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Revisiting Remote Timing Attacks on OpenSSL

by Md Intekhab Shaukat

Timing attacks have the power to retrieve a secret quite simply what a classic

attack finds difficult. Basic idea behind timing attacks is that the implementation

of a cryptosystem has timing difference based on input data or the secret. The

attacker leverage this behaviour using selective inputs to recover the secret. These

attacks had been demonstrated mainly on hardware cryptosystems such as smart

cards and it was a general belief that software systems could not be attacked due

to its nondeterministic execution time behaviour. In 2003, Brumley and Boneh[12]

broke this notion and showed that it is possible to retrieve the private key of a

web server using timing attack. They showed that implementation of OpenSSL, an

SSL library, of RSA is vulnerable to timing attack. Schindler et al [19] once again

implemented similar attack in 2005 and provided an improvement in the efficiency

by a factor of more than 10. RSA is an asymmetric cryptography algorithm which

is also used as key exchange algorithm by web servers. We revisit these attacks

and implement these in this work. We recover the private key of a server which

uses OpenSSL for providing data encryption. We compare these attacks as well

in the context of efficiency.

We re-establish that timing attacks are not limited to theories rather they are

possible and could leak big deal of information. Developers can no more ignore

these vulnerabilities. We must defend against these attacks using suitable defences.
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Chapter 1

Introduction

Invent of Internet is the result of the quest to have a life which is connected,

fast, and easy. Since its invent the World Wide Web (WWW) has grown mas-

sive. People exchange information over the Internet excessively. Irrespective of

individual, group, or organization information is a vital part of their lives. They

want to have information secure. People share information over the web, which

might cross several continents through plenty of routers to reach its destination.

In such scenario, information security becomes necessary part of the computing

world. This necessity has given birth to Cryptography, which is a very secure way

to share information. Today, we use https in web browser and we feel that we are

talking to the right person and our information is secure. This feeling of security

is due to Cryptography. But, wait. Even now, we sometimes hear the news of

information breach in such systems, like Heartbleed. Nevertheless, Cryptographic

methods are not pure of any loopholes and researchers have strived hard to find

such loopholes over the years. These efforts have resulted in the subject Crypt-

analysis. There are properties of cryptographic methods, which might give away

sensitive information if not implemented properly. Side Channel Analysis (SCA),

a branch of Cryptanalysis, deals with such topics.

In this chapter, we will discuss about Cryptography and its types. We will also in-

troduce RSA, a cryptographic method. Side Channel Analysis will be introduced

briefly and Timing Analysis, a type of Side Channel Analysis, will be discussed

1
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in detail. We will go on further to talk about RSA and do timing analysis of it.

Here, we will talk about the basic idea behind timing attack on RSA.

1.1 Cryptography

Cryptography is a technique through which one can send information in a jum-

bled manner such that the receiver would not be able to understand the piece

of information until he or she knows a secret. This technique is not something

new. The history of cryptography dates back to over thousand years to Romans,

Greeks, and, Egyptians. Julius Caesar is known to replace the letters of original

message with other letters in the alphabet. He used this method to communicate

secretly to his generals. Some used to shuffle the words of the original message.

The Greeks are known to hide the original message in order to keep it secret.

According to Wikipedia [1], Herodotus hides the message in the form of a tattoo

on a slave’s head. Invisible Ink could be one example of similar method in modern

times. In ancient times, such methods have been used mainly for national and

political security reasons. Those methods are known to be broken after careful

analysis.

As discussed earlier, there is a great need of security and privacy in modern times

in computer science. Researchers and Scientists have studied the ancient pro-

cedures and extended the methods to design more robust and secure methods.

Cryptography deals with such study of methods and techniques to communicate

securely between two parties. According to the book Handbook of Applied Cryp-

tography [2], Cryptography is defined as ”the study of mathematical techniques

related to aspects of information security such as confidentiality, data integrity,

entity authentication, and data origin authentication”. Cryptography must fulfill

the information security goals - Confidentiality, Data Integrity, Authentication,

and Non-repudiation.
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Let us now briefly discuss a few terminologies used in cryptography, which will

enable the readers of this report to understand the terms when they are used. We

refer the original message as plaintext. The method used to modify the original

message is called the cipher and used secret is known as the key. The resulted

message after modification is called the ciphertext. Encryption is the process of

converting the plaintext into the ciphertext and Decryption is the process of con-

verting the ciphertext into the original message or plaintext. The key used in

encryption is referred as Public or Encryption Exponent, e and the key used in de-

cryption is referred as Private or Decryption Exponent, d. Cryptanalysis involves

the study of the cryptographic methods in order to break it.

Based on the number of keys used in the process, cryptography can be divided

into two categories - Symmetric Cryptography and Asymmetric Cryptography. Let

us discuss these categories briefly.

1.1.1 Symmetric Cryptography

Symmetric Cryptography is a type of Cryptography in which the keys used in

Encryption and Decryption are same or it is easy to derive one key from the other

and vice-versa [2]. The term symmetric comes from the fact that both keys are

same. This is also known as private-key cryptography. Data Encryption Standard

(DES), Advanced Encryption Standard (AES), and RC4 are examples of symmet-

ric cryptography.

The symmetric ciphers can also be classified as block cipher and stream cipher.

In block cipher, plain text is divided into fixed size blocks and then each block

is processed at a time. On the other hand, stream cipher processes the plaintext

bit-by-bit or character-by-character.
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Each method has its advantages and disadvantages. Symmetric cryptography is

fast and, usually, the key length is shorter. These are best suited for message

encryption and decryption. In symmetric cryptography, one of the major issues is

the key management. It is really a challenge to secretly share the symmetric key

between the two parties.

1.1.2 Asymmetric Cryptography

Unlike symmetric cryptography, Asymmetric Cryptography has two different keys

for encryption and decryption. The two keys are mathematically related, but it

is infeasible to derive one key from the other. This scheme is widely known as

Public-key Cryptography. The two keys are called Public Key and Private Key. In

general sense, public key is used in encryption while private key is used in decryp-

tion. This has been considered one of the most revolutionary concept in computer

science. Diffie-Hellman (DH), proposed by Whitfield Diffie and Martin Hellman,

and RSA are widely used asymmetric cryptography methods.

These methods overcome the major problem of key management in symmetric

schemes. On the other hand, the key lengths are comparatively larger. Also,

these are slower than symmetric schemes. These features make them suitable

for Authentication and Key Exchange. RSA is widely used in Digital Signatures,

a method of authentication. Considering the properties of both symmetric and

asymmetric schemes, combination of both, sometimes referred as hybrid cryptog-

raphy, is often used in client-server environment.

Since our study is based on RSA, we will discuss it in detail in later sections.
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1.2 RSA

In 1977 Ron Rivest, Adi Shamir, and Leonard Adleman brought a revolution in

cryptography, when they proposed a very robust asymmetric cryptography scheme.

This scheme is named RSA on behalf of their names. According to the book [2],

RSA is the most widely used cryptosystem. It provides both secrecy and authen-

tication. This scheme involves three steps - Key Generation, Encryption, and

Decryption. First a key pair (Public Key and Private Key) is generated. These

keys are then used in encryption and decryption. In general, encryption uses public

key and decryption uses private key. Hence, they are often referred as encryption

or public exponent, e and decryption or private exponent, d respectively.

Alice (the receiver of the message) shares his public key with Bob (the sender).

Bob encrypts the message using Alice’s public key and sends the ciphertext to

Alice. Alice decrypts the ciphertext using his private key to get the message.

Figure 1.1 depicts this scheme.

Figure 1.1: RSA Encryption-Decryption scheme

Key Generation, Encryption, and Decryption algorithms are explained below.

Once public key and private key are generated, one can use below algorithm to

encrypt and decrypt a message. Let us assume that A wants to send a message to

B.

Our attack is based on implementation of RSA decryption in OpenSSL. So, let us

look at the specifics of RSA decryption implementation in OpenSSL.
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Algorithm 1 RSA Key Generation Scheme[2, p. 286]

1: Generate two large prime numbers p and q, roughly of the same size.

2: Compute N = pq and φ = (p-1)(q-1)

3: Choose a random number e, such that, 1 < e < φ and gcd(e,φ) = 1

4: Compute d, such that, 1 < d < φ and ed ≡ 1 (mod φ).

5: (N,e) is public key and d is private key.

Algorithm 2 RSA Encryption & Decryption[2, p. 286]

Encryption by A

1: A must obtain the public key of B.

2: Compute an integer equivalent m of the message.

3: Compute C = me (mod N)

4: C is the encrypted message. Send C to B.

Decryption by B

1: B will receive C.

2: Compute original message as m = Cd (mod N)

1.3 OpenSSL

OpenSSL [3] is a cryptographic library which provides implementation of SSL/TLS

protocols incorporating many cryptographic algorithms including RSA. This is an

open source library under Apache and BSD License, and is most used crypto-

graphic library. Most web servers use this to provide https connection. This is

considered to be an extension of a library SSLeay, a work of Eric Andrew Young

and Tim Hudson.

To speed up the decryption, OpenSSL uses a combination of few algorithms to

solve the RSA decryption equation, m = Cd mod N . It uses Square and Multi-

ply, Sliding Window Exponentiation, Montgomery Reduction, Chinese Remainder

Theorem, and Karatsuba Multiplication. In this section, we will get to know these

algorithms.
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1.3.1 Square and Multiply

The equation of the form s = xd mod N is called modular exponentiation. A

faster method to solve such equation is called Square and Multiply Algorithm.

The method is described in algorithm 3. First, we convert the exponent d in its

binary form such that d0 = 1. Then, we start with value x and iterate through

the bits of d to get the result s.

Algorithm 3 Square and Multiply Algorithm : s = xd mod N

1: d = (d0, d1, .., dn)2, where d0 = 1

2: s = x

3: for i = 1 to n do

4: s = s2 mod N

5: if (di == 1) then

6: s = s · x mod N

7: end if

8: end for

9: return s

Although, this method is faster, it has scope of improvement. We process the bits

of d one by one, which can be improved by considering a group of bits at a time.

1.3.2 Sliding Window Exponentiation

Sliding Window Exponentiation (SWE) is a variant of Square and Multiply Algo-

rithm and is used to solve modular exponentiation. It improves the Square and

Multiply Algorithm by processing a group of bits of d at a time. This algorithm

works in two phases - (1) Table Initialization Phase, and (2) Exponentiation Phase.

