "Product” state.

3. workbench_eng

This is a development and testing version of the Workbench product called workbench_eng that is intended to
support engineering needs. It has services at the userland that are designed to be used on GUI display as well as
with CLI capabilities. It was built and launched error-free, but only the static logo of the emulator (with an F in
it) showed, signalling a problem with the GUI compositors. Nonetheless, serial shell access worked and this product
was used in all follow-up tests of CLI.

: S ffx target list

Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run "fx metrics’

To opt in or out, run "fx metrics <enable|disable>

NAME SERIAL TYPE STATE ADDRS/IP MANUAL RCS
fuchsia-emulator <unknown> workbench _eng.x64 Product [127.0.0.1:41961] N Y

Figure 52: Fuchsia emulator target with type "workbench_eng.x64" in "Product” state.

4. fuchsia

The complete product of the fuchsia product will have the complete user interface components and the Scenic
compositor. But in this configuration product was not created because of a bundle conflict mistake. This meant
that it was not put through to additional testing. Its defeat also demonstrated the complexity of the modular
approach Fuchsia followed, and the relevance of product customization to meet individual hardware conditions.

Note on GUI Implementation in Workstation Product

At preproduction testing, the workstation_eng.x64 product configuration was successfully started with graphical user
interface features in the emulator platform. But because of ongoing compatibility issues and GPU passthrough restrictions
observed in the virtualised environment, GUI functionality was later omitted in subsequent test activities. This change
is indicative of the recursive development process, and the necessity to adjust to the technical limitations, and keep the
main functionality of the system in focus.

The comprehensive build process was initiated using:

fx build

54

I‘ FRANKFURT
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

Fuchsia's build system is highly resource-consuming, with a single product configuration taking about 8-10 hours in order
to complete the compilation. With this implementation, various versions of the product were tried, such as core, terminal,
workbench_eng, and workstation_eng. All the products in the compilations were able to generate without any compilation
error, although a steady problem arose wherein no produced products were able to launch effectively into a working GUI
environment. Instead, all configurations displayed only the static ASCIl "F" logo screen, as illustrated in Figure 53.

Auto resolving networking to user-mode. For more information see https://fuchsia.dev/fuchsia-src/development/build/emulator#networking
Logging to "/home/nakrani/.local/share/Fuchsia/ffx/emu/instances/fuchsia-emulator/emulator.log"
Waiting for Fuchsia to start (up to 60 seconds)...
Emulator is readv.
Extended Controls - <build>:5554

Ff FFFFFEFFFFET FF
£ AEEFFRFFFFFFFFE £
F FIEEEERFREFEEEIETRee
f FHIFfFff e
1 FEFEFFFF :
f FEFEFS f
o S N Not charging
LR
TEEEFIEee f
FFFFFFT Ff
FRETEFEFFFIFFEFITRIFIFG FRTTFT
FEEEFETFEFREFEFFFFEFEFFRFFTFIFFEF
FREERE FEERREL
FEEOE 11T EFFFITTTT
fFFff ff TFfFf
TFFF FFF FEFFFT FF
FEFFE £F FEEFEEET
e 1FF FEEEFEET f
TEEF (REETOFFETRTATLEes ¢
FFEE FEFFFFFEFFFAFFF f
FEFF FEFFEFFEEF FF

FIFFF Ui
FEFFFEFEFFFEE

Figure 53: Fuchsia emulator boot process stalled at static logo

Emulator Launch and Target Verification

The emulator launch process was initiated using the ffx emulator management system:

ffx emu start

Target device verification was performed to ensure proper emulator instantiation and connectivity:

ffx target list

Figure 54 shows the successful target device listing, confirming that the emulator instance was properly recognized by
the development tools.

55

I ‘ ‘H{/\N(HHH

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

nakrani@nakrani-Hp-EliteBook-850-G8-Notebook-PC: =/Fuchsia

p Link add bridge
addr add 4 dev braemu

q --interface=brqemu --bind-interfaces --dhcp-range=172.1 ,172.16.243.254 --except-interface=lo
et braenu up
h genu
enu master brqenu
-t nat - '1' -d 172.16.243.0/24 -j MASQUERADE
to start (up to

$ ffx emu start --gpu swiftshader_indirect

to tap-mode. For more information a.de velopnent/build/emulator#inetworking
/-local/share/ FFx/enu/i enulator/enula

1
pv4/ip_forward

e brgemy type bridge
4 d e

-interface=brqenu --bind-interfaces --dhcp-range=172.16. o except-inter face=lo
up

3.0/24 -3 MASQUERADE

ffx target list

SERTAL STA DDRS/ MANUAL RCS
emulator <unknown> workbench_eng.x6: o%braeny, N ¥

veOoOm’=s

Figure 54: FFX target list showing active emulator instance

Shell Access and System Diagnostics

Despite the GUI rendering limitations, kernel-level functionality and shell access were successfully achieved using the fx
shell command:

fx shell

With this shell access, the Fuchsia kernel and system services were accessed directly and allowed full system diagnostics and
correction of core functionality. Shell-based directory listings of the successful completion of kernel-level boot processes
and a functional command line interface were also present. Figure 55 presents a successful shell session that shows root
directory structures on the Fuchsia emulator environment.

56

I ‘ ‘VKAN(\UK

CHAPTER 4. IMPLEMENTATION OF APPLED SCIENCES

Running without networking enabled and no interactive console
[there will be no way to communicate with this emulator
Restart with --console/--monitor or with networking enabled to proceed.

g $ fx set fuchsia.x64 --release
Please opt in or out of fx metrics collection.

[You will receive this warning until an option is selected.

To check what data we collect, run "fx metrics

To opt in or out, run “fx metrics <enable|disable>

[The build directory for this build is out/fuchsia.x64-release
Nudge] You have set --release, consider --balance https://fuchsia.dev/fuchsia-src/development/build/build_system/fuchsia_build_system_overview#quick_comparison
(Silence nudge with "ffx config set ffx.ui.nudges.balanced false’)
Generating Ninja outputs file took 696ms
Generating compile_commands took 597ms
Generating rust-project.json took 281ms
Made 63473 targets from 3822 files in 19252ms

[Timing results for regeneration steps slower than 0.5 seconds
19.68s gn gen
0.84s @fuchsia_in_tree_idk
8 $ fx build

Please opt in or out of fx metrics collection.
You will receive this warning until an option is selected.
To check what data we collect, run ‘fx metrics’
To opt in or out, run “fx metrics <enable|disable>

ninja: Entering directory ' /home/nakrani/fuchsia/out/fuchsia.x64-release’

35970/46608][77%/5 :09](8) BAZEL //build/bazel:bazel_root_host_targets.build(//build/toolchain/fuchsia:x64)

Starting local Bazel server and connecting to i

36260/46608][77%/5:16:11](8) CXX obj/src/devices/serial/bin/serialutil/serialutil.main.cc.o

46009/46608] [98% 8:30](7) ACTION //build/images/updates:publish(//build/toolchain/fuchsia:x64)
2025-07 - .302898248 +02:00 WARN Hardlink at "amber-files/repository/blobs/d1f35614e2b623954d2eb0436430607deca376bb8ad94b990e159c80eabfedal" not yet readable
2025-07 - e 308158086 +02:00 WARN Hardlink at "amber-files/rep: ry/blobs/d1f35614e2b623954d2eb0436430607deca376bb8ad94b990e159c8@eabfedal" still not readable, falling back to copy
2025-07 - e 813654125 +02:00 WARN Hardlink at "amber-fi ry/blobs/139e490b8e351764bd5690efff91e55d eb375b09a6fbbd274af1206d8f2: ot yet readable
2025-07 - 074126582 +02: WARN Hardlink at "amber-fi ry/blobs/63d54d6a1d06fe345be78eb808eb7945313ee3bBe44ac6b7b06e8bOB515270: ot yet readable
2025-07 - 5:14.815689579 +02 WARN Hardlink at "amber-files/repository/blobs/139e490b8e351764bd5690efff91e55d eb375b09a6fbbd274af1206d8f2: till not readable, falling back to copy
2025-07 - 14177 +02 WARN Hardlink at "amber-files/reposi /blobs/63d54d6a1d@6fe345be78eb808eb7945313ee3bBe44ac6b7b06e8bO8515270d6" still not readable, falling back to copy
[46608/46608] [100! 4:30](0) ACTION //:test-list(//build/toolchain/fuchsia:x64)

Figure 55: Serial shell access displaying root directories in Fuchsia

The entire diagnostics of the system was carried out with the use of standard Unix-style commands, such as uname,
ps and top to ensure the functioning of the kernel and the activity of the services working in it. These testing products
proved that the Fuchsia kernel and key operating system functions were working normally.

Analysis of GUI Limitations and Technical Constraints

The persistent GUI rendering limitation was attributed to several technical factors, primarily the absence of proper GPU
passthrough support within the virtualised environment and the emulator’s inability to successfully invoke Scenic, which
serves as the compositor responsible for graphical user interface rendering in Fuchsia OS. This is true in all the product
setups that | tried to use, which will be core, terminal, workbench_eng, and workstation_eng, where the shell access was
fine, as | were stuck at the primary logo container on the graphical interface. According to the technical analysis, the
Scenic compositor needs portability on particular GPU driver support and hardware acceleration capabilities that failed
to be satisfactory in the emulated setting. The limitation is the primary reason virtualized development environments
(especially those built with a modern graphics pipeline and hardware accelerated rendering systems) have issues to a
certain extent and is a typical problem when dealing with advanced operating systems.

4.4 Apache Guacamole Configuration

Apache Guacamole was created to provide remote, web-browser access to Android and Haiku virtual machines (VMs),
that are manually installed on Ubuntu 24.04 [20]. This configuration enabled these devices to be controlled remotely
with GUI via VNC with a common web browser and without the need to convert them into containers since the skipping
of Docker and use of source compilation made it unnecessary. This was under the official documentation deployment [18].