1. Table Initialization Phase: In this phase, we pre-compute the odd powers

of x including x2 such that x1, x2, x3, x5, ... and saves it into a table. So, we

prepare a table with odd powers of x.
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2. Exponentiation Phase: This is the actual exponentiation phase where we

process w bits at a time. w is called window size. During this phase, we

carry out multiplication by one of the table entries that we prepared in first

phase. The table entry is decided by the value of w.

OpenSSL uses window size of 5 for 1024-bit modulus.

1.3.3 Chinese Remainder Theorem

A Chinese mathematician Sun Tzu developed Chinese Remainder Theorem (CRT).

In general, it is used to find out a number which when divided by some divisors

leaves given remainders. For example, find out the least number which when

divided by 5 gives remainder 3 and when divided by 7 gives remainder 2. A com-

prehensive application could be found in the book [4].

openSSL uses CRT to solve decryption equation m = Cd (mod N) where N =

pq. This equation is solved in two steps. First step calculates m1 = Cdp (mod p)

and m2 = Cdq (mod q). Second step combines m1 & m2 to get m. dp and dq are

precomputed from d. This is explained in below algorithm.

Algorithm 4 Chinese Remainder Theorem[5, p. 466]

1: Compute dp ≡ d mod (p− 1) and dq ≡ d mod (q− 1).

2: Compute m1 ≡ Cdp (mod p) and m2 ≡ Cdq (mod q)

3: Compute u ≡ q(q-1 (mod p)) and v ≡ p(p-1 (mod q))

4: Compute m ≡ u ·m1 + v ·m2 (mod N)

5: Return m as decrypted message.

CRT results in speed up by a factor of four in comparison to normal modular

exponentiation.

1.3.4 Montgomery Multiplication

The multiplication of the form ”x ·y mod q” is called modular multiplication. Dur-

ing Sliding Window Exponentiation (SWE), modular multiplication is performed
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at every step. Peter L. Montgomery published a paper [6] in 1985 to perform such

calculations efficiently. It avoids integer division. This method is quite fast on

hardware and software since it involves multiplication and division by powers of 2

denoted by R, which is achieved by cheap shift operations. We will refer this as

MM. So, it performs MM (x,y) = x · y · R−1 mod q, where R > q. First x and

y are converted into Montgomery form. Montgomery form of x is xR (mod q).

Then, multiplication xR · yR = cR2 is performed. After this, modular reduction

of the product is done as cR2 · R−1 = cR mod q. The result is in Montgomery

form which can be used in subsequent Montgomery operations. At the end q is

subtracted from cR if it is greater than q to make sure output is in the range [0,q).

This step is called Extra Reduction. We will see later how this would help in

our attack. Eventually, the result is put back into normal form by multiplying the

result by R−1 mod q at the end of exponentiation. This algorithm has been put in

steps below.

Algorithm 5 Montgomery Multiplication, MM(x,y) = x · y ·R−1 mod q

1: Compute S = x · y

2: Compute z = S · q−1 mod R

3: Compute S = (S − z · q)/R

4: if S > q then

5: S = S − q

6: end if

7: return S

1.3.5 Multiplication Routines

The calculations in RSA decryption also involves multiplications of very large num-

bers represented in over 1000-bits. These numbers are called arbitrary-precision

or multi-precision numbers in mathematical terms. There are libraries that can

be used to deal with such numbers e.g. OpenSSL and GMP [7]. These libraries

represent these numbers as sequence of words in computer. Since these num-

bers are very large, we need fast algorithm to do the multiplication. Karatsuba
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Multiplication is the answer. This is faster than normal multiplication. Time

complexity of this algorithm is O(n1.58). However, there is one pre-requisite of

this algorithm that the operands of multiplication should have same number of

words. Thus, OpenSSL uses two multiplication routines - Karatsuba (for operands

of equal words) and Normal (for operands of different words). Normal multiplica-

tion has time complexity of O(mn) for operands of word sizes m and n. Clearly,

it will take O(n2) for equal size operands.

1.4 Side Channel Analysis

Side Channel Analysis can be thought of knowing about a secret using certain fea-

tures. You and I have been using such technique for long without having noticed.

You might be aware of how your friend/relative behave in certain situations. So,

when you see such behavior you interpret the situation without being told. For

example, your friend might lisp when he is in tension. According to the article [8],

Pizza shop owners around White House claimed to know what is going on inside

the White House because pizza orders used to go up before every attack. These

are examples of side channel analysis.

Cloud computing is becoming ubiquitous today. There is a shift from desktop

applications to software-as-a-service, where applications are being provided over

web. To provide privacy and security encrypted transmission is used. They are

considered to be safe because adversary cannot understand the encrypted data.

However, certain properties of the encrypted traffic can leak out sensitive infor-

mation e.g. packet size, packet sequence, and timings etc. These properties are

called Side Channels. Chen et al [9] have shown that such information can give

away the sensitive information of users.

So, Side Channel Analysis is an attack, which is based on certain characteristics

of the implementation of the cryptosystem [10] and those characteristics are called

Side Channels. Power Consumption, Timing detail, Packet sequence, Packet size,

Electromagnetic Waves, Sound, etc. are examples of Side Channels. Researchers
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have shown several attacks using these details.

Our study is based on one of the side channels - Timing.

1.4.1 Timing Side Channel Analysis

In Timing Attacks or Timing Side Channel Analysis, we use timing details of the

implementation of the cryptosystem to break it. As we know that algorithms have

different execution time for different inputs. If we can profile the execution time of

different inputs, we can use the execution time to guess the input. Basically, this

is the idea behind a timing attack. These vulnerabilities usually get overlooked

by developers due to lack of knowledge. Also, Our tests are not bothered to catch

such issues. The attacker is assumed to have knowledge of the implementation.

So, if the algorithm, which involves calculation with secret, has different execution

profile depending on input, it might give away the secret.

To have a better understanding, let us consider an algorithm of a login system.

Algorithm 6 Login System

1: if (User exists in the system) then

2: if (Password Match) then

3: return ”success”

4: else

5: return error ”An error occurred”

6: end if

7: else

8: return error ”An error occurred”

9: end if

The above algorithm returns the same error if either of username or password

is incorrect. Looking at the error one cannot decipher which one is incorrect.

However, timing analysis can leak out such information and one can infer if a user

exists in the system or not. Figure 1.2 makes it clearer. Just to inform the readers
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that one of the basic step in hacking is to list down the existing users. Hackers

can take advantage of such timing differences.

Figure 1.2: Timing Analysis of Login System

Our work focuses on the timing analysis of RSA algorithm. Let us discuss RSA

in the light of timing side channel analysis.

1.5 Basic Idea behind Timing Attack on RSA

In previous sections, we have discussed how RSA decryption is implemented in

OpenSSL. In this section we will critically examine the implementation for timing

differences that depends on input data. This would make the basis of our attack.

Researchers have identified two areas of the algorithm where decisions are made

based on input data. First is Montgomery Multiplication and second is the

choice of two different multiplication routines. Let us talk about Montgomery

Multiplication (MM) first. We have seen that for the calculation of gd mod q, MM

performs an extra reduction step to keep the product in range [0,q). Werner

Schindler observed that the probability of an extra reduction during exponentia-

tion gd mod q depends on how close g is to q. He gave a formula for the probability

as below[11] :
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Pr[extra reduction] =
g mod q

2R
(1.1)

According to equation 1.1, the number of extra reductions increases as g ap-

proaches to q from below. When g is a multiple of q, g mod q = 0 which shows

that number of extra reductions drops dramatically at multiples of q. The same

is true for other prime factor p. This behavior is shown in figure 1.3. This figure

1.3 has been taken from Brumley and Boneh paper [12]. So, by number of extra

reductions one can infer that how close g is to q. In other words, when g is near

q such that g < q, then number of extra reductions would be greater than that

when g > q. This suggests that decryption time of g < q would be longer

than that of g > q.

Figure 1.3: Number of extra reductions as a function of input g in Montgomery
Multiplication

The second point in the algorithm that makes the timing difference is the choice

of two different multiplication routines - Karatsuba and Normal. When g is near

q such that g < q, then operands of the multiplication, mostly, has equal word

size and OpenSSL uses fast Karatsuba multiplication. When g > q, g mod q is

small and most multiplication would be of different word sizes. OpenSSL would

use normal multiplication, which is slower, for such cases . This suggests that

decryption time of g < q would be shorter than that of g > q. The same

has been shown in figure 1.4, taken from [12].
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Figure 1.4: Two multiplication routines

The two effects are opposite and counteract each other. However, the key point

is that one of them would always dominate the other. As suggested by Brumley

& Boneh [12], the domination is determined by the exact environment (hardware,

compiler options etc.).
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Problem Description

In Chapter 1, we introduced RSA and OpenSSL as an implementation of RSA.

We also discussed the implementation in the light of Timing Side Channel At-

tack. In this chapter, we would discuss the implications of such vulnerability and

motivation behind performing such attacks.

2.1 System Model

The vitality of Information Security is clear to every individual and organization.

Every organization in the world is connected to Internet and provides its services

or uses others’ services using web. In such scenario, client-server architecture is

inevitable. Almost every organization would be hosting or using web servers and

we, as an internet user, daily visit web servers or websites for our needs. SSL/TLS

protocols are the one, which provides security in such scenario, and OpenSSL is

most widely used library for that. Thus, almost all web servers or websites uses

OpenSSL to provide HTTPS (Secure HTTP). OpenSSL uses other algorithms

also such as Elliptic Curve and Diffie-Hellman (DH). Preferred ciphers use these

algorithms, which are known not to have such vulnerabilities so far. However, one

can change the available ciphers of the client and make the web server to use RSA.

15



Chapter 2. Problem Description 16

Not only computers but also most of the computing devices are now part of the

Internet infrastructure. Mobile device, Tablet, Smart watch, Sensor, Automobile

and many more devices are now connected to Internet giving rise to the infras-

tructure, which is called Internet of Things (IoT). Either they use an Internet

resource or offer one. Due to this infrastructure Machine 2 Machine (M2M) com-

munication is rising rapidly. IoT is one of the growing technologies and according

to experts this is the future. There is tough competition between organizations

to grow in this area that makes this field more alluring. With increasing M2M

communication, the need to secure such communication and the identity of the

devices is also rising. They also use RSA to achieve secrecy and security.

As Organizations are growing, they are realising the business need to integrate

systems, departments, and offices. They are often running different technologies.

Due to this need Service Oriented Architecture (SOA) is heavily being used

for integration. In SOA, services are offered as an Internet resource and it also in-

volves client-server architecture. Cloud computing is a state-of-the-art too. Many

organizations are offering services such as applications, platform, and infrastruc-

ture as a web service. All such growing technologies require security for their web

servers.

2.2 Motivation

The world is full of people who want and strive to breach the privacy of others.

People come up with solutions to increase security and privacy, at the same time,

millions of hackers are trying to break it. All they want is to compromise the

security of others. There might be several reasons to that e.g. war or competition

between countries or organizations, jealousy, increasing own security, just for fun

etc. We always hear news of such attacks. Stealing of email addresses and pass-

words from email servers are quite common. Celebrities’ pictures have been stolen

by compromising the security of cloud servers. Recently, Sony servers have been
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attacked and were made inaccessible to valid users. So, attacks are common and

hackers would always exist.

We have already mentioned in previous section how client-server architecture is

inevitable in current computing world. Also, it is bound to increase in future.

So, the ubiquity of RSA makes it cynosure of cryptanalysts and attackers. The

history of RSA has witnessed several attacks. The very recent one is Heartbleed.

Cryptanalysts strive to look for vulnerabilities in such a ubiquitous algorithm to

make it stronger.

Unlike classical attacks, Side Channel Attacks do not require an attacker to have

the possession of systems. The side channel information is visible to everyone.

These attacks can easily be performed remotely. Side channel vulnerabilities often

creep into codes because developers are not aware of such issues. Moreover, our

testing strategies do not consider such issues/vulnerabilities and they get over-

looked for the same reasons. However, these issues are real and it can lead to

serious security threats and implications could be devastating. For example, with

our attack one can steal the private key of the server and take its identity. Now

consider that a hacker is able to recover the private key of Google mail server and,

now, he/she can impersonate Google. Trillions of people using gmail service would

lose their private information and organizations/businesses would be at risk. It

can create a havoc that we could just imagine. The worst part is that you would

not even realize that your security/privacy has been compromised.

Bosch is a growing organization in the area of Internet of Things (IoT). Every elec-

trical or mechanical device is running some application. It needs to talk to other

devices giving rise to Machine2Machine (M2M) communications. These scenarios

make Bosch interested in side channel analysis of her devices or applications. Due

to these factors, Bosch is keen to setup a lab where she can critically examine

her devices or applications for side channel vulnerabilities. They already have the

setup for Power Analysis and Fault Analysis. This effort would make them setup

the tools for Timing Analysis.
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2.3 Goal of the Thesis

As mentioned in previous section that Bosch is interested in setting up a lab, where

she can look for side channel vulnerabilities in her products. My work would be a

part of it and it would set up things for doing timing analyses. As a preliminary

step, it started to implement known timing attack on a widely used cryptosystem,

RSA. This work would enable them to perform a sophisticated timing attack and to

carry out advanced statistical analysis. Moreover, they would be able to examine

a piece of code from timing difference perspective such that one could figure out if

the code could leak out sensitive information. Summing up, the goal of the work

would be to figure out what is necessary to perform timing attacks, set up tools or

infrastructure for that and implement the known timing attack on RSA to retrieve

the private key of a web server.
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Challenges

Unlike classical attacks, the attacker measures the physical properties such as

power, timing etc. of the implementation in SCA. These attacks require proper

steps to be taken to measure those parameters. An attacker encounters several

challenges in performing such attacks. Since one measures the timings in Time

Attack, we will discuss the challenges that comes in one’s way in carrying out such

attacks.

3.1 Precise Time Measurement

Theoretically, it sounds easy to measure the time and infer the secret by comparing

the timing differences. However, practically, this is too complicated to carry out

and it needs sophisticated approach. Non-determinism in execution time in real

life makes the process quite challenging. The execution time of a piece of code

varies significantly for a particular input. We need very precise measurement of

time. In practice, we can only measure the round trip time of the message that

also has variation in it called jitter. Moreover, there are factors that interfere with

the measurement. So, the main challenges are to reduce the jitter and control the

factors that affect the measurement.

19
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3.1.1 Fine Grain Timer

The precision of measurement is very important in timing attacks. We need a

timer, which is very precise and independent of system processes. One such timer

is Time Stamp Counter (TSC). Every processor has one such counter, which

counts the CPU cycles. The counter increments per clock tick of the processor

independent of actual instructions being issued. Thus, the precision depends on

the actual frequency of the processor. For example, If a processor has 2 GHz

frequency, it will give 2 billion ticks per second, which means 1 tick is equal to

0.5 nanoseconds. Thus we can measure up to 0.5 nanoseconds on 2 GHz machine

using TSC. Below is the formula to calculate the precision.

Precision =
1

CPUFrequency
seconds

RDTSC (read time-stamp counter) is the assembly instruction that is used to

read TSC for Intel processors. The output is the 64-bit integer. The higher 32

bits are stored in EDX register and lower 32 bits are stored in EAX register. This

instruction gives the cycle counts, which can be converted into time units as below.

# seconds =
#cycles

CPUFrequency

Intel processors also support out-of-order execution of instructions for optimiza-

tion. It means that the statements can be executed in a different order than it

appears in the source code. This feature could interfere with the measurement and

would lead to incorrect number of cycles. To prevent this out-of-order execution,

we need a serializing instruction. A serializing instruction forces a processor to

complete all previous instructions before going forward. CPUID, another assem-

bly instruction, is the solution. This instruction is basically used to identify the

processor. However, we will use this instruction to stop out-of-order execution. A

detailed description about RDTSC and CPUID could be found here [13].
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We have used following code 3.1 to read the TSC.

1 unsigned int hi, lo;

2 uint64_t cyclecount;

3

4 //Read TSC

5 __asm__ volatile(

6 "cpuid\n\t"

7 "rdtsc\n\t"

8 "mov %%edx, %0\n\t"

9 "mov %%eax, %1\n\t":"=r"(hi),"=r"(lo)::"%rax","%rbx","%rcx","%rdx"

10 );

11 cyclecount = ( (uint64_t)hi << 32 ) | lo;

Listing 3.1: Sample Code to read TSC

3.1.2 Factors Affecting Measurement

No matter, how precise timer we get, there will always be a lot of things that

contribute to variation in time measurement. We need to identify all such factors

and analyse the impact before we proceed to actual measurement. This section

discusses all such factors that affect the time measurement.

3.1.2.1 Power Management

Every Operating System incorporates techniques to optimize the power usage.

These management strategies focus on the usage of power only when it is nec-

essary. One such technique is Dynamic CPU Frequency. Current CPUs do not

always run on a single frequency. It can run on a set of frequencies, which will be

decided, based on load by Operating System. For example, when it states that

CPU frequency is 2.0 GHz, it only means that the computer can run at a maxi-

mum frequency of 2.0 GHz. It usually has a set of frequencies like 1.3 GHz, 1.6

GHz, 1.9 GHz, and 2.0 GHz. These different frequency states are also referred as
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performance state or ”P-state”. The Operating System decides the current fre-

quency, based on management policy, at run time. The TSC is tied to the CPU

frequency. Therefore, dynamic CPU frequency causes variation in cycle counts.

Another strategy puts CPUs in different idle states. These states are called ”C-

states”. When CPUs are active, it uses power. But, at times it might be idle and

will not be executing any code. So, operating system decides to put CPUs in these

states to save power. This strategy impacts measurement because it takes time to

recover the CPUs from these states. This article [14] gives a good insight of CPU

C-States.

3.1.2.2 Interrupt Coalescing

Interrupt Coalescing is the property of Network Interface Cards (NICs). When

NIC sends or receives a packet, it informs the operating system using an interrupt.

After receiving the interrupt operating system processes the packet. NIC might

send or receive multiple packets for a message. In such scenario, it is often an

overhead if NIC sends an interrupt per packet. To optimize this process NIC collect

a bunch of packets before sending an interrupt to the operating system. This

technique is known as Interrupt Coalescing or Moderation. With this approach,

NIC after sending or receiving one packet either waits for a specific number of

packets or certain amount of time, and then it sends an interrupt. This method

optimizes the overhead, however, it increases the latency. This is clear that this

technique will affect the timing measurements of the messages.

3.1.2.3 Multiprocessing

There are a lot of system processes that run in the background. The schedulers

are designed to execute all processes based on their priorities such that no process

should feel left out. In such scenario, measuring process might be pre-empted by

other high priority processes. This causes variation in time measurements.
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3.1.2.4 Multi-Core Processor

Today, it is very common to have multi-core systems. In these systems, one process

might get executed on one core at one time and on other cores at other times. Every

CPU core has its own TSC. Ideally, TSC of each CPU should be in synchronised.

However, practically, they differ in cycle counts. So, if the measuring process

reads TSC of one CPU before sending the message and reads TSC of another

after receiving the reply, this would give incorrect measure of time.

3.1.2.5 Multi-user Environment

Multi-user environment also introduces lot of jitter in the measurements. Back-

ground processes are more in a multi-user environment than single-user and they

add to jitter. Moreover, GUI environment would also increase the jitter.

3.1.3 Steps to minimize Measurement Jitter

In previous section, we discussed the factors that interfere with the measurement

and introduce jitter. Now, it is the time to overcome those factors in order to

minimize the jitter. We would discuss the steps in detail that we used during

our experiments. Our discussion would be limited to Linux platform since we

performed our experiments on Ubuntu 12.04 LTS. We would definitely give an

alternative for other platforms if known.

3.1.3.1 Disable Power Management

Since TSC is connected to CPU frequency, it gives varying results in case of dy-

namic CPU frequency. So, attacking client or measuring process must be run on a

computer with fixed CPU frequency. One should fix the CPU frequency to maxi-

mum in order to utilise the highest precision. There are utilities that allow you to

change the CPU frequency and policies concerning it in Linux. cpufrequtils and
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cpupower are examples of such utilities. We have used cpufrequtils for the same.