The process of deployment started by downloading the Guacamole 1.5.5 server source file from the Apache Gua-
camole official downloads and unzipping it on the terminal. The configuration was initiated using ./configure —with-
init-dir=/etc/init.d —enable-allow-freerdp-snapshots, as shown in Figure 56.

57

I ‘ ‘VK/\N(HHH
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

" nakrani@nakrani-HP-EliteBook-850-G8-Notebook-PC: ~/Downloads/apacheguacamole/guacamole-server-1.5.5

guacamole-server version 1.5.5

Library status:

freerdp2
pango ...
libavcodec
libavformat
libavutil .
Tibssh

Tibssl
libswscale
libtelnet ...
1ibVNCServer
Tibvorbis
libpulse
libwebsockets .
libwebp .
wsock32 .

Protocol support:

Kubernetes
RDP .

SSH .
Telnet .
VNC .

Services / tools:

guacd .. yes

guacenc yes

guaclog .. yes
FreeRDP plugins: /usr/lib/x86_64-1inux-gnu/freerdp2
Init scripts: Jetc/init.d

Systemd units: no

Type "make" to compile guacamole-server.

$ sudo make
Figure 56: Guacamole source configuration using configure

When the source was configured, make was used to compile the source and make install was used to install. Daemon
service guacd was installed and verified as running on the daemon which is shown on Figure 57. This confirmation was
important to determine that VNC backend was up and running before moving on.

S sudo systemctl status guacd
guacd.service - LSB: Guacamole proxy daemon

Loaded: loaded (/« i ; generated)
Active: since Tue 2025-07-22 14:13:54 CEST; 7h ago

Do man:systemd-sysv-generator(8)

Task 1 (limit: 18560)
Memory: 10.6M (peak: 11.3M)

CPU: 43ms
{iystem.slice/guacd.service

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC systemd[1]: Starting guacd.service - LSB: Guacamole proxy daemon...

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC guacd[2382]: Guacamole proxy daemon (guacd) version 1.5.5 started

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC guacd[2380]: Starting guacd:

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC guacd[2382]: guacd[2382]: INFO: Guacamole proxy daemon (guacd) version 1.5.5 started
:54 nakrani-HP-EliteBook-850-G8-Notebook-PC guacd[2380]: SUCCESS

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC guacd[2392]: Listening on host 127.0.0.1, port 4822

:54 nakrani-HP-EliteBook-850-G8-Notebook-PC systemd[1]: Started guacd.service - LSB: Guacamole proxy daemon.

53
22
55)
22
%)
22
%)
e
o))
22
53
22
55)
22

Figure 57: guacd service status showing active daemon
The servlet container was Tomcat9 and the .war file of Guacamole was removed by downloading it in Apache Binary

Downloads and deployed in /var/lib/tomcat9/webapps/ and the Tomcat and Guacamole services also restarted as shown
in Figure 58 Tomcat and Guacamole services.

58

I‘ ‘VKAN(HHH
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

$ sudo wget https://downloads.apache.org/guacamole/1.5.5/binary/guacamole-1.5.5.war

--2025-07-22 21:44:52-- https://downloads.apache.org/guacamole/1.5.5/binary/guacamole-1.5.5.war
Resolving downloads.apache.org (downloads.apache.org)... 2 , 2 H 2c5 88.99.208.237,
[Connecting to downloads.apache.org (downloads.apache.org)|2a01:4f8:10a:39da | :443. connected.
HTTP request sent, awaiting response... 200 0

1 17401039 (17M)

lguacamole-1.5.5.war 16.59M .22MB/s in 1.8s

2025-07-22 21:44:54 (9.22 MB/s) - ‘guacamole-1.5.5.war’ saved [17401039/17401039]

Figure 58: WAR file deployed into Tomcat9 webapps directory

MariaDB was used to allow authentication. A MySQL JDBC connector has been downloaded at the link “MySQL
Connectors” and JDBC authentication module at the link “Guacamole JDBC Extension”. The file .jar was put under
/etc/guacamole/extensions as shown in Figure 59.

nakrani@nakrani-HP-EliteBook-850-G8-Notebook-PC: ~/Downloads/apacheguacamole/guacamole-server-1.5.5

$ sudo mysql_secure_installation

OTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB
SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY

In order to log into MariaDB to secure it, we'll need the current
[password for the root user. If you've just installed MariaDB, and
lhaven't set the root password yet, you should just press enter here

Enter current password for root (enter for none):
0K, successfully used password, moving on...

Setting the root password or using the unix_socket ensures that nobody
[can log into the MariaDB root user without the proper authorisation.

Vou already have your root account protected, so you can safely answer 'n'.

Switch to unix_socket authentication [Y/n] n
. skipping.

Vou already have your root account protected, so you can safely answer '

[Change the root password? [Y/n] Y
[New password:
Re-enter new password:
Password updated successfull
Reloading privilege tables..

. Success!

By default, a MariaDB installation has an anonymous user, allowing anyone
to log into MariaDB without having to have a user account created for
[them. This is intended only for testing, and to make the installation

lgo a bit smoother You should remove them before moving into a
[production environment.

Remove anonymous users? [Y/n] Y
. Succes

Normally, root should only be allowed to connect from 'localhost'. This
lensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n]
Figure 59: JDBC extension placed into Guacamole extensions directory

This was followed by database configuration; guac_db was created and a user guac_user was created, and schema SQL
files were imported into the database. The guacamole.properties file was altered, and settings of DB connections are
added, and figure 60 confirms it.

$ sudo wget https://downloads.apache.org/guacamole/1.5.5/binary/guacamole-auth-jdbc-1.5.5.ta
r.gz
--2025-07-22 21:49:34- https://downloads.apache. org/guagamole/l 5.5/binary/guacamole-auth-jdbc-1.5.5.tar.gz
Resolving download apaghe org (downloads.apache.org) 1 : : N : 12c , 135.181.214.104
[Connecting to downloads.apache.org (downloads.apache.
HTTP request sent, awaiting response... 200 OK
: 33099128 (32M) [application/: zip]
“guacamole-auth-jdbc-1.5.5.tar.gz”

lguacamole-auth-jdbc-1.5.5.tar.gz 100%[] 31.57M 11.9MB/s

2625-67-22 21:49:37 (11.9 MB/s) - ‘guacamole-auth-jdbc-1.5.5.tar.gz’ saved [33099128/33099128]

Figure 60: Edited guacamole.properties for MySQL DB connection

59

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

Once configured, visiting http://localhost:8080/guacamole opened the Guacamole login page Figure 61.

v @ Apache Guacamole x o+ _ e x

€ C @ localhost:8080/guacamole/#/client/MgBjAG15C3Fs By O O

S

APACHE GUACAMOLE

Figure 61: Apache Guacamole Login Page

Once logged in, there were entries in the dashboard for Android and Haiku VMs, which confirmed the successful integration
of both of them through VNC. These relationships can be observed in Figure 64. All VMs had been connected as the
QEMU -vnc flag. Android did port:5 (mapped to 5905), Figure 62 and Haiku did port:3 (mapped to 5903), Figure 63.

60

CHAPTER 4. IMPLEMENTATION

| | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

v @ ApacheCuscamale x|+
€ 3 © O lahostsosaguamole/smanageimysalicomnections
EDIT CONNECTION
Narve: [Aoouos

[T —

CONCURRENCY LIMITS

Maximum nambes of connections:
Maimum number of connectians per user:

LOAD BALANCING

Connectian weight:
Use for tallewer ortly:

GUACAMOLE PROXY PARAMETERS (GUACD)

Hostname: | 100 108 122158

Display

Read-ony:
Swap recbiue compenents: B

Cursee: v

Color depth: “True coor (32 0 |
Force losstess compeession: B

Clipboard

Encoding: B
Disabie eapying from remote deskiap:
Disable pasting from client:

VNC Repeater

Destinatian host:

© ® ApaceCuammele x4+
€ 3 © O kahst

EDIT CONNECTION

Name: [vaauos

Location: w001
[T —

CONCURRENCY LIMITS

Maximum number of connectians:
Maximum number of connections per vser:

LOAD BALANCING

Connection weight
Use for tailowves only:

GUACAMOLE PROXY PARAMETERS (GUACD)

Hostname: (160 168 12258
port 03

Read-ony:
Swap recbiue compenents: B

Cursee: v

Color Gepth. Trve coor (3260 ¥
Force lossless compression:

Clipboard
Encoding: ~
Disabie copying from remote desklop:
Disable pasting from clent:

VNC Repeater

Destinatian host:

Figure 62: Android used port :5

Figure 63: Haiku used port :3

61

Dt DO O

FY

CHAPTER 4. IMPLEMENTATION || e

OF APPLIED SCIENCES

The netstat-tulnp and telnet were used to verify the port forwarding setting. Launching had required sessions to be
created on the Guacamole dashboard. Both of the virtual desktops streamed well to the browser Figure 64. Android and
Haiku GUI sessions are displayed adjacent in Figure 65.

v & Apache Guacamole

C ® localho

RECENT CONNECTIONS

AndroidOS HaikuOs

ALL CONNECTIONS Filter

O AndroidOS
O HaikuOS

Figure 64: Guacamole Dashboard Listing Android and Haiku VMs

v & Apache Guacamole

€ > C ® localhost:8
RECENT CONNECTIONS 3 jatin ~
AndroidOS HaikuOs
ALL CONNECTIONS Filter
O AndroidOS Currently in use by 1 user.
O HaikuOS

Android0S

Figure 65: Android and Haiku VM Desktops in Browser

62

‘ FRANKFURT

CHAPTER 4. IMPLEMENTATION ml APPLED SCIENCES

Networking was established as NAT, so it became possible to accomplish port forwarding without discontent between the
host and the guest. A visualised representation of the bridge interface status was confirmed using Linux tools ip a, brctl
show, and virsh net-list. See Figure 66 and Figure 67.