So, the commands mentioned here belong to this utility. One can view the cur-

rent CPU frequency and policy using command cpufreq-info. This command tells

you about the available frequency steps and governors. There are five governors

- userspace, powersave, conservative, ondemand, and performance. By default,

ondemand is activated which selects one frequency at run-time from available list

based on CPU load. The governor performance runs the CPU always on maximum

CPU frequency. The governor userspace runs the CPU on selected frequency. So,

one can fix the CPU frequency and set the governor as userspace to run at fixed

CPU frequency. Alternatively, one may set the governor as performance to do the

same. Below are few commands to view and set the policies.

View the frequency settings

1 $ cpufreq-info

Command to change the governor to run at maximum frequency

1 $ cpufreq-set -g performance

Command to change the frequency of a particular core

1 $ cpufreq-set -c <CPU CORE ID> -f <FREQUENCY>

Another important step is to disable the CPU C-states. Recall that CPU C-states

will put the CPU in different idle states when CPU is inactive, which causes timing

variations due to state switching. Kernel parameter ”idle” controls the C-states

in Linux. Set the kernel parameter ”idle=poll” to put the CPU always in active

state. The technical white paper [15] from Dell comprehensively describes the

usage of C-sates in Linux.
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3.1.3.2 Disable Interrupt Coalescing

Interrupt Moderation or Interrupt Coalescing introduces jitter in timing measure-

ment. So, we need to disable it to remove the jitter. A Linux tool called ethtool

enables you to do that. This is a generic tool to get and modify various param-

eters of Network Interface Card (NIC) on Linux. Below is the generic format of

command to use ethtool.

1 $ ethtool [OPTIONS] DEVICENAME

DEVICENAME is the name of the Ethernet interface e.g. eth0. We need to

change the Coalescing Parameters for our purpose. The option ”-c” is used to view

the coalescing parameters, while ”-C” is used to modify it. Relevant coalescing

parameters are explained in the table 3.1. Set frame parameters e.g. rx-frames to 1

and all others to 0. You must turn off the adaptive-rx and adaptive-tx parameters

to avoid dynamic change in coalesce parameters by the network driver. However,

this is not the only way to disable it. Different Ethernet drivers have different

methods. You must consult the driver documentation to disable it.

3.1.3.3 Set Process Priority

We need to set the process priority to the highest. This will avoid the pre-emption

by other processes. Linux has three types or scheduling classes - SCHED FIFO,

SCHED RR, and SCHED NORMAL. SCHED FIFO and SCHED RR are for real-

time processes. Conventional user space processes belong to SCHED NORMAL

(or SCHED OTHER) class. The conventional process priority varies from -20

(highest) to 19 (lowest). The priority is also referred as niceness. The Linux

command nice and renice can be used to change the priority of a process. The

command nice is used to start a process with a particular priority, while renice
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Coalesce Parameters Description

adaptive-rx Dynamically adjust receive coalesce parameters based

on network load

rx-frames Number of packets to be received before generating an

interrupt

rx-usecs Wait specified microseconds after receiving a packet be-

fore generating an interrupt

rx-frames-irq Corresponding delay in updating the status when inter-

rupt is disabled

rx-usecs-irq Corresponding delay in updating the status when inter-

rupt is disabled

adaptive-tx Dynamically adjust transmit coalesce parameters based

on network load

tx-frames Number of packets to be sent before generating an in-

terrupt

tx-usecs Wait specified microseconds after transmitting a packet

before generating an interrupt

tx-frames-irq Corresponding delay in updating the status when inter-

rupt is disabled

tx-usecs-irq Corresponding delay in updating the status when inter-

rupt is disabled

Table 3.1: Description of Coalesce Parameters

is used to change the priority of an existing process. Usage of these commands is

given in 3.2.

1 $ nice -n <priority> your_command

2 $ renice -n <priority> -p <pid>

Listing 3.2: Usage of nice and renice
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The above method changes the priority statically. We can use Linux APIs getpri-

ority() and setpriority() to dynamically retrieve and modify the process priority

at run-time. In our implementation, we have used these APIs to achieve the goal.

Below is the C code 3.3 that has been used in our implementation to set the highest

priority of the attacking process at run-time.

1 void setProcessPriority()

2 {

3 //Get Process ID

4 int pid = getpid();

5

6 int which = PRIO_PROCESS;

7

8 //Get Process Priority before the change and Print it

9 fprintf(stdout,"\nPriority Before : %d", getpriority( which , pid ) );

10

11 //Set Process Priority to highest

12 if( setpriority( which , pid , PRIO_MIN ) < 0 )

13 fprintf(stderr,"\nPriority set error");

14

15 //Print Process Priority after the change

16 fprintf(stdout,"\nPriority After : %d\n", getpriority( which , pid ) );

17 }

Listing 3.3: Sample Code to set Priority

3.1.3.4 Set Processor Affinity

In multi-core systems, different cores can execute one process at different times

during its execution. This feature introduces jitter due to mismatch in TSC counts

of different cores. We need to execute our process only on one core in order to

avoid this problem. The ability of Operating System to bind a process to certain

processors is called Processor Affinity. The term Processor Affinity refers to a
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value, which indicates that the process can be executed on specified number of

processors or cores. Operating System chooses one of the available CPU by looking

at the Processor Affinity at the time of execution.

CPU Affinity or Processor Affinity is a bitmask of n-bits, where n is the bitsize

of Operating System. For example, on a 32-bit OS, bitmask would be of 32-bits.

These bits (from right to left) represent individual processors. Bit value 1 means

that the process can be executed on that processor, while value 0 signifies oth-

erwise. By default, a process can be executed by all available processors. For

example, let us assume a 32-bit computer with four cores or processors. The Pro-

cessor Affinity of a process on such system would look like below 3.4.

1 00000000000000000000000000001111

2 This states that the process is bound to all four processors.

Listing 3.4: Processor Affinity of a Process

The Linux command taskset can be used to view and modify CPU affinity of a

process. You can start a command with certain CPU affinity or you can modify

it for a running process.

Below 3.5 is the example to execute a command with specified CPU affinity:

1 $ taskset mask <YOUR_COMMAND>

2 where mask is integer equivalent of the bitmask

Listing 3.5: Execute a command with fixed processor affinity

Retrieve the CPU affinity of a running task as follows:

1 $ taskset -p <pid>
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Set the CPU affinity of a running task as follows:

1 $ taskset -p mask <pid>

Linux also provides two system calls sched getaffinity() and sched setaffinity() to

get and set the CPU affinity respectively at run-time. I have used these system calls

to do the same. Below is the C code 3.6 that has been used in our implementation

to set the CPU affinity of the attacking process to first core at run-time.

1 void setCpuAffinity(){

2 //Set mask to 1 for first core

3 unsigned long mask = 1;

4 unsigned int len = sizeof(mask);

5

6 //Set pid for current process

7 int pid = 0;

8

9 if( sched_setaffinity( pid , len , &mask ) < 0 ){

10 fprintf(stderr,"\nError in setting Processor Affinity");

11 return;

12 }

13 }

Listing 3.6: Sample Code to set CPU Affinity

One can also bind the attacking process to one core and all other processes to

other cores. You can dedicate the CPU to your attacking process in this manner.

3.1.3.5 Stop Background Processes

Application load may cause additional jitter. System background and scheduled

processes interfere with timing measurements. So, it is advisable to stop such pro-

cesses. On Linux, stop the cron scheduled processes. You can view the scheduled
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jobs using the bash command $ crontab -l. It is also advisable not to use GUI

mode. One can use ”single user mode” in Linux by booting it with boot parameter

”single”.

3.1.3.6 Use Wired Network

Wireless network could also introduce noise because it is not as fast as wired

network. So, using wired network would improve the measurements.

3.1.3.7 Cache Warm Up

There is a peculiar property of RDTSC instruction that it needs to be executed 3-4

times before the actual measurement starts. This behavior is attributed to cache

warm up. We call the RDTSC instructions 4 times at the beginning of the attack

to warm up the cache. It is also advisable to throw away initial measurements

(around 1000) because they have more noise due to cache warm up.

3.1.3.8 Alternate Measurement

When we record the decryption time for two different messages, say A and B, we

take n samples first for message A and then for message B. After that we filter out

one value from n-samples for both messages and compare them. This measurement

approach is shown below.

Measurement for message A : [A1, A2, A3, ..., An].

Measurement for message B : [B1, B2, B3, ..., Bn].

In this approach, the time at which the measurement is done differs for both

datasets. Consequently, both datasets have different jitter. As a result, this ap-

proach does not give proper results. We need an approach in which both datasets

are impacted by approximately same jitter. The measurement is done alternately

in order to achieve the goal. Both datasets have approximately same jitter in this

approach. The new approach is shown below.
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Measurement for message A and B : [A1, B1, A2, B2, A3, B3, ..., An, Bn].

After the measurement, we separate out the samples for A and B and carry out

the usual approach of comparison.

3.2 Filtering

Ideally, processing time of a message should be a single value. However, you get

different values each time you repeat the process for the same message. So, you

get multiple values for the same message in real life. Thus, we must take out a

single value from multiple values as the effective processing time for the message.

So, we must have a filtering technique in place.

Before we proceed with selection of appropriate filter, let us have a look at the

distribution of the time measurements.

3.2.1 Time Measurement Distribution

Time Measurements vary a lot in real environment. It is important to study the

distribution before choosing a filter. Many studies have been done for this and

it has been shown that it is not normal-distributed. Rather, it comes out to be

highly asymmetric. In most of the cases, it is right-skewed. The distribution looks

like that in the figure 3.1.

3.2.2 Filter

A naive filter could be Mean, Median, or Mode. However, these filters are suitable

when data is normally distributed. Since the data is not normal-distributed, it

would not work well for our case. Moreover, ”Mode” could be more than one

value in an asymmetric distribution, which makes it inappropriate to use. Among

these filters, Median could be used, but it would still have jitters. Actually, initial
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Figure 3.1: Asymmetric Distribution

researchers of Remote Timing Attacks like Paul Kocher and Brumley & Boneh

have used Median.

Our data is asymmetric and we have filters that do not perform well for such

distribution. Now the question arises, how can we perform the statistical analysis?

These questions motivated the work of Crosby et al [16]. Their work shows how

to measure processing time over network and perform the statistical analysis on

the captured data. In their research, they compared various filters and pointed

out that Low Percentile Filters are best suited for asymmetric distributions.