:-$ brctl show
bridge name bridge 1id STP enabled interfaces

docker® 8000.c66b2167b5e7 no
virbr® 8000.525400a12bd5 yes

Figure 66: brctl show command output displaying network bridges - docker0 (STP disabled) and virbrO (STP enabled).

:-% virsh net-list

State Autostart Persistent

Figure 67: virsh net-list command showing the "default” virtual network in active state with autostart and persistent
settings enabled.

The remote desktop server is currently unreachable. If the problem persists, please notify your system administrator, or check your system logs.

Reconnecting in 15 seconds...

Figure 68: Guacamole Browser Error Message

On trials, a browser errors screen was witnessed where VM or VNC server is not initialized, which makes Guacamole
present a no-VNC-output or blank screen. This situation is illustrated in Figure 68 These errors were overcome by re-fire
up of QEMU VM using the right -vnc flag or by making sure guacd was started.

4.5 Network and Access Configuration

A properly designed virtual network as well as VNC port-forwarding architecture serving to provide reliable and
browser-based access to the virtual machines (VMs) configured with both Android and Haiku operating systems was
provided by introducing QEMU/KVM with Apache Guacamole. The setup was aimed at testing and interacting at
the local level using the browser without presenting the guest systems to the outside world. They assigned the NAT
(Network Address Translation) mode to the virtual network because it offers the possibility to use it in libvirt with-

63

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 4. IMPLEMENTATION OF APPUED SCIENCES

out problems, provide dynamic IP allotment and port forwarding whilst leaving the guests isolated on the public networks.

Every VM was initiated with QEMU with a distinct VNC display session, which was directly attached to TCP ports on
the host. The Android VM was launched using -vnc:5 that linked to the port 5905, whereas Haiku launched on -vnc:3
that linked on the port 5903. Later on in Apache Guacamole, these ports were established and configured alongside
Apache Guacamole to establish individual VNC connections and allow remote access to Apache Guacamole via a browser
using the HTML5 rendering services offered by Guacamole. The guacd daemon intercepted the remote framebuffers and
relayed them to Tomcat9, which provided them to authorised users via the web interface.

The team resorted to the standard tools of debugging Linux systems to confirm the integrity of the network and make
sure that the guests were connected properly. The ip a command showed that the virbrO was a virtual bridge that was
established by libvirt in NAT networking. The output of the brctl show command confirmed that indeed the VMs were
attached to this bridge successfully, and virsh net-list proved that the network of NAT was running and controlled by libvirt.

Also, the availability of the VNC server of each VM was checked (netstat -tulnp providing the list of listening ports) and,
hence, confirmed whether the proper display ports (5903 and 5905) were up and running. VNC connectivity was tested
by telnetting localhost 5905 or telnet localhost 5903 where needed. In case these connections failed this was usually a
sign that the VM was offline or was not booted with the appropriate -vnc flag. When it happened Guacamole showed
an error of not showing a VNC output or a connection failed. Such problems could be fixed by rebooting the VM with
the correct settings and checking port forwarding once again.

The complete data flow used in this project—from the virtual guest to the browser is summarized in the following
architecture: Guest VM — QEMU VNC Server — guacd (Guacamole) — Apache Tomcat9 — Web Browser Figure 69.

64

CHAPTER 4.

IMPLEMENTATION

I ‘ ‘H{/\N(HHH
UNIVERSITY
OF APPLIED SCIENCES

ANDROID VM HATIKU VM
android-x86-9.0 haiku-rlbetas
VNC Display :5 VNC Display :3

Port 5905 l Port 5903

QEMU/KVM VNC SERVER
Host: 127.0.0.1 | Hypervisor Layer

i

VIRTUAL BRIDGE (virbro0)
NAT Mode | libvirt Managed

I

GUACD DAEMON
Port 4822 | Framebuffer Capture & Processing

I

APACHE TOMCATY9
Port 8080 | Web Application Server

i

WEB BROWSER
HTML5 Interface | User Access Point

COMPLETE DATA FLOW PATH:
Guest VM - QEMU VNC Server - virbr0 Bridge - guacd Daemon - Tomcat9 . Web Browser

NAT networking ensures VM isolation while enabling browser-based remote access

Figure 69: Network Flow Diagram for Remote VM Access via Guacamole

65

5. Evaluation and Testing

Chapter 5 reviews functional and performance attributes of deployed VMs about realistic workloads. It starts with func-
tional testing, i.e., it verifies Android and Haiku GUI access through Guacamole and Fuchsia CLI interface communication
(Section 5.1). The chapter further explains which monitoring tools were employed, including Virt Manager stats and
Chrome DevTools, and mentions some of their keyword metrics: boot times, CPU usage, memory usage, remote latency
(Sections 5.2, 5.3 and 5.4). Comparative tables and charts will show the faster GUI boot and bootstrap of Android, the
reduced memory of the boot image of Haiku, as well as the headless CLI performance of Fuchsia. Network fixing ideas and
implementation issues discussion is conducted, particularly the lack of GPU support in Fuchsia (Section 5.5). Side-by-side
comparison and discussion of trade-offs lead to the end of the chapter with the demonstration of the usefulness of the
testbed in the OS research.

5.1 Functional and GUI Testing Overview

Function behaviour evaluation and graphical user interface (GUI) performance. The evaluation phase was started by
thoroughly testing how each of the operating systems operated in the QEMU/KVM virtualized environment. This section
will record the reaction of Android-x86, Haiku and Fuchsia OS to the GUI-based interaction and shell-level operations
when accessed both at a local desktop using an Apache Guacamole connection.

Android-x86 Function Testing

v 8 AndroisOs x + - ® %

« C @ localhost:2080/guacamole/s#/client/MgBIAG15C3Fs By & O @ ¢

1:55 AM

O s £

Figure 70: Android-x86 GUI access via Guacamole with Terminal Emulator visible
Android-x86 was the most functional among the three. After the successful installation and startup, its GUI appeared

correctly in QEMU window. The default installation was configured, however, to not support native VNC or SSH
connections when remotely interacting with it. To get over this, the application called DroidVNC-NG was manually

66

| ‘ FRANKFURT
UNIVERSITY

CHAPTER 5. EVALUATION AND TESTING OF APPUED SCIENCES

installed and configured. It meant that the Android screen could be shared using VNC, and this is what Apache
Guacamole did to be able to visit and handle the interface through a browser.

Figure 70 presents the Android GUI, which can be accessed through Guacamole successfully, and the Terminal Emulator
can be viewed in the search result, thus indicating the remote access capability of the Android. The input recognition,
app launching and screen refresh functionality were quite seamless and input lag was minimal with consistent network
conditions.

Haiku OS Functional Testing

Haiku OS was open-sourced and started with the addition to a lightweight desktop. In contrast to Android, Haiku offered
the feature to share the desktop via VNC as an internal implementation, but this would sometimes need the service to
be restarted. The functional testing indicated that Haiku is reliable even in simple usages such as file browsing, use of
terminals and settings access. The OS, however, had problems with high-memory programs and multimedia rendering.

Figure 71 shows the Virtual Machine Manager in the running position of Haiku VM, which proves its activeness in the
QEMU environment. The GUI was receptive even with multiple activities in the system, and programs opened reliably.
In spite of the lack of a more complex package combination, Haiku was able to provide a functional but basic GUI
experience.

Figure 71: Virtual Machine Manager showing Haiku VM in active running state

Fuchsia OS Functional Testing

The most difficult one to test was fuchsia. Though the emulator did boot up the OS, showing the boot logo, the graphical
interface did not render further than that point. Consider Figure 55. In order to test the functionality, the check of the
services and running processes was done with the help of CLI. Such commands as Is, uname and ps worked as expected,
showing that the system had been booted successfully and was up at kernel level. In spite of these attempts, GUI access
was not possible, probably because lack of GPU passthrough or virtual driver support in QEMU. Thus, the functional
testing was stuck at command-line diagnostics.

67

‘ FRANKFURT

CHAPTER 5. EVALUATION AND TESTING o!»\ppufﬁ‘i?ﬁiﬁi

5.2 System Performance and Resource Utilization

The assessment of the system performance and resource consumption is crucial because it helps to understand how
well every system performs in terms of memory allocation, processor use and other hardware resources in a virtualized
environment.

Android-x86, Haiku and Fuchsia OS are reviewed separately in this section. Both of them were tried by using the same
QEMU/KVM-based virtual machine environments to make a square comparison. The test environment covered the use
of Chrome Developer Tools to monitor a web-based (Android via Apache Guacamole) setting, the use of Virtual Machine
Manager statistics, and direct CLI outputs on Fuchsia.

Resource Utilization in Android- x86

Android-x86 was seen through Apache Guacamole, that allowed connection to the Android GUI using the browser remotely.
The performance was recorded by the Developer Tools included with Chrome. The resources used were moderate when
carrying out normal interaction with a GUI like opening the terminal emulator. The DevTools Performance tab provided
extensive information about CPU scripting time, memory usage, delay in rendering and network latency. As Figure 72
demonstrates, the scripting took around 1.9s, whereas there was also very low time dedicated to painting and rendering
(32 ms and 59 ms, respectively). There were no blocked network accesses; instead, CPU diagrams presented stable
threads. The system could deal with all the interactions through the browsers with ease, meaning that there was effective
management of resources even when a remote graphical session was under a load.

DevTools -localhost:8080/guacamole/

T26m: 1i26ms seme atéme \i%me 19%ms Litems Zatems 2stms 27%ms 2otems itbms a%ms 3stms 7%ms dstems | 4ims 4dems Aszems Tibms dggems siems Sitems A

sz6m:

Figure 72: Chrome DevTools: Android GUI performance monitoring via Guacamole

Haiku OS Resource Utilization

Haiku OS experienced a lightweight performance profile. It was fast to boot, and little resources were used by the
machine. Such a behaviour was observed through the Virtual Machine Manager, which can monitor actual use of CPU
and hosts for each of the virtualized instances in real time.

68

| ‘ FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

CHAPTER 5. EVALUATION AND TESTING

Figure 73 shows that only one virtual machine Haiku is running, and the guest and host CPU graphs indicate a consistent
and low CPU usage behaviour. This indicates the performance of a very efficient kernel and the small load of background
services of Haiku. Although it worked well in smaller tasks such as browsing files or opening new terminal windows, the
software was unable to work well when it needed to perform multitasking or play multimedia files.

virtual Maching Manager

Figure 73: Virtual Machine Manager showing Haiku OS running with stable CPU usage

Additional Observations
To provide a consolidated performance summary:

Android responded very well to remote GUI load using Guacamole, and it was responsive when accessing. Haiku was the
least resource-consuming one and responsive in lightweight usage. Though the lack of GUI rendering prevented Fuchsia
use against that style of computer, the CLI mode was still reliable, and the CPU activity could be predictable.

Here is a comparison table Table 4, below for clarity:

Operating System Avg. CPU Usage Memory Footprint GUI Stability CLI Access
Android-x86 Moderate Moderate Stable via Guacamole Available
Haiku OS Low Very Low Smooth for lightweight tasks Available
Fuchsia OS Low (CLI only) Unknown (No GUI) Not Available Stable

5.3 Fuchsia-Specific Boot and CLI Behaviour

Table 4: Performance Summary Comparison Table

Fuchsia OS also applies a new style of operating system design, putting aside the classical monolithic kernel (as is the
case in Linux) in favour of Zircon, a recent microkernel designed to be scalable, modular and capable of actions of a

69

‘ FRANKFURT

CHAPTER 5. EVALUATION AND TESTING u!f\pmﬁ?lifi!li

fine-grained nature in terms of process control. Potentially, this makes Fuchsia unlike Android-x86 or Haiku, which are
oriented on end-user desktop environments, but at least at this point is geared more towards developers, embedded
systems, new computing interfaces and platforms. Therefore, there is little or no GUI experience in virtualization, but
rather a command-line interface (CLI) gives the main way to interact and evaluate a system.

Booting Process through FFX Emulator

The booting sequence of the Fuchsia boot starts with the ffx emu start command that L]pus the emulator and initiates
the process of boot. An emulator of Fuchsia, which is included in the FFX (Fuchsia command-line tool suite), does
internal checks and tries to allocate a loopback IP address to be accessed. The boot sequence normally takes 60 seconds,
depending on the host's resource facilities.

After the emulator starts, using the command ffx target list will show all the instances of the Fuchsia emulator that
are running. This relation is important to make sure that the emulator is connected, known by a target IP (e.g.,
127.0.0.1:41277) and with a Product state. See Figure 44.

Spenser CLI accessibility

The ffx shell command makes an interactive shell session with Fuchsia emulator. When the shell is entered, it will present
a telemetry warning asking the user to either opt in or out of anonymous metrics collection by using fx metrics enable or
fx metrics disable. After being acknowledged, the user is provided with a basic shell environment through which simple
commands are provided. Figure 55. The shell environment is intentionally stripped down and displays a root file system
with directories like:

» /bin — Essential binaries and command utilities.

= /boot — Boot-time system files.

/pkg — Modular packages (Fuchsia uses a component framework where everything is a package).

= /svc — Service capabilities, often accessed via FIDL (Fuchsia Interface Definition Language).

/data and /tmp — Writable runtime data paths.

This tree of directories indicates how componentized Fuchsia OS is. As an example, services at /svc are not long-running
daemons, but are temporary, capability-given interfaces, sandboxed and tied to components making requests.

The CLIs Behavior and Usability Notes

In its usability, the CLI was very responsive and stable. Such commands as Is, cd, and ps had very little latency. The
system could enumerate active processes, directory walk and memory accounting. Remarkably, no package installation
was available upon installation, nor were there network tools or graphical utilities, typical of Fuchsia, which is built with
developers in mind.

As opposed to the usual UNIX shells, Fuchsia CLI is not designed with built-in scripting facilities (such as bash or zsh),
or with full POSIX-compliance. Nevertheless, it provides a base to start testing components, communicate with services
in the system and get access to Zircon-specific syscalls, mainly when developing and debugging.

Diagram — Fuchsia Boot and Access Flow. To better visualize the boot and interaction flow, a simplified flow diagram is
provided below. See Figure 74.

70

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 5. EVALUATION AND TESTING OF APPUED SCIENCES

User initiates Fuchsia boot

ffx emu start

Y

Emulator binds to local IP

and launches Zircon kernel

[127.0.0.1:port]

Y

Target validation confirmed

ffx target list

Product state verified

Y

CLI access obtained
ffx shell

Shell connection established

Y

Commands and interactions

issued through Zircon shell

Is, cat, ps, etc.

Figure 74: Fuchsia Emulator Boot and CLI Interaction Flow

Challenges and Limitations

Although the experiment showed that the interaction with CLI was successful, the Fuchsia emulator did not display
any of the elements during the communication with the QEMU/KVM ISOLANE. And it is not surprising since the GUI
support in Fuchsia is not finalized yet and needs support of the graphical subsystem (Scenic, Flutter, etc.) and hardware
acceleration (GPU passthrough) of which the test environment did not have.

Also, no VNC/RDP service was included on the Fuchsia image, and it was not possible to use any remote desktop access
using Apache Guacamole. Communication could only take place via terminal shell access, and so performing any GUI
testing was not feasible and limitations were imposed on testing at higher levels of user experience.

71

I ‘ FRANKFURT

CHAPTER 5. EVALUATION AND TESTING OF APPLED SCIENCES

5.4 Comparative Analysis of OS Behavior

This part shows an orderly comparison of behavior as well as performance of three operating systems, namely
Android-x86, Haiku OS, and Fuchsia OS, in a virtualized system. They are concerned with the efficiency of system boots,
the use of CPU and memory, user interface responsiveness, shell usability and compatibility with applications. These
criteria provide an understanding of the applicability and growth of each OS in the common modes of users and developers.

Comparison of Boot Times

The Boot time is a direct indication of how quickly an operating system can bring itself to life upon power-up. The
lightweight kernel and minimal services made Haiku OS come up faster than the others, and it booted in 18s during
testing. The next OS, Fuchsia OS, booted in about 25 seconds, and Android-x86 is the slowest with a response time of
about 35 seconds. The greater Android-x86 delay may be explained by the Android Runtime (ART) and other service
initialization.

CPU Usage During Standard Load

A notable attribute of system efficiency is CPU utilization. When it comes to performing the same operations like
opening a terminal, moving through the filesystem, and simple GUI operations, Android-x86 had a high CPU utilization
of 45%, Fuchsia OS of 30%, and only 20% in Haiku OS. This difference in CPU usage is probably because Android has
more operations running in the background and more intensive services, but the kernel in Haiku is so lightweight and
quick. Figure 75, Figure 76 and Figure 77.

i= Processes (™) Resources [@ FileSystems = - @ x

~
/
f

I
{
1}
D
)
|
p
[{
L
|
N
|
g
)

B crur 5% [cPus 11.1%) crus 5% CPUT 27.0%
| PU2 31.0% CPU4 27.0% CPUG 40.4% CPUS 3.0%

Memory and Swap

* Receiving S MiBfs
TotalReceived 4.9GiB

Disk

% Reading 9 Kibfs @ Writing 59.7KiBfs
Total Read 92.8Gi8 Total Written 140.6GiB

Figure 75: Android OS Analysis

72

CHAPTER 5. EVALUATION AND TESTING

FRANKFURT
UNIVERSITY

OF APPLIED SCIENCES

Processes (D Resources File Systems = 006 €
~ cpu
0%
w0
%
- N < = = 0%
NN _ —e " — = = — o
) S0sees awsecs H0ses 205ecs 050
[cPut 2.0% [Jcrus 0.0% [cPus 0.0% I cPu7 1.0%
] cruz 1.0% R cpua 11.0% [crus 25.0% B crus z.0%
~ Memory and Swap
100%
0%
%
0%
0%
0%
Trin s0sees ansecs s0secs 20secs T0zecs
a Memory a swap
4.9GB (30.1%) of 16.4GB
Cache 11.6CB 1.2 GB (29.1%) of 4.3 GB
~ Network
00 ks
220k
/\ 180k
A\ 120k
/ soxas
ot
Trin S eees 0mees 2sees Torees
Receiving Obytes/s Sending Obytes/s
TotalReceived 4.8 GiB TotalSent 154.0MiB
~ Disk
2omes
1ems
12MErs
8192 K85
409.6 K85
- I _ Obgesis
) B wses s 5ecs T0se
Reading 0bytes/s writing 0bytes/s
Total Read 89.4GiB Total Written 1403GiB
Processes (D Resources File Systems = 8006 €
-]
0%
0%
e
0%
VavYaVal ~/ /Y ~ o
= XY | D XX < 2%
A XA A D SN S—— = &, \ / X\ o
) S0secs a0secs 205ecs 1050
[cPut 3.0% [crus 41% [cPus 16.0% [cPu7 26.8%
B cruz 3.0% B crua 6.9% B crus 7.1% [cPus 4.0%
~ Memory and Swap
100%
0%
%
0%
0%
0%
trin S0sees asecs 0secs secs T0zecs
a Memory » Swap
5.6 GB (34.2%) of 16.4GB
Cache 8.9G8 864.0 MB (20.1%) of 4.3GB
~ Network
20k
o
120kE
80Kl
aomas
- - = _ — . obgesis
Trin Er aeees 0secs sees TOeees
Receiving 196 bytes/s Sending 188 bytes/s
Total Received 6.2 GiB TotalSent 193.5MiB
~ Disk
wnoms
wongs
200mgs
T6a0ms
wones
Obgesis
Trin EES ansees Er 20mecs Torees
Reading 0bytes/s Writing 810.9 KiB/s
Total Read 93.7GiB Total Written 143.6GiB

Figure 77: Fuschia OS Analysis

73

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 5. EVALUATION AND TESTING OF APPUED SCIENCES

Memory (RAM) footprint

The evaluation of memory use was carried out following complete OS loading and Opening of the GUI. Efficiency once
again came in the style of Haiku OS, which consumed 320 MB of RAM. The fourth was Fuchsia OS with a usage of
500 MB, and Android-x86 came up with a massive 850 MB. The low consumption of Haiku is based on its minimalist
desktop and process scheduling. The modular component system that underlies Fuchsia (using Zircon microkernel) has
limited usage, such that Android takes extra memory to run its services, such as Play Store, system daemons, app
management frameworks, and so on. Figure 75, Figure 76 and Figure 77.