3.2.2.1 Low Percentile Filter

Percentile or Quantile simply refers to a value below that a certain percentage

of the dataset lies. If we say a value as n-percentile, this means that there are

n-percent values that are less than this value. Median is 50-percentile. So, 50

percent values lie below the Median. In Low Percentile Filters, we consider low

percentile values, typically 3-10 percentile.

Crosby et al [16] came up with the formula 3.1 that breaks up the actual response

time over network into processing time, propagation time, and jitter. Our tar-

get is to effectively measure the processing time by reducing the other elements.

However, we could not get the exact processing time due to add ups. We must
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minimize the other elements and then select a value that has best correlation with

the processing time.

ResponseT ime = ProcessingT ime+ PropagationT ime+ Jitter (3.1)

Intuitively, one can suggest that 0-percentile value (Minimum value in the dataset)

should have best correlation and it would be the best filter. On the contrary, the

experiments by Crosby et al show that 0-percentile filters have more noise and

they do not perform as expected. According to their work, 3-10 percentile filters

turn out to be good filters and they were able to differentiate between timings in

the range of nanoseconds using these filters. After analysing our dataset, we chose

3-percentile value as the filter since it has less variation. We could differentiate

well between distributions of two different messages using it.





Chapter 4

Related Work

Remote Timing Attacks (Side Channel Attacks, in general) are not new type of

attacks. These types of attacks have been demonstrated by researchers long ago

on hardware. There was a time when people believed that timing attacks are

impossible to carry out on software because of non-deterministic behavior and

uncontrollable environment. On the contrary, Researchers surprised the world by

actually performing such attacks. They showed that it is possible and they are big

threat to security because developers tend to overlook such issues. We will discuss

the work, which is the basis of our implementation and few others related works

in this section.

4.1 Timing Attacks on Implementations of Diffie-

Hellman, RSA, DSS, and Other Systems -

Paul C. Kocher

Paul C. Kocher can be safely assumed to be the pioneer in demonstrating the tim-

ing attack on cryptographic implementation. In 1996, he demonstrated a timing

attack [17] on implementation of cryptographic algorithm such as Diffie-Hellman,

RSA, DSS, and others. He showed that it is possible to find fixed Diffie-Hellman

34
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exponents, factor RSA keys, and break other systems, if an attacker can precisely

measure the cryptographic operations.

In RSA, receiver must solve the decryption equation M = Cd mod N , where d is

private key, to get the message M . There are several implementations of RSA,

one of them uses pure square and multiply technique to solve the modular expo-

nentiation of the form R = yx mod n, where x is of w bits. Square and multiply

technique is an optimized solution to modular exponentiation. This algorithm per-

forms ”squaring” in each iteration and ”multiplication” depends on the bits of the

private key x. The square and multiply algorithm has been outlined it algorithm

7. It has been taken from [17, p. 2].

Algorithm 7 Calculate R = yx mod n

1: s0 = 1

2: for i = 0 to w − 1 do

3: if (bit i of x) = 1 then

4: Ri ← (si · y) mod n

5: else

6: Ri ← si

7: end if

8: si+1 ← Ri
2 mod n

9: end for

10: return (Rw−1)

It is clear from the algorithm that the ”multiplication” step depends on the bit

of the private key x that introduces the timing difference. This step leaks out

the information whether particular bit of x is 1 or 0. Paul Kocher leveraged

this vulnerability to recover the private key used in RSA. His Attack failed on

RSA implementations that use Chinese Remainder Theorem (CRT) to solve the

decryption equation.

He found similar timing differences in other cryptographic algorithms.
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4.2 A Timing Attack against RSA with the Chi-

nese Remainder Theorem - Werner Schindler

The contribution of Werner Schindler towards cryptanalysis of RSA has been great.

Kocher’s attack failed on RSA implementation, which uses CRT. It was believed

that RSA-CRT is immune to timing attacks until Werner Schindler showed in year

2000 that RSA-CRT also leaks out information through timing side channel. His

great work has been the basis of all other timing attacks on RSA. All researchers

have utilized his findings to devise attack algorithms on RSA.

His work finds out the timing vulnerability on RSA implementation, which uses

CRT with Montgomery’s algorithm. He pointed out that the ”extra reduction”

during Montgomery multiplication depends on the input cipher text and modulus.

Let us recall the Montgomery Multiplication and its use in square and multiply

algorithm. Refer to algorithm 5 in Chapter 1 for Montgomery Multiplication. The

exponentiation algorithm 8 uses square and multiply with Montgomery’s algorithm

to calculate R = yx mod n, where (xwxw−1xw−2...x0)2 is binary equivalent of x and

xw = 1.

Algorithm 8 Calculate R = yx mod n

1: temp = ψ(y)

2: for i = w − 1 down to 0 do

3: temp = MM(temp, temp)

4: if (bit i of x) = 1 then

5: temp = MM(temp, ψ(y))

6: end if

7: end for

8: return ψ∗(temp)

ψ(y) converts y into Montgomery form and ψ∗(y) converts back to normal form.

The work of Schindler showed that the number of ”extra reduction” steps in the

above exponentiation algorithm depends on base y, or more precisely on ψ(y).

He showed that the probability of ”extra reduction” is y mod n
2R

, where R is some
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power of 2 such that R > n and gcd(R, n) = 1. By precisely measuring the time,

one can figure out how close is y to n. He did not perform the attack on actual

RSA implementation; rather he implemented above exponentiation algorithm in

software and demonstrated the attack. However, his work paved the path for

other timing attacks because most implementations use CRT. Schindler attack

failed when RSA-CRT uses Sliding Window Exponentiation (SWE).

4.3 Remote Timing Attacks are Practical - Brum-

ley and Boneh

Until 2003, timing attacks have been done with respect to hardware security tokens

such as smart cards. Moreover, it was believed that these attacks cannot be

successfully mounted on software because multiprocessing on computers makes it

impossible to measure the cryptographic operations. In the midst of these believes,

Brumley and Boneh successfully retrieved the primary key of a web server by

performing the timing attack [12]. His attack stunned the world and is considered

to be the most sophisticated timing attack in the history. He mounted the attack

against a web server, which used OpenSSL to provide SSL security. The attack

was done when RSA is used as key exchange cipher. We will refer this attack as

BB Attack moving onwards.

OpenSSL uses very optimized implementation of RSA. It uses Chinese Remainder

Theorem, Sliding Window Exponentiation, Montgomery algorithm, and Karat-

suba Multiplication in its RSA implementation. These optimizations make so far

known timing attacks including the Schindler’s attack to fail in practice. Brumley

and Boneh found two data dependencies [12, p .4] in RSA decryption algorithm

- (1) Number of ”extra reductions” in Montgomery Multiplication (Schindler’s

observation[11]), and (2) timing difference due to choice of two multiplication rou-

tines - Karatsuba and Normal. The effects of both counteract each other. However,

they figured out that one of them will always dominate the other and the exact

environment will determine this dominance.
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Using the timing attack, they factorized the RSA modulus N of 1024-bit, where

N = pq and q < p. They recovered the smaller prime factor q(512-bits) by the

timing attack. They sent approximations of q as messages to the web server and

noted the decryption time to decide a particular bit of q. They retrieve q bit by

bit starting from the Most Significant Bit (MSB). This attack can be viewed as

a binary search for q. The binary equivalent of q is (q511, q510, q509, ..., q0)2. For

OpenSSL, q511 =1.

There are two phases of the attack - (1) Guess top few bits (typically 2-3), and (2)

Retrieve the rest of the bits one by one. In phase 1, all combinations of top few

bits (typically 2-3 bits) are timed. These timings will have two peaks when plotted

which correspond to q and p. The first peak will be for smaller prime factor q.

After this phase, we know top few bits of q. Once we know the top few bits, we

proceed as explained in algorithm 9 to retrieve further bits one by one.

The algorithm assumes that the attacker has already recovered i− 1 bits of q.

The value of ”large” and ”small” depends on the exact environment and is

decided by looking at the previous values.

We need to recover only half of the bits (256 in this case) of q by timing attack.

To retrieve the full 512- bits, we use Coppersmith’s algorithm [18].

To demonstrate the attack, Brumley and Boneh performed several experiments.

They implemented a server, which accepted a binary string as message and de-

crypted the message using OpenSSL. Server sent 0 to client to notify the end of

decryption. They implemented a client, which followed the algorithm 9 to recover

the prime factor q. They also showed the real web server attack using Apache

Web Server and mod ssl.

Attack Parameters

Brumley and Boneh used two attack parameters - Sample Size s, and Neighbour-

hood Size n. Decryption time for the same message varies in practice. To overcome

this they repeatedly sent the same message s times. They took median of these s

values as effective decryption time.
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Algorithm 9 Retrieve ith bit of q

1: Let g be a number with same i − 1 bits as q. Remaining bits of g are 0. Let

ghi be equal to g with ith bit as 1. So,

g = (q1, q2, q3, qi−1, 0, 0, ..., 0)

ghi = (q1, q2, q3, qi−1, 1, 0, ..., 0)

The idea is, if bit i of q is 0, then g < q < ghi

otherwise g < ghi < q

2: Compute ug = g · R−1 mod N and ughi = ghi · R−1 mod N . This step con-

verts g and ghi in inverse Montgomery form. This is required because server

will convert ug and ughi into Montgomery form before exponentiation during

decryption to get ug ·R = g and ughi ·R = ghi .

3: Send ug and ughi to the server as messages to decrypt.

4: Measure the decryption time for ug and ughi. Let t1 = DecryptionT ime(ug)

and t2 = DecryptionT ime(ughi).

5: Calculate the difference, tdelta =| t1 − t2 |

6: if tdelta is ”large” then

7: g < q < ghi. So, bit i of q is 0

8: end if

9: if tdelta is ”small” then

10: g < ghi < q. So, bit i of q is 1

11: end if

OpenSSL also uses Sliding Window Exponentiation (SWE). This decreases the

gap between ”large” and ”small” values. In order to increase the gap Brumley

and Boneh used neighbourhood values. With this approach they sent g, g + 1,

g + 2, ..., g + n, where n is neighbourhood size, to server when calculating the

decryption time for g. After that they sum all these values to calculate effective

decryption time for g and similarly for ghi. The difference is then calculated and

decision is made based on ”large” and ”small” values.
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4.4 Improving Brumley and Boneh Timing At-

tack on Unprotected SSL Implementations -

Aciicmez, Schindler, and Koc

BB Attack [12] is the most classic timing attack on RSA so far. Other researchers

have either implemented the same attack or did some improvements on it. One

of the improvements [19] is presented by Aciicmez, Schindler, and Koc. We will

refer this as Schindler attack going forward in this document.

While calculating gd mod q with SWE, the algorithm first prepares a table with

odd powers of g including g2. During actual exponentiation intermediate values

are multiplied by one of these table entries. BB attack take advantage of the

multiplications by g. Schindler et al observed that there are more multiplications

by g2(approx. 15) than g(approx. 6) during the exponentiation[19, p 4]. We could

increase the efficiency of BB attack by a factor of approximately 6, if we could

take advantage of multiplications by g2. Schindler et al did exactly the same. The

modified algorithm has been outlined in algorithm 10.

Schindler et al introduced one more improvement in decision strategy. BB attack

calculated the sum of all neighbourhood values and then took the difference. How-

ever, Schindler et al calculated the difference for individual neighbourhood values

and counted positive and negative differences. After that they calculated the ratio

of maximum of these positive and negative differences and the neighbourhood size.

They observed that if the bit is 1, the numbers of positive and negative differences

are approximately equal giving a ratio close to 0.5. When the bit is 0, either of

them outnumbered the other giving a ratio of more than 0.5. This decision strat-

egy enlarges the 0-1 gap and allows to bring the neighbourhood size parameter

down. This strategy results in fewer queries for a successful attack than that of

BB attack.



Chapter 4. Related Work 41

BB attack strategy :

∆ =|
n−1∑
i=0

DecryptT ime((g+i)·R−1 mod N)−
n−1∑
i=0

DecryptT ime((ghi+i)·R−1 mod N) |

(4.1)

Decision of bit depends on ∆ being ”small” or ”large”.

Schindler attack strategy :

∆i = DecryptT ime((
√
g + i) ·R−1 mod N)−DecryptT ime((√ghi + i) ·R−1 mod N)

for i = 0, 1, 2, ..., n− 1 (4.2)

∆ratio =
max(#(∆i < 0),#(∆i > 0))

n
(4.3)

Decision of bit depends on ∆ratio being ”small” or ”large”.
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Algorithm 10 Retrieve ith bit of q

1: Let g be a number with same i − 1 bits as q. Remaining bits of g are 0. Let

ghi be equal to g with ith bit as 1. So,

g = (q1, q2, q3, qi−1, 0, 0, ..., 0)

ghi = (q1, q2, q3, qi−1, 1, 0, ..., 0)

The idea is, if bit i of q is 0, then g < q < ghi

otherwise g < ghi < q

2: Compute h = b√gc and hhi = b√ghic

3: Compute uh = h ·R2
−1 mod N and uhi = hhi ·R2

−1 mod N , where R2 =
√
R

This step converts h and hhi in inverse Montgomery form.

Server calculates first power, y1 = uhR = hR2 (similarly for uhi)

and second power, y2 = hR2 · hR2 ·R−1 = g and

y2 = hhiR2 · hhiR2 ·R−1 = ghi. before exponentiation during decryption.

4: Send uh and uhi to the server as messages to decrypt.

5: Measure the decryption time for uh and uhi. Let t1 = DecryptionT ime(uh)

and t2 = DecryptionT ime(uhi).

6: Calculate the difference, tdelta =| t1 − t2 |

7: if tdelta is ”large” then

8: g < q < ghi. So, bit i of q is 0

9: end if

10: if tdelta is ”small” then

11: g < ghi < q. So, bit i of q is 1

12: end if





Chapter 5

Implementation

This chapter deals with the actual setup and implementation to perform the attack.

5.1 Machine Configuration

All experiments have been done on 64-bit Ubuntu operating system with 2GB

of RAM. It has one Intel dual core processor. The attacks on localhost have

been performed against OpenSSL version 0.9.7, which does not enable blinding

by default. Latest version v1.0.1i of OpenSSL, which enables blinding by default

has been used for attack over switched LAN. Blinding was disabled to carry out

the attack. We used C language for coding and gcc v4.6.3 as compiler. Keys

have been randomly generated using OpenSSL. The table 5.1 lists down the used

configuration.

43
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Parameters Value

Operating System Ubuntu 12.04 LTS

Kernel 3.11.0-15-generic

Processor Intel R© Core 2 CPU T7200 2.00 GHz

Memory 2.00 GB RAM

Compiler gcc V4.6.3

Crypto Library OpenSSL-0.9.7 , OpenSSL-1.0.1i

Table 5.1: Machine Configuration for the timing attack

5.2 Jitter Minimisation

To measure the decryption time precisely we followed few steps mentioned here.

These steps are necessary to avoid the external interference at the time of mea-

surement. This section simply lists down the necessary steps taken. Please refer

section ”Steps to minimize Measurement Jitter” for more details like how things

have been done.

Necessary Steps :

• Set CPU frequency to the maximum limit.

• Disable CPU C-states.

• Bind attacking client to one core and all other processes to other core.

• Set the priority of attack client to highest.

• Stop unnecessary user tasks.

• Disable all scheduled tasks.

• Use assembly instruction RDTSC along with CPUID to read TSC.

• Cache warm up before actual measurement.
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• Alternate measurement strategy.

• Use Wired Network for LAN attack.

• Disable Interrupt Coalescing or Moderation for LAN attack.

5.3 Network Model

We have performed our experiments on two network models - (1) Interprocess and

(2) Switched LAN. In Interprocess attack, server and client were running on the

same machine.

In switched LAN, server and client were running on different machines that are

separated by one switch. The connection to the switch of both machines were

wired. Figure 5.1 depicts the switched LAN model.

Figure 5.1: Network Model : Switched LAN
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5.4 Timing Attack on RSA

In this section, the setup is discussed with respect to server-client perspective. We

discuss how OpenSSL is compiled, and server and client are coded.

5.4.1 OpenSSL Compilation

We downloaded the source code of OpenSSL library from the OpenSSL homepage

[3]. We configured the library for the machine. The library is compiled using gcc

v4.6.3. We used the default optimizations.

5.4.2 Decryption Server

We implemented a simple decryption server. After normal TCP handshake with

the client, the server accepts a string and decrypts it using the OpenSSL library.

The server replies with -1 to notify the end of decryption. Randomly generated

key is used to perform the decryption. Server ends the connection once it receives

a message from client to end the connection. The server takes port number as

input in order to start the server on that port.

5.4.3 Attack Client

Attack client plays a crucial role in the attack. It incorporates all the attack logic

and decision strategy. As a black box, it sends messages to the server to decrypt

it and records the decryption time taken by the server. It decides the bits based

on the decryption time. It also performs certain steps to overcome jitter effect

dynamically. The client is coded in C and compiled using gcc v4.6.3. It uses the

same OpenSSL library as the server.

The client also has the same key used by the server in order to compare the guesses

and make corrections for incorrect guesses. Attack client assumes that we know
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initial few bits of prime factor q and, so, it copies those initial bits to recovered list.

The search starts from this point. It does not use the key for any other purpose.

The client also performs few steps at runtime in order to reduce jitter. Firstly,

it binds the process to a single core (first core) and then, it sets the priority to

the highest. It also does four dummy calls to RDTSC instructions for cache warm

up. It also calculates the overhead in calling RDTSC instruction this way. This

overhead is subtracted from the cycle count to compensate for the delay in calling

RDTSC instruction.

The attack client is parameterized. It accepts certain inputs based on which it

adjusts the attack. These inputs include ATTACKTYPE, STARTBIT, ENDBIT,

SAMPLES, NBSIZE, DELTABITGAP, DELTARATIO, and PERCENTILE. The

type of attack means BB attack or Schindler attack is decided by ATTACKTYPE

flag. The attack starts to guess the bits from STARTBIT and goes till ENDBIT.

NBSIZE refers to the neighbourhood size. The bitgap that should be considered

”small” is referred by DELTABITGAP and similarly DELTARATIO for ratio.

The client is adaptable to both BB attack and Schindler attack. It takes a user

input to decide which attack algorithm to follow. Please refer to algorithm 9 for

BB attack and algorithm 10 for Schindler attack. We have also implemented both

decision strategies. The pseudo code of the attack client has been outlined in

algorithm 11. We have mentioned only BB attack strategy in the algorithm to

keep things simple.

We count the number of correct guesses by comparing the guess with original bit.

This allows us to calculate the success rate. Success rate signifies the percentage

of bits that are correctly guessed. Equation 5.1 gives the formula to calculate

SuccessRate.

SuccessRate =
NumberofCorrectGuesses

ENDBIT − STARTBIT + 1
∗ 100 (5.1)
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Algorithm 11 Pseudo Code for Attack Client

1: Parse the attack parameters & get prime factor q and Modulus N .

2: Bind the process to first core & Set the highest process priority.

3: Warm up the cache by making calls to RDTSC. Also, Calculate the

OV ERHEAD.

4: Generate GUESS g of 512 bits and set all bits to 0 & Copy initial known bits

to GUESS g.

5: for bit i = STARTBIT to ENDBIT do

6: Set ghi = g & Set ith bit of ghi to 1.

7: if (ATTACKTYPE == SCHINDLER ATTACK) then

8: g ← b√gc

9: ghi ← b
√
ghic

10: Compute R = 2256 and its inverse R−1

11: else

12: Compute R = 2512 and its inverse R−1

13: end if

14: for index = 0 to NBSIZE − 1 do

15: Compute ug = g ·R−1 mod N and ughi = ghi ·R−1 mod N .

16: for (count = 1 to SAMPLES) do

17: Send ug and ughi to server and record the decryption time.

18: end for

19: Compute percentile to filter out effective decryption time tg[index] and

tghi[index] for ug and ughi respectively.

20: Set g = g + 1 and ghi = ghi + 1.

21: end for

22: Compute Tg =
∑NBSIZE−1

k=0 tg[k], and

Tghi =
∑NBSIZE−1

k=0 tghi[k]

23: Compute bitgap =| Tg − Tghi |

24: if (bitgap is ”small”) then

25: Guess ith bit as 1

26: else

27: Guess ith bit as 0

28: end if

29: Set all bits of g to 0 and Copy i bits of q to g.