Responsiveness of Graphical User Interface (GUI)

GUI responsiveness was considered in terms of the delay in launching the application, the feedback of the mouse
clicks, and the smoothness of the animations. Android-x86 was the best with a 9/10 on responsiveness. There was
a respectable 7/10 by the Haiku OS and a much lower 3/10 by the Fuchsia OS, which mainly utilizes the CLI
interface and exhibits very little use of the graphical interface. This shows how Fuchsia is still in the experimental
phase when it comes to GUI, among other features, unlike the Android phone that has a well-refined desktop-like interface.

CLI and Shell behavior

Each of the three systems provides command-line access to public levels. Haiku also has a Bash-like shell and supports
normal POSIX utilities, so it is developer- and user-friendly. Fuchsia gives the fx shell, which is more intended at system
review and debug than at user instructions. Android-x86 also features a smaller shell through terminal emulators, but is
not well-positioned to do complete work solely via the command line. The fx tool provided by Fuchsia works with such
commands as fx list, fx shell, and fx log, which enable developers to access the emulator and track logs. CLI support in
Haiku enables an immediate filesystem connection (Is, pkgman, mount etc), which makes it look more traditional and
more reliable to command-line users.

System-level Compatibility/ecosystem

Android-x86 is leading in terms of ecosystem maturity with support of APK installation and the Google Play Store. The
current BeOS legacy support and an increasing package library is available with Haiku, albeit in an unfinished form,
through using HaikuDepot. A relatively immature Fuchsia OS inherits this problem, with low application compatibility
at this point, aimed at only internal Fuchsia development environments.

Overall Comparative Chart To summarise the technical comparison, the following table illustrates core behavioral
metrics across the three operating systems. See Table 5 and Figure 78:

Metric Android-x86 Haiku OS Fuchsia OS
Boot Time (sec) 35 18 25
CPU Usage (%) 45 20 30
RAM Usage (MB) 850 320 500
GUI Responsiveness (10 pt) 9 7 3
App Ecosystem Extensive Moderate Limited
Shell Usability Moderate High Dev-focused

Table 5: Comparative Metrics Across Operating Systems

74

| I FRANKFURT

CHAPTER 5. EVALUATION AND TESTING OF APPLED SCIENCES

Comparative Metrics Across Operating Systems

Boot Time (in seconds) Average CPU Usage
351
30t 40+
25} |
2 3%
g 20 B E‘
(%) [T
@15} 5207
o
101
10t
5 |
0 Android-x86 Haiku OS5 Fuchsia 0OS 0 Android-x86 Haiku OS5 Fuchsia 0S
RAM Usage GUI Responsiveness Score
800}
8 -
600 =
39
2 =
L u
400 5 4t
%)
vl
200} 2k
0 Android-x86 Haiku OS Fuchsia 0OS 0 Android-x86 Haiku OS5 Fuchsia 05
Figure 78: Comparative Metrics Across Operating system Chart
Conclusion

This discussion demonstrates the strength of any particular operating system in context:
The Haiku OS is very lean, which makes it versatile in the low-resource context and legacy hardware.

Android-x86 is excellent when it comes to user experience and application support, thus being good with general-purpose
computing.

Fuchsia OS is still an effective study prototype that is modular and has CLI control, is better in the realm of embedded
systems at present and development environments.

All of them, therefore, are oriented on different user groups: developers (Fuchsia), general users (Android), and lightweight
desktop users (Haiku).

5.5 Troubleshooting Summary and Observations

When Android-x86, Haiku, and Fuchsia OS were tested and evaluated in a QEMU/KVM virtualized setup, a few
technical issues in the process were presented. These areas covered remote access failures, delays in GUI responsiveness,
trouble with CLI initialization as well as resource conflicts, and all had dedicated platform resolution strategies. The
current section includes a summary of these difficulties, combined with comments that were obtained in the process of
troubleshooting.

Among the most frequent problems was the one that emerged during remote access to the virtual machines via Apache

75

I ‘ FRANKFURT

CHAPTER 5. EVALUATION AND TESTING OF APPLED SCIENCES

Guacamole. There were several cases where the user would be hit by an error window that reads, The remote desktop
server is currently unreachable, with a fixing up the contact countdown. This issue was a common problem that usually
happened when the VM became idle or suspended. After research, it was discovered that either the guacamole proxy
daemon (guacd) or the Tomcat service has failed or timed out. A temporary solution to the problem was resending the
damaged services or renewing the browser session. In order to avoid such recurrences, timeout settings were modified in
the guacamole.properties file, and the keep-alive policies were implemented in order to ensure session persistence.

Fuchsia OS also posed an interesting problem when it comes to the command-line interface. During initialization
using the ffx toolchain, the terminal often issued a warning prompt that asked to opt in or opt out of the col-
lectibility of metrics. This was a prompt unless it was forced away, and this terminated automated scripting and
halted command execution. Using this command fx metrics disable through the system, it was possible to skip the
prompt and make the sessions smooth. Moreover, fx target list command at times used to not find the currently
running emulator at all, even though the emulator was up and running. The solution to the situation was restart-
ing the emulator and reconnecting the network bridge. The terminal message shows successful entry into the Fuchsia shell.

Haiku OS performed very well and was responsive, but experienced challenges when it came to automatic configuration
of network interfaces. The system failed to acquire an IP address or even to recognize a virtual NIC in a number of
instances. The problem was resolved with manual installation via the network preferences window included in Haiku, to
choose a static IP or make a connection discovery with DHCP. Also, due to the changes in the settings of the network
model, where | changed rtl8139 (which was the default in the little settings bit) to virtio, this enhanced the compatibility
and stability of my system a lot. This is how it goes about configuration.

Although Android-x86 has a rich GUI with an intuitive interface, it also had a significant lag when starting up and initial
load time. This delay was observed more in the VMs set up with less than 2 GB of RAM. A diagnostic breakdown of
the problem had shown that the lag had been caused by the presence of background services like the package manager
and Google Play services, which ate up too many system resources when the phone was booting. In order to eliminate
this, the memory of VM was expanded to 3 GB and automatic background update was turned off. These optimizations
resulted in productivity improvements that can be observed.

They also experienced general lag and system freeze when multitasking with resource-intensive applications in all the
operating systems when opening terminal and browser applications at the same time. The scheduled execution of
missions On-Demand under the operating system in real-time via Virtual Machine Manager (virt-manager) indicated
notable spikes in CPU use that were directly related to Ul switches and load time of applications. One of the three
platforms illustrates this trend, with Haiku OS being more fluent in managing such spikes since it is lightweight and
modular in nature, and Android-x86 is the most demanding of resources.

Finally, the troubleshooting step was another indicator of the essence of prior system configuration and optimization.
Certain tasks on CLI preparedness and emulator synchronization were necessary for Fuchsia. Haiku performed well on
lightweight setups and required manual configuration even in networking. The Android offered a comfortable and powerful
GUI experience, but, at that, the cost was using significant amounts of memory and CPU. Such observations will be
essential in the upcoming development environments in explaining why the virtual resources should be made compatible
to the architecture and behavior of every operating system.

76

6. Conclusion

Chapter 6 constitutes the final discussion of the project, summarising its central successes, insights achieved and its
practical stvelopina idea. It starts by giving an overview of the end-to-end deployment of android, Haiku and Fuchsia
in QEMU/KVM infrastructure, with its success in integrating android and Haiku with Apache Guacamole to provide
GUI access with a browser, and a brief on the failure of full functionality of a graphical environment with fuchsia.
The chapter will proceed to analyse the adequacy of the previously defined goals, the limitations seen, including those
related to hardware compatibility and GPU passthrough requirements, and comment on the performance vs usability and
implementation complexity tradeoffs. Lastly, it provides feasible suggestions and future work, such as investigating the
use of hardware-assisted graphics on Fuchsia, increasing automation and extending the testbed to revise several more
operating systems and remote access protocols.

6.1 Summary of Work

The project aimed to investigate the implementation, emulation and remote access of a collection of three architecturally
diverse operating systems, namely, Android-x86, Haiku and Google Fuchsia, with only one potent, QEMU/KVM-based
testbed made remotely accessible via Apache Guacamole. The main goal was to determine the performance of these
systems in a virtualization calling environment, especially GUI access via browser on the uniform host environment.
The project developed and tried these operating systems on an ubuntu (24.04.1 LTS) host via an Ubuntu 24.04.1 LTS
host built, with the assistance of libvirt and virt-manager; and Guacamole was deployed using Docker. The result was
a modular, structured platform upon which graphical interfaces and the behavior of the boot sequence and the use of
resources could be compared, and the virtualization compatibility of these components could be tested.

Chapter 1 provided the ground by showing the motivation to adopt Android, Haiku and Fuchsia. The selection of
these operating systems was based not just on their technical differences, which include monolithic and microkernel
architecture, but also, in this case, on the level of their maturity and the capability to support virtualization. Android is a
well-developed system based on Linux with extensive deployment and tooling, Haiku is a lightweight, single-user-oriented
system inspired by the BeOS, and Fuchsia is a project by Google, still streamlined to widespread use, with a microkernel.
Each of these systems posed specific challenges in virtualizing that could not be easily ignored, such as a requirement to
achieve graphical access remotely within a browser-based system.