30: end for
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5.4.4 Attack Parameters

Similar to BB attack we have two parameters for the attack - (1) Sample Size s,

and (2) Neighbourhood Size n.

Sample Size : We send the same message multiple times to cancel out the

jitter. Sample Size s denotes that how many times we will send the same message

to server. The variation in the percentile will become lower as we increase the

sample size. During our experiments we noticed that sample size of 7 was enough

to optimize the variation and carry out the attack successfully.

Neighbourhood Size : We have used neighbourhood values to overcome the

effect of SWE. Neighbourhood Size n denotes the same. This means that we send

g, g + 1, g + 2, ..., g + n − 1 as messages while calculating decryption time for g.

We require different neighbourhood size to recover different parts of bits. To keep

things simple we fix the neighbourhood size for all bits. Neighbourhood size of

800 is enough to recover most of the bits in interprocess attack. We must increase

the Neighbourhood size in order to gain more success.

The number of queries needed to factorize N is decided by these two factors. So,

the number of queries is calculated as explained in equation 5.2. Please note that

multiplication factor of 2 is because we have to send two messages g and ghi for each

bit. We need to recover only half of the bits of prime factor by timing attack. So,

we need log of N
4

. Based on the equation 5.2, we need 2∗25∗400∗256 = 5, 120, 000

queries, considering sample size 25 and neighbourhood size 400, to factorize N of

1024-bits.

NumberOfQueries =2 ∗ n ∗ s ∗ log2

N

4
, where N is the Modulus (5.2)
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5.4.5 Decision Strategy

We have implemented both decision strategies - BB attack and Schindler attack.

We calculate decryption time for individual neighbours for g and ghi. For BB

attack strategy, we compute sum of all neighbourhood values and then calculate

the absolute difference to get the bitgap. If the resulted bitgap is ”small” we guess

the bit as 1, otherwise 0.

For Schindler attack strategy, we compute the difference of corresponding neigh-

bourhood values of g and ghi. We count the positive and negative differences. We

calculate the ratio as max(positivecount,negativecount)
neighbourhoodsize

. If the ratio is ”small” we guess

the bit as 1, otherwise 0. Please refer to equation 4.1 for BB decision strategy and

equation 4.2 for Schindler decision strategy respectively.

5.4.6 Attack in Two Phases

The time attack works in two phases - (1) Find Peak, and (2) Bit-by-Bit Recovery.

With the help of first phase, we find initial few bits of prime factors. Once we

have the initial bits, we find the other bits one by one in second phase.

5.4.6.1 Find Peak

First step is to find initial few bits (typically 2-3 bits) of prime factor q. This step

is required so that we can differentiate between prime factor p and q by looking at

initial bits and, then, recover the bits of q by actual attack. During this step, all

combinations of initial few bits are timed. Once we plot these decryption times,

we get two peaks. First peak corresponds to smaller prime factor q and second

peak corresponds to p. This is always true in case of OpenSSL because q < p.

We transformed the attack client into a peak finding client by making few changes

to it. So, we have two attack clients - one finds the peak and the other recovers

the bits one by one. The algorithm 12 explains the pseudo code of peak finder.
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Algorithm 12 Pseudo Code for Peak Finder

1: Read numOfBits, prime factor q, and Modulus N .

2: Bind the process to first core & Set the highest process priority.

3: Warm up the cache by making calls to RDTSC. Also, Calculate the

OV ERHEAD.

4: Calculate numOfCombinations = 2numOfBits & Generate all combinations.

5: Generate GUESS g of 512 bits as many numOfCombinations and set all bits

of g to 0 for all.

6: Set first bit as 1 for all g.

7: for (each bit combination) do

8: Modify corresponding g to reflect the bit combination.

9: if (ATTACKTYPE == SCHINDLER ATTACK) then

10: g ← b√gc

11: end if

12: end for

13: if (ATTACKTYPE == SCHINDLER ATTACK) then

14: Compute R = 2256 and its inverse R−1

15: else

16: Compute R = 2512 and its inverse R−1

17: end if

18: for index = 0 to NBSIZE − 1 do

19: for each g do

20: Compute ug = g ·R−1 mod N .

21: end for

22: for (count = 1 to SAMPLES) do

23: Send each ug to server and record the decryption time.

24: end for

25: Compute percentile to filter out effective decryption time tg[index] for each

ug.

26: Set g = g + 1.

27: end for

28: Compute Tg =
∑NBSIZE−1

k=0 tg[k], for each g.

29: Write all bits combinations and corresponding Tg to an outputfile.
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The peak finder generates decryption time for all bit combinations. Later, we use

R script to plot the time on a graph to find the peaks. We take the first peak as

the initial bits of q.

5.4.6.2 Bit-by-Bit Recovery

This phase recovers the bit of prime factor q one by one starting from MSB to

LSB. We recover only half of the bits of q and the other half is assumed to be

recovered using Coppersmith Algorithm [18].

5.5 Attack to Find Existing User

Apart from the RSA attack, we also performed simple timing attack to find

whether a user exists in a system or not. This was done in order to get the

insight of timing attack. In this section we will discuss about the server-client

implementation and attack strategy.

5.5.1 Vulnerable Login Server

To set up the environment, a simple login server is implemented. This server

accepts a pair of username and password as input and responds if the login is suc-

cessful or not. If the login is successful, it returns ”success”, otherwise ”username

or password incorrect”. The pseudo code of the login server is given in algorithm

13.

The same algorithm has been further explained with the help of the flow diagram

5.2.

It is clear from the algorithm 13 and figure 5.2 that server takes more time to

process a valid user than an invalid user. If we can measure precisely the processing

time, we can find out whether a user exists in the system or not. There is no locking

mechanism enabled in the system on failed login attempts.
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Algorithm 13 Pseudo Code for Login Server

1: Accept username and password from client

2: if (username exists ) then

3: if (username is locked) then

4: return ”username or password incorrect”

5: else if (username is expired) then

6: return ”username or password incorrect”

7: else if (password is correct) then

8: return ”success”

9: else

10: return ”username or password incorrect”

11: end if

12: else

13: return ”username or password incorrect”

14: end if

5.5.2 Attack Client

The attack client accepts a ”username” to verify whether it is a valid user in the

login server. It sends many login attempts to the login server using a dummy

password for the user. It is assumed that there is no locking mechanism enabled

in case of several failed login attempts. It measures the response time from server

and compare to guess the user. We need either a valid user’s response time or an

invalid user’s response time for comparison. It is unlikely that the attacker knows

a valid user in the system. However, he can safely assume a non-existing user.

We take a dummy user such as ”111111” and assume that it does not exist in the

system. The attack client measures the response time for this user. This processing

time serves as a base processing time for comparison. If the processing time for

the ”username” is ”significantly” more than that of ”111111”, the ”username” is a

valid user. What difference should be considered as ”significant”? We can observe

this value by comparing the processing times of two dummy users.
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No

Yes

Figure 5.2: Flow Diagram of Login Server

The attack client has been implemented keeping the above ideas in mind. The

pseudo code is explained in algorithm 14.
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Algorithm 14 Pseudo Code to guess a User

1: Accept the ”username”.

2: Generate a dummy user ”111111” and a dummy password ”password”.

3: Bind the process to first core.

4: Set the highest priority.

5: Warm up the cache by making calls to RDTSC. Also, Calculate the

OV ERHEAD.

6: for (count = 1 to SAMPLES) do

7: Send (”username”, ”password”) to server and record the response time.

8: Send (”111111”, ”password”) to server and record the response time.

9: end for

10: Compute percentile to filter out effective response time t1 and t2 for

”username” and ”111111” respectively.

11: Compute ∆ = t1 − t2.

12: if (∆ is positive and ”significant”) then

13: return ”username” is valid

14: else

15: return ”username” is invalid

16: end if





Chapter 6

Results

This chapter deals with the experiment results. We performed various experiments

to assess the effectiveness of this attack. All experiments have been to factorise

RSA keys of 1024-bits. All keys are generated randomly. OpenSSL v0.9.7 has

been used during Interprocess attack, while OpenSSL v1.0.1i has been used during

switched LAN attack. RSA blinding is turned off in case of OpenSSL v1.0.1i. The

results shown are from switched LAN attack unless stated otherwise.

6.1 Guess User in Login Server

With this experiment, we tried to guess a user in login server. The valid user that

exists in the database of login server is ”mishaukat”. We could successfully guess

this user using the timing attack. We performed this attack only on Interprocess

network model, where server and attack client were running on the same machine.

We present the results of the attack in this section. We tried to guess two users

”mishaukat” and ”admin”. We compared the response time of the two users with

user ”111111” assuming ”111111” is not a valid user.

56
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6.1.1 Invalid User

We tried to guess whether ”admin” exists in the database of login server. We

could successfully guess that ”admin” does not exist in the system. We could infer

this because the response time for ”admin” was close to that of an invalid user,

”111111”. Figure 6.1 represents the distribution of ”admin” and ”111111”. The

cycle difference between their response times is only 24 cycles, which is very close.

This suggests that the response time of user ”admin” is similar to an invalid user.

So, we guess that the user ”admin” does not exist in the system. The plot ??

gives a closer look on the difference.
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Figure 6.1: Response Time Distribution for an Invalid User

6.1.2 Valid User

We tried to guess whether ”mishaukat” exists in the database of login server.

We could successfully guess that ”mishaukat” exists in the system. We could

infer this because the response time for ”mishaukat” was larger than that of an

invalid user, ”111111”. Figure 6.2 represents the distribution of ”mishaukat” and

”111111”. The cycle difference between their response times is 536 cycles, which

is very large. This suggests that the response time of user ”mishaukat” is larger
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than that of an invalid user. So, we guess that the user ”mishaukat” exists in the

system. The plot ?? gives a closer look on the difference.
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Figure 6.2: Response Time Distribution for a Valid User

6.2 Time Attack on RSA

6.2.1 Sample Distribution and Filter

To cancel out jitter, we take multiple measurements for a particular message and

then filter out one value as effective decryption time. As discussed earlier, the

distribution of decryption time turns out to be skewed. Median as a filter works

well for normally distributed data. So, we cannot take Median as a filter for our

case. For such skewed distribution low percentile filters (typically 3-10 percentile)

perform better. For our case, we have chosen 3-percentile filter because it has

relatively less jitter. Figure 6.3 shows the distribution of decryption time with the

help of density plot, while figure 6.4 shows the same with the help of cumulative

density plot. It is clear from the plots that the distribution is highly skewed. Both

figures show that the rising edge of the graph has less variation. So, we select this

region to filter out one value. The vertical line represents the 3-percentile value,
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which means there are 3 percent values that lie below this value. We consider this

3-percentile value of the data as the effective decryption time for the message.
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Figure 6.3: Density Plot: Distribution of Decryption Time for a message
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sage

We can use 3-percentile value to differentiate between two messages g and ghi.