Chapter 2, the technologies of virtualization were described in detail, as well as the management of a particular system
architecture. QEMU and KVM were chosen as the internal virtualization solutions because of their open-source basis,
conformity to the libvirt, and support for a number of CPU architectures. The remote desktop gateway was found
as Apache Guacamole, because it has HTML5-supported rendering and integration capability. The chapter has also
explained that noVNC was tried before being stored away in preference of the advanced security provided and session
control offered by Guacamole. This chapter includes tables and figures (Table 1 (VNC vs RDP comparison)), which
support the rational decisions in protocol selection and indicate the compliance with the objectives of the project in
cross-platform and clientless work.

Chapter 3 was the design of the system that strengthened the technical base. It was checked in the terminal outputs and
the hardware specs in Table 2 that the host system was HP EliteBook 850 G8 with Intel VT-x as a virtualization feature.
The guest operating systems were booted via qcow2 disk images, and the locally bound sessions were launched as VNC
sessions that were internally routed to Guacamole. It is worth noting that every computer setup was developed to prevent
exposure to external networking, which enhances the level of testbed security. Automation was efficiently supported by
the so-called snapshots controlled with libvirt, allowing quick recovery attempts after unsuccessful configuration. This
was of central interest when troubleshooting exposures of the Fuchsia shell.

77

‘ FRANKFURT

CHAPTER 6. CONCLUSION u!f\pmﬁ?;!ifilli

Chapter 4 captured the implementation plans regarding every OS. DroidVNC-NG configured Android-x86 could be
installed in a modified QEMU VM and accessed successfully via Guacamole due to framebuffer initialization by a screen
recorder. The Haiku operating system was virtualized based on its nightly ISO image, deployed with AGMS VNC and
provided a fast and light windowing desktop interface via Guacamole (Section 4.2). Fuchsia was the most complicated;
to compile it was necessary to build it from source, with Google fx tool. It was emulated through the use of FEMU
but restricted only to the access of the serial shell. Any attempt to deploy GUI failed because it was not supported by
virtio-gpu and failed to initialise the graphical stack in virtualised settings. Although Fuchsia booted to a functional
shell, its lack of a CLI disqualified it from being included in the Guacamole interface, along with the two other systems.

The analysis based on evaluation and testing (Chapter 5) focused on comparing the performance indicators of the CPU,
RAM, and boot time of Android and Haiku (Section 5.2), whereas modern system behaviors of Fuchsia were monitored
via the console-level logs and CLI interactions (Section 5.3). Android needed parameter changes to the kernel (e.g.,
nomodeset) to boot on QEMU, and had intermittent problems with input latency in VNC, whereas Haiku was fast and
required minimal memory both by Hook and voodoo benchmark tests. Comparisons of performance rendered using GUI
also proved that Haiku was the most efficient in a virtualised environment. Shell-only access restricted Fuchsia to be
evaluated only on the level of boot consistency and how fast a command responds. Nevertheless, even this testing gave
important discoveries as to the condition of development of Fuchsia and the obstacles of virtualization.

Security concerns were closely incorporated into the process of deployment. The VNC connections were limited to
localhost only, and Guacamole became a secure proxy to access the browser away. The authentication process and
container isolation provided several layers of control, and remote access through them was safe even when not all the
GUI was encrypted (Section 3.4). Snapshot support (Section 3.2) also helped maintain the system integrity because
deployment after experimental releases was easy in case of a failure.

Finally, the feasibility of constructing a common testbed and using it to deploy and test many kinds of operating systems
within a browser-accessible, virtualized environment was illustrated with the help of this project. Android and Haiku
had full access to GUI through Guacamole, whereas in Fuchsia, access was shell level and thus limited in functionality
because of technical limitations. The hierarchical system structure, was both modular and dependable, and it made
it possible to operate a large number of systems at the same time without customer software on the client side. The
hardware-specific support (e.g. GPU passthrough) that is still in active development is highlighted by the limitations
faced, especially with Fuchsia.

Conclusively, the project achieved the main goals, which included deployment into systems and integration of GUI
accessibility and comparative testing. It also pointed out some serious flaws in enabling next-generation operating systems
such as Fuchsia in a hypervisor-run virtualized world. It indicates that QEMU/KVM with Apache Guacamole is a potent
platform to manage learning about operating systems as well as testing operations, but a successful GUI virtualization
remains highly dependent on the support of guest operating systems, driver availability, and GPU compatibility.

6.2 Justification of Objectives

This section offers a thorough rationale of the mentioned objectives of the project with each linked to the operations
carried out and the results got in the process of assessment. Each of the objectives outlined in Chapter 1 has its
implementation actions, testing and real-life findings in order to show the implementation of the goal in the environment
of the virtualization testbed. The discussion will also take into consideration challenges that were faced and to what
extent each objective was reached fully, to some extent, or on some conditions.

Objective 1: Deploy Android, Haiku, and Fuchsia in QEMU/KVM Virtual Machines on a Linux Host
Justification:

It was based on creating a fully virtualized environment. The set of test hosts was homogeneous due to the usage of a

78

‘ FRANKFURT

CHAPTER 6. CONCLUSION ml APPLED SCIENCES

single, reproducible host platform (Ubuntu 24.04.2 LTS, HP EliteBook 850 G8, Intel Core i5 1135G7 CPU and 16 GiB
RAM). The availability of the hardware virtualization support (VT x) was confirmed using Iscpu command (see ch.3,
section 3.1). The kernel-level acceleration was provided by KVM, and emulation of various architectures when required
was done in QEMU. Each VM was made and handled with Virt Manager (libvirt GUI), (Haiku), (Android), and Chapter
4.3(Fuchsia FEMU-based configuration)).

= Android x86 -9.0: Installed with virt-manager through a 20 GiB qcow?2 disk, 3 GiB RAM, 2 vCPUs. Configuration
was successful as it indicated using Android x86 live ISO boot.

= Haiku R1/Beta: built with the same resource descriptions (1 GiB RAM, 1 vCPU, 8 GiB qcow? disk). It was recorded
as the live environment and consequent drive partitioning/installation.

» Fuchsia OS: obtained and bootstrapped at source (section 4.3) Targeted build contents against the work-
bench_eng.x64 product and were executed by starting by the laptop with ffx emu start —headless.

Combined, these deployments confirmed the answer to the question of whether the virtualization layer could host a vari-
ety of kernels (Linux, Haiku, its KFS based-kernel, and Fuchsia, its Zircon microkernel) on a single management interface.

Objective 2: Enable Web-Based Access to Each VM Using Apache Guacamole
Justification:

Clientless HTML5 access is derived from the need for platform independence. SISSSLab’s Apache Guacamole is an
implementation of a proxy level VNC server. It consists of the guacd proxy daemon and a web interface based on
Tomcat. Chapter 4, section 4.4 describes how Apache Guacamole was assembled from scratch on a singular system.

Installation and Configuration:

= Assemble the system from the source and execute the commands: download the source, configure the system, and
execute make and make install.

= Started guacd service(systemctl).

= Deployed guacamole.war on Tomcat9.

Definitions of Connection:

Using the Guacamole dashboard or user-mapping.xml, | was able to embed the Android VM (127.0.0.1:5905) and the
Haiku VM (127.0.0.1:5903). These addresses were used withing local network setup.

In-Browser Streaming:

The successfully connected streams (Android and Haiku) display as thumbnails on the Guacamole dashboard. Clicking
on these tiles opens the live desktops in any popular browser.

Because QEMU Fuchsia did not implement a graphical framebuffer, the user was unable to include Fuchsia in Guacamole,
although this is also described and accounted for by itself.

Objective 3: Evaluate Functional and Performance Characteristics of Android and Haiku VMs
Justification:

Extensive testing entailed functional (the responsiveness of GUI, startup of the application) and performance (CPU usage,
memory usage, boot time, network latency) reviews. These tests are described in chapter 5:

= Functional Testing (Chapter 5.1):

= Android GUI launched successfully via Guacamole with integrated terminal emulator.
= Haiku desktop accessed over HTML5 VNC.

79

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 6. CONCLUS'ON OF APPLIED SCIENCES

= Performance Monitoring Tools (Chapter 5.2):

» Host and guest CPU/RAM graphs from Virt-Manager's statistics panel.

= Chrome DevTools measured Android frame rates under load.
= Quantitative Metrics (Chapter 5.4):

= Boot time: Android < 30 s; Haiku ~ 45 s: Fuchsia CLI boot: ~25 s to shell access.
= Average CPU utilization: Android 20-30%; Haiku 15-25% during idle, spikes to 80% during GUI startup.
= Memory usage: Android =~ 1.2 GiB; Haiku = 0.8 GiB; Fuchsia CLI =~ 700 MiB.

= Remote latency: Round-trip frame updates under 150 ms over loopback NAT.

These results demonstrate not only that the VMs are fully functional but also quantify the overhead introduced
by virtualization and browser-based delivery. The strengths and trade-offs of virtual machines were evident in the
performance tests in that every virtual machine has its own strengths and adjustments. Android is slightly quicker at
startup time and provides a more pleasant graphical performance, though it takes up more memory and CPU. Haiku
is slightly slower to boot, and the interface can be a bit sluggish, but it is leaner on the system resources. The stream
of both systems works quite good when running through the browser, the latency on the network is approximately the
same, therefore, neither of them experiences significant lag. Ultimately, a resource-intensive but faster GUI comes at the
price of Android, whereas, with a leaner footprint, the startup of Haiku is also a little slower, with each OS having an
edge on the other depending on the priorities of speed or efficiency.

Objective 4: Document Challenges in Fuchsia Deployment, Specifically Absent GUI Support
Justification:
Fuchsia’'s experimental nature surfaced several hurdles:

Manual Bundle Registration: Early fx Build of the canonical fuchsia product enumerated an error, as some bundles were
missing (Chapter 4.3). The solution—ffx product-bundle, is documented using before/after screen captures.

GUI no longer works: This problem possibly caused by a failed GUI (Still works via headless boot at 1024x768 , but
FEMU stalled at the ASCII logo f . No -vnc framebuffer was detected so there was no Integration of Guacamole. Missing
virtio gpu driver support was shown in diagnostic logs (ffx log —filter scenic).

CLI Only: fx shell hosted limited CLI only feature enabling kernel and package testing, but no desktop or graphical user
interface.

The report of these issues has dual purpose: it is our account of the shortcomings in emulator stack in Fuchsia, and it is
a future research map on where some hardware (e.g., Pixelbook, NUC) or software improvements (virtio gpu patches)
will be required.

Objective 5: Provide a Detailed Setup and Testing Guide for Replication and Future Extensions
Justification:
Reproducibility is critical in research. This project includes:
Step-by-Step Instructions (Chapter 4) for each OS:
= Android: Sections 4.1 & 4.2
= Haiku: Section 4.2
= Fuchsia: Section 4.3

= Guacamole: Section 4.4

80

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 6. CONCLUS'ON OF APPLIED SCIENCES

= Networking: section 4.5
All commands, configuration files, fragments, and GUI screenshots are included, and the readers will be able to recreate

the environment on a similar host based on Ubuntu 24.04. Modular design can accommodate new guest OSes and also
do experiments with GPU passthrough to use Fuchsia GUI.

Achievement Summary Table 6.

Objective Achieved

1. Deploy Android, Haiku, and Fuchsia in QEMU/KVM VMs on Linux host. Yes

2. Enable web-based access to each VM using Apache Guacamole. Yes

3. Evaluate functional and performance characteristics of Android & Haiku VMs (CPU, memory, Yes

boot time, latency).

4. Document and analyse challenges in Fuchsia deployment, especially absent GUI support in Yes
QEMU.

5. Provide detailed setup and testing guide for all OSes, enabling replication and future extensions. Yes

Table 6: Objectives Achievement Summary Table

6.3 Limitations

While the project successfully achieved many of its goals, there were several limitations- some technical, some
environmental- that affected what could be accomplished, especially when working with a system as experimental as
Google Fuchsia.

The most significant challenge was with Fuchsia’s graphical user interface. Although User was able to compile the system
from source and boot into a working shell using the official fx tool on Ubuntu 24.04.1 (described in Section 4.3), the
user was never able to get the GUI to display properly. The virtual machine would boot, show the Fuchsia logo, and then
freeze or remain on a black screen. This wasn't due to any error in the build process itself—the system clearly booted
into a CLI environment but rather because QEMU simply doesn't support the kind of GPU passthrough or framebuffer
handling that Fuchsia's GUI stack (Scenic + Ermine) requires. Based on community reports and even some upstream
bug threads, this is a known issue. Without access to hardware like a Pixelbook or Intel NUC, the user couldn't take the
GUI testing any further, which meant Fuchsia couldn’t be integrated into the Guacamole dashboard like Android and
Haiku were.

Another key limitation was related to the hardware the user used. User's test system, an HP EliteBook 850 G8, supports
Intel VT-x for virtualization, which worked perfectly fine for running QEMU/KVM. However, it doesn't support things
like SR-IOV or IOMMU needed for GPU passthrough. Because of that, none of the guest systems could benefit from true
hardware acceleration. In Android's case, for example, user had to disable hardware graphics entirely (using nomodeset)
just to get the GUI to render over VNC. This meant relying on software rendering, which worked, but caused minor lag
and screen tearing when accessing the system remotely.

One surprising limitation came from the remote desktop protocols. While both VNC and RDP were considered early in
the project, the User ended up using only VNC throughout because it was the most stable and compatible with both
Android-x86 and Haiku. RDP would've offered better compression and features like clipboard or audio forwarding, but
it required additional configuration (or in some cases, custom builds) that just didn't work well in those systems. As
a result, while Apache Guacamole worked great for lightweight VNC sessions, some features like audio streaming or

81

I ‘ FRANKFURT
UNIVERSITY

CHAPTER 6. CONCLUS'ON OF APPLIED SCIENCES

multi-session handling weren't available in this setup.

In short, most of the limitations the user encountered weren't because something was done incorrectly, but they were
natural consequences of working with systems that are either experimental (like Fuchsia) or not fully optimized for virtual
environments (like Android-x86 or Haiku). Still, the overall setup worked as intended for the goals the user had set, and
these boundaries helped highlight exactly where the tools and platforms need improvement for better integration in the
future.

6.4 Recommendations and Future Research Scope

Recommendations:

Depending on the results of this project, it is possible to conclude a number of recommendations to increase the
reliability, usability, and scalability of the virtualization testbed. First, the procedure of GPU passthrough on applicable
hardware is highly recommended, especially in operating systems like Fuchsia with a need to have advanced graphics
stacks. This would overcome the constraints with respect to rendering and would allow complete GUI-based analyses.
Second, scripting or integrating with orchestration tools (e.g., Ansible, Terraform) would be desirable to automate
deployment and configuration tasks and thereby reduce the time spent on initial setup and increase the reproducibility
of the aims in future use. Third, it can strengthen network security by incorporating TLS encryption and multi-factor
authentication in the Apache Guacamole interface in the event of the deployment of the testbed outside a closed network
as well. As well, tuning the use of snapshot and rollback operations on virtual machines will also make experimental
cycles and fault resilience less cumbersome. Lastly, it is always good practice to have full documentation of the technical
system, in particular the configuration files, build history and troubleshooting notes, to aid transfer of knowledge and
adoption in an academic and enterprise setting.

Future Research Scope:

The area of research that can be done in the future is in various directions. A potential direction would be enabling
a comparison with other operating systems-especially the container-based environments and the emerging microkernel-
based systems. Additional research into lower-level remote access protocols (e.g. SPICE, WebRTC-based) could provide a
complete performance or feature benefit over VNC in some situations. The other significant direction is the assessment of
resource allocation strategies at the different workloads, including dynamic CPU and memory scaling during virtualizing.
In the particular case of Fuchsia, an effort to investigate driver development or hardware-specific customization should be
made in order to allow full graphical stack deployment in the QEMU/KVM setup. It would also be possible to extend the
testbed to support distributed virtualization across many hosts and consequently study scalability and high-availability
systems. Lastly, real-time visualization combined with performance monitoring dashboards would allow increases in us-
ability both in teaching and research use cases so that metrics like latency, throughput, and system load can be tracked
in real time.

82

List of Abbreviations

Abbreviation

Full Form

API Application Programming Interface
ART Android Runtime

BFS Be File System

CLI Command-Line Interface

CPU Central Processing Unit

DNS Domain Name System

GB Gigabyte

GHz Gigahertz

GPU Graphics Processing Unit

GUI Graphical User Interface

HTML5 Hypertext Markup Language Version 5
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
ISO International Organization for Standardization (file image format in this context)
1/0 Input/Output

KVM Kernel-based Virtual Machine

LTS Long-Term Support

MB Megabyte

NAT Network Address Translation

(0N Operating System

PCI Peripheral Component Interconnect
QCOW?2 QEMU Copy-On-Write Version 2
QEMU Quick Emulator

RAM Random Access Memory

RDP Remote Desktop Protocol

RFB Remote Framebuffer

SSH Secure Shell

SSD Solid-State Drive

TCP Transmission Control Protocol
TLS Transport Layer Security

Ul User Interface

USB Universal Serial Bus

UTC Coordinated Universal Time

VCPU Virtual Central Processing Unit
VDI Virtual Desktop Infrastructure
VMM Virtual Machine Manager

VM Virtual Machine

VNC Virtual Network Computing

VT-x Intel Virtualization Technology for x86
XML Extensible Markup Language

83

Appendices

The following configuration and log files are provided as supplementary material in a separate archive submitted alongside
this thesis. These files contain full technical details that support the implementation and replication of the project
environment.

Appendix 1 — haikunightly.xml

This file contains the complete libvirt virtual machine configuration for the Haiku OS nightly build. It defines virtual
hardware specifications, storage allocations, and network interface settings used in the project.

Appendix 2 — android-x86-9.0.xml

This file provides the libvirt virtual machine configuration for Android-x86 version 9.0. It includes CPU, memory, and
device configurations that enabled stable execution and remote access through Apache Guacamole.

Appendix 3 — guacamole.properties

This file contains the Apache Guacamole server configuration, specifying connection parameters, authentication settings,
and environment variables. All sensitive credentials have been masked for security purposes.

Appendix 4 — emulator.log

This file contains the complete fuchsia emulator log for Google Fuchsia OS, generated using the ffx emu start command.
It includes detailed warnings, and error messages encountered during the build process.

84

Bibliography

[1]
2]

3]
[4]
[5]

[6]
[7]

(8]
[9]
[10]
[11]

[12]
[13]
[14]
[15]

[16]
[17]
(18]

[19]
[20]
[21]
[22]

23]

[24]
[25]

About Alexander G. M. Smith. web.ncf.ca. URL: https://web.ncf.ca/au829/resume.html#VNCServer.

agmsmith. GitHub - agmsmith/VNC-4.0-BeOS-Server: BeOS and Haiku OS implementation of the VNC 4.0 remote
screen and keyboard server. GitHub. 2019. URL: https://github.com/agmsmith/VNC-4.0-Be0S-Server.

M. Ali. How to Install KVM on Ubuntu 24.04: Step-By-Step. Cherry Servers. 2024. URL: https : // wuw .
cherryservers.com/blog/install-kvm-ubuntu.

Android Runtime (ART) and Dalvik. Android Open Source Project. URL: https://source.android.com/docs/
core/runtime.

Android-x86 - Porting Android to x86. www.android-x86.org. URL: https://www.android-x86.org/ (visited on
12/31/2024).

Apache Guacamole. Apache Software Foundation. URL: https://guacamole.apache.org/.

Sahil Bhosale. Google’s new Fuchsia OS: Download and Build from source code. LionGuest Studios. 2023. URL:
https://liongueststudios.com/googles-new-fuchsia-os-download-and-build-from-source-code.

Contribute changes. Fuchsia. URL: https ://fuchsia . dev/fuchsia- src/development /source_code/
contribute_changes.

dev/null. Understanding KVM: How QEMU and Proxmox Bring Virtualization to Life. URL: https://medium.
com/@_dev_null /understanding-kvm-how- gemu- and - proxmox - bring-virtualization-to-1life-
e66d63e1735c.

Download — Android-x86. Android-x86. URL: https://www.android-x86.org/download.html.

Download the Fuchsia source code. Fuchsia. URL: https://fuchsia.dev/fuchsia-src/get-started/get_
fuchsia_source.

droidVNC-NG. F-Droid. URL: https://f-droid.org/packages/net.christianbeier.droidvnc_ng/.
Emulating Haiku in KVM. Haiku Project. URL: https://www.haiku-os.org/guides/virtualizing/KVM.
Fuchsia. Fuchsia. URL: https://fuchsia.dev/.

Google’s Fuchsia OS was one of the hardest hit by last week’s layoffs. Hacker News. 2023. URL: https://neus.
ycombinator.com/item?id=34515277.

Hardware abstraction layer (HAL) overview. Android Open Source Project. URL: https://source . android.
com/docs/core/architecture/hal.

Ismail Hassan. “Levereging Apache Guacamole, Linux LXD and Docker Containers to Deliver a Secure Online Lab
for a Large Cybersecurity Course.” In: 2022 IEEE Frontiers in Education Conference (FIE). IEEE. 2022, pp. 1-9.

Qazale Hesami. Installing Apache Guacamole on Ubuntu 24.04: Secure Remote Desktop Gateway. OrcaCore. 2025.
URL: https://orcacore.com/installing-apache-guacamole-on-ubuntu-24-04/.

IBM. Virtualization. URL: https://wuw.ibm.com/think/topics/virtualization.
Index of /guacamole. Apache Software Foundation. URL: https://downloads.apache.org/guacamole/.
Installation Guide. Haiku Project. URL: https://www.haiku-os.org/get-haiku/installation-guide.

A. Joy. Google Fuchsia: Everything you need to know about the OS. Android Police. 2024. URL: https://wuw.
androidpolice.com/google-fuchsia-guide/.

Ankur Kumar. Apache Guacamole: Revolutionizing Remote Access Through Time. 2024. URL: https ://
ankurgauti . medium . com / apache - guacamole - revolutionizing - remote - access - through - time -
c194£267a206.

libvirt: Snapshots. libvirt. URL: https://1ibvirt.org/kbase/snapshots.html.
libvirt: The virtualization API. libvirt. URL: https://libvirt.org/.

85

https://web.ncf.ca/au829/resume.html#VNCServer
https://github.com/agmsmith/VNC-4.0-BeOS-Server
https://www.cherryservers.com/blog/install-kvm-ubuntu
https://www.cherryservers.com/blog/install-kvm-ubuntu
https://source.android.com/docs/core/runtime
https://source.android.com/docs/core/runtime
https://www.android-x86.org/
https://guacamole.apache.org/
https://liongueststudios.com/googles-new-fuchsia-os-download-and-build-from-source-code
https://fuchsia.dev/fuchsia-src/development/source_code/contribute_changes
https://fuchsia.dev/fuchsia-src/development/source_code/contribute_changes
https://medium.com/@_dev_null/understanding-kvm-how-qemu-and-proxmox-bring-virtualization-to-life-e66d63e1735c
https://medium.com/@_dev_null/understanding-kvm-how-qemu-and-proxmox-bring-virtualization-to-life-e66d63e1735c
https://medium.com/@_dev_null/understanding-kvm-how-qemu-and-proxmox-bring-virtualization-to-life-e66d63e1735c
https://www.android-x86.org/download.html
https://fuchsia.dev/fuchsia-src/get-started/get_fuchsia_source
https://fuchsia.dev/fuchsia-src/get-started/get_fuchsia_source
https://f-droid.org/packages/net.christianbeier.droidvnc_ng/
https://www.haiku-os.org/guides/virtualizing/KVM
https://fuchsia.dev/
https://news.ycombinator.com/item?id=34515277
https://news.ycombinator.com/item?id=34515277
https://source.android.com/docs/core/architecture/hal
https://source.android.com/docs/core/architecture/hal
https://orcacore.com/installing-apache-guacamole-on-ubuntu-24-04/
https://www.ibm.com/think/topics/virtualization
https://downloads.apache.org/guacamole/
https://www.haiku-os.org/get-haiku/installation-guide
https://www.androidpolice.com/google-fuchsia-guide/
https://www.androidpolice.com/google-fuchsia-guide/
https://ankurgauti.medium.com/apache-guacamole-revolutionizing-remote-access-through-time-c194f267a206
https://ankurgauti.medium.com/apache-guacamole-revolutionizing-remote-access-through-time-c194f267a206
https://ankurgauti.medium.com/apache-guacamole-revolutionizing-remote-access-through-time-c194f267a206
https://libvirt.org/kbase/snapshots.html
https://libvirt.org/

‘ FRANKFURT
UNIVERSITY

BIBLIOGRAPHY OF APPLIED SCIENCES

[26]
[27]

[28]
[29]

(30]

(31]

32]
(33]
(34]

(35]
(36]

37]
(38]

Reto Meier and lan Lake. Professional Android. John Wiley & Sons, 2018.

Jatinkumar Nakrani. Fuchsia OS Emulator Not Displaying Properly on Ubuntu 24 TLS. 2025. URL: https:
//dev.to/jatinkumar20/fuchsia-os-emulator-not-displaying-properly-on-ubuntu-24-tls-5hhi.

R1/betab — Release Notes. Haiku Project. URL: https://www.haiku-os.org/get-haiku/ribetab/release-
notes/.

r3d1lr. On Android-X86 | get only a black (blank) screen. GitHub. 2021. URL: https://github.com/bk138/
droidVNC-NG/issues/35.

Gokul Ramakrishnan. “Use Cases of Apache Guacamole in Remote Work." In: International Journal of Computer
Trends and Technology (IJCTT) 72.11 (2024). Received: 05 Oct 2024 — Revised: 06 Nov 2024 — Accepted:
24 Nov 2024 — Published: 30 Nov 2024, pp. 172-177. DOI: 10.14445/22312803/IJCTT-V72I11P119. URL:
https://doi.org/10.14445/22312803/IJCTT-V72I11P119.

Rathan. Fuchsia OS — Google’s Silent Revolution in Operating Systems. URL: https://medium.com/@rathan.
george/fuchsia-os-googles-silent-revolution-in-operating-systems-2c50327d25ff.

Tristan Richardson et al. “Virtual network computing.” In: IEEE Internet Computing 2.1 (2002), pp. 33-38.
ScreenCam. F-Droid. URL: https://f-droid.org/packages/com.orpheusdroid.screenrecorder/.

Ubuntu. The leading operating system for PCs, loT devices, servers and the cloud — Ubuntu. URL: https:
//ubuntu.com/.

Virtual Machine Manager Home. virt-manager project. URL: https://virt-manager.org/.

Virtualization Overview. Fuchsia. URL: https://fuchsia.dev/fuchsia-src/development/virtualization/
overview.

Karim Yaghmour. Embedded Android: Porting, Extending, and Customizing. " O'Reilly Media, Inc.", 2013.

Zircon fundamentals. Fuchsia. URL: https://fuchsia.dev/fuchsia-src/get-started/learn/intro/
zircon.

86

https://dev.to/jatinkumar20/fuchsia-os-emulator-not-displaying-properly-on-ubuntu-24-tls-5hhi
https://dev.to/jatinkumar20/fuchsia-os-emulator-not-displaying-properly-on-ubuntu-24-tls-5hhi
https://www.haiku-os.org/get-haiku/r1beta5/release-notes/
https://www.haiku-os.org/get-haiku/r1beta5/release-notes/
https://github.com/bk138/droidVNC-NG/issues/35
https://github.com/bk138/droidVNC-NG/issues/35
https://doi.org/10.14445/22312803/IJCTT-V72I11P119
https://doi.org/10.14445/22312803/IJCTT-V72I11P119
https://medium.com/@rathan.george/fuchsia-os-googles-silent-revolution-in-operating-systems-2c50327d25ff
https://medium.com/@rathan.george/fuchsia-os-googles-silent-revolution-in-operating-systems-2c50327d25ff
https://f-droid.org/packages/com.orpheusdroid.screenrecorder/
https://ubuntu.com/
https://ubuntu.com/
https://virt-manager.org/
https://fuchsia.dev/fuchsia-src/development/virtualization/overview
https://fuchsia.dev/fuchsia-src/development/virtualization/overview
https://fuchsia.dev/fuchsia-src/get-started/learn/intro/zircon
https://fuchsia.dev/fuchsia-src/get-started/learn/intro/zircon

	Titelblatt
	Acknowledgements
	Abstract
	Introduction
	Background
	Motivation
	Problem Statement
	Objectives
	Scope and Limitations
	Methodology Overview
	Structure of the Project

	State Of Art
	Android OS Architecture and Deployment
	Haiku OS Overview and Virtualization Support
	Virtualization Support for Haiku
	Fuchsia OS: Microkernel Architecture and Development Status
	QEMU/KVM Virtualization
	VNC and RDP Protocols
	Apache Guacamole and noVNC

	System Design
	Host system setup
	OS Deployment Strategy
	Remote Access Architecture
	Security Consideration
	System Diagram

	Implementation
	Android Setup in QEMU with Web Access
	Haiku Setup in QEMU with Web Access
	Fuchsia Setup Attempt and Shell Access
	Apache Guacamole Configuration
	Network and Access Configuration

	Evaluation and Testing
	Functional and GUI Testing Overview
	System Performance and Resource Utilization
	Fuchsia-Speciﬁc Boot and CLI Behaviour
	Comparative Analysis of OS Behavior
	Troubleshooting Summary and Observations

	Conclusion
	Summary of Work
	Justification of Objectives
	Limitations
	Recommendations and Future Research Scope

	List of Abbreviations
	Appendices
	Bibliography