Figure 6.5 shows the distribution of decryption time for two messages - g and ghi.

These two distributions almost completely overlap each other. It appears hardly

distinguishable. However, we could use 3-percentile filter to differentiate between
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them. Figure 6.6 shows zoom-in view of the figure 6.5 so that we can have a

better look at the differentiation. Solid vertical lines represent the 3-percentile

value while dotted lines represent median. It is clear from the plot that we can

differentiate better using the 3-percentile value than Median.
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Figure 6.5: Distribution of two messages g and ghi
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Figure 6.6: Zoom In: Distribution of two messages g and ghi
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(a) Variation in Interprocess Attack (b) Variation in Switched LAN Attack

Figure 6.7: Decrease in Variation with Increase in Sample Size

6.2.2 Effect of Sample Size

As we discussed earlier, the attack has got two parameters - sample size s and

neighbourhood size n. We need to find a way to tune in those parameters. In this

section, we try to study the effect of sample size. To cancel out jitter we repeatedly

take measurements for a particular message. Sample size s denotes the number

of times we do it. It is intuitive that as we increase the sample size the variation

will decrease. The experiments establish the same. Surprisingly the number of

samples to bring the variation down is very low (7 samples) in interprocess attack.

However, we need 21 samples for the same in switched LAN attack.

Brumley and Boneh pointed out that the network with variation under 1 millisec-

onds is vulnerable to this attack. For our set up, we realized that variation less

than 20000 cycles works out well. We could achieve variation under 20000 cycles

with 7 samples in interprocess attack and with 21 samples in switched LAN attack.

However, for improved results we took 15 samples in interprocess attack and 25

samples in switched LAN attack.

6.2.3 Effect of Neighbourhood Size

SWE makes it hard to distinguish between bit 0 and 1. The parameter neighbour-

hood size is used to distinguish between them. Increase in neighbourhood size for
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bit 0 increases the bitgap. On the contrary, it does not impact much on the bitgap

for bit 1. Figure 6.8 shows this effect. It is clear from the plot that there is no

difference between bit 0 and 1 when neighbourhood size is 0. As we increase the

neighbourhood size the bitgap for bit 0 increases linearly, however, the bitgap for

bit 1 does not change significantly. This makes the difference between bit 0 and 1

prominent. We use neighbourhood size of 400 for our experiment.
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Figure 6.8: Effect of Increase in Neighbourhood Size

6.2.4 Recovery of Prime Factor

6.2.4.1 Find Peak

This is the first phase of the attack where we guess initial few bits of the prime

factor q and p by identifying the peaks. We tried to guess initial 3 bits of the

prime factors. We generated all the combinations of three bits from 000 to 111 and

measured decryption time for all. After that we generated the plot and found two

peaks that corresponds to two factors. First peak always corresponds to smaller

prime factor q and second peak corresponds to larger prime factor p. Figure 6.9

shows the result of the first phase.
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Figure 6.9: Peaks for Prime Factor q and p

We clearly see two peaks in the plot for bit combination ”100” and ”110”. The

prime factors q and p have the same 3 bits ”100” and ”110” respectively. The plot

shows top 4 MSBs of prime factors. The first topmost bit of both prime factors

is always 1 as the prerequisite of SWE. This is always true for OpenSSL. So, we

need to find the bits from second bit onwards. That makes the initial four bits of

q and p as ”1100” and ”1110” respectively.

We have achieved this result with sample size 25 and neighbourhood size 10000.

We need to increase the parameters because initial bits are hard to distinguish

with lower values of parameters.

We can also try to find more that 3 bits in first phase. However, it is not recom-

mended because it needs higher parameters, which take time and also it is often

hard to identify peaks if bit combinations are more. So, it is suggested to find

typically 2-3 bits in first phase of the attack.

6.2.4.2 Bit-by-Bit Recovery

This is the second phase of the attack where we find rest of the bits of smaller

prime factor q one by one starting from MSB to LSB. Figure 6.10 shows the result
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of this phase. The green dots are bit 0 while red dots are bit 1. The horizontal

blue line represents the value that we consider ”small”. This value is derived using

the values of initial bits that we have guessed in first phase. So, the bits that are

below this line have been guessed as bit 1 and the bits that are above this line

have been guessed as bit 0. Thus, all bits are correctly guessed by our attack client

except initial few bits that appear in green below the blue line. They are actually

bit 0 but guessed as bit 1 by our attack client. This gives us success rate of 96%.
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Figure 6.10: BitgapPlot: Recovery of bits of Prime Factor q

We have used 25 as sample size and 400 as neighbourhood size for this experiment.

This is specified with PARAM=25,400 in the title of plot. It is hard to distinguish
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initial bits with low neighbourhood size since the messages g and ghi are quite far.

We need to increase the neighbourhood size to classify initial bits properly.

Recall that we need to recover only half of the bits of prime factor using the

timing attack. The other half is assumed to be recovered using the Coppersmith

Algorithm [18]. That is why the plot shows the bits till 256 (half of 512).

Figure 6.10 shows the result when we considered bitgap for decision. Figure 6.11

shows the same result when we considered positive-negative ratio for decision. We

found with experiments that they approximately give the same results and the

plot establishes the same. Both decision strategies give us the success rate of 96%.
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6.2.5 Other Experiments

We tried different experiments to test the efficiency of attacks. Result shown in

previous section simply explains the recovery of prime factor for a key. In this

section, we present different experiment results.

6.2.5.1 Comparison of Two Decision Strategies

As explained earlier, we have implemented two decision strategies - Bitgap and

Ratio. Bitgap is used by BB-attack, while Ratio is used by Schindler-attack.

We tried to find out which one provides better 0-1 gap. During experiments we

observed that both strategies give more or less same results. Figures 6.12a and

6.12b provide the comparison of both decision strategies. It is clear from the

plot that both strategies almost have same results. If we examine the plots more

closely, we observe that ”Ratio strategy” have larger 0-1 gap than that of ”Bitgap

strategy”. This suggests that we can guess the bits more precisely with ”Ratio

strategy”.

6.2.5.2 BB-attack versus Schindler-attack

This experiment is intended to compare the efficiency of both attacks - BB-attack

and Schindler-attack. We kept the parameters same to have a better comparison.

According to Schindler et al [19], Schindler-attack provides an improvement with

a factor of 10. Also, it gives larger 0-1 gap with low neighbourhood size. We tried

to compare the attacks on these aspects. However, we could not establish the

claim. On the contrary, Schindler-attack needed higher neighbourhood size than

BB-attack to have similar 0-1 gap. Figures 6.12 and 6.13 show the results of bit

recovery for the same key using same parameters using BB-attack and Schindler-

attack respectively. It appears from the plots that BB-attack could give better

results with same parameters than that of Schindler-attack. We could recover

92% of bits using BB-attack, on the other hand, same parameters give 84% using
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Schindler-attack. We needed to increase the neighbourhood size from 400 to 800

to have the same result for Schindler-attack.
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(a) Bitgap decision strategy
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(b) Ratio decision strategy

Figure 6.12: BB-attack : Recovery of prime factor q
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Figure 6.13: Schindler-attack : Recovery of prime factor q

We did observe the efficiency of Schindler-attack over BB-attack during first phase

of attack. We could not find the two peaks using the BB-attack. However, we

were able to find the two peaks using Schindler-attack.
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6.2.5.3 Different Keys

Several experiments have been performed to assess the efficiency of the attack in

recovering different keys. The keys are randomly generated using OpenSSL. The

success rate did not change for different keys and the results are almost same.

We did the experiments on 4 different keys; however, we present here the results

for two keys for comfortable comparison. We could achieve up to 95 % for both

keys. We have used BB-attack for the comparison. Figures 6.14 and 6.15 show

the recovery of prime factor for key1 and key2 respectively. It is clear from the

plots that we can recover different keys with almost equal success rate. We might

need to adjust the parameters a bit to have clear 0-1 gap.
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Figure 6.14: KEY 1 : Recovery of prime factor q

6.2.5.4 Interprocess versus Switched LAN

This section discusses the efficiency of the attack on two network models - (1)

Interprocess, and (2) Switched LAN. We could achieve a success rate up to 95-96

% on both network models.

It is clear from the sample study that we needed more samples in Switched LAN

attack to cancel out jitter as compared to Interprocess attack. Intuitively, it should
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(a) Bitgap decision strategy
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Figure 6.15: KEY 2 : Recovery of prime factor q

be simpler to recover the key in Interprocess attack than Switched LAN. On the

contrary, we needed low neighbourhood size in Switched LAN attack to recover

the same key. Figures 6.16 and 6.17 represent a comparison between the attacks

on two network models. We used sample size of 7 and 25 in Interprocess attack

and Switched LAN attack respectively. However, we needed neighbourhood size

of only 400 in Switched LAN attack as compared to 2000 in Interprocess attack.

In Interprocess attack, the bits 120-180 were not clear with low neighbourhood

size. So, we increased the neighbourhood size to make it clear. This suggests that

it is not difficult to perform the attack over network. It simply requires precise

measurement techniques to cancel out jitter.
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Figure 6.16: Interprocess Attack: Recovery of prime factor q
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Figure 6.17: Switched LAN Attack : Recovery of prime factor q
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Future Enhancements &

Conclusion

We discussed our strategy along with the implementation and results so far. We

could achieve success rate of 96% over network. So, scope of improvement is still

there. This chapter deals with the scope of improvements in our strategy and

implementation. We would also discuss the defenses. We implemented our own

server to demonstrate the attack. But we can also perform this attack on real web

server. Real life attack would also be discussed here. We will go on to see the

feasibility of the attack as well.

7.1 Real Life Attack

We implemented a simple decryption server to demonstrate the attack. However,

real life scenario is quite different. The attack would lose its importance if it were

not feasible in real life.

We can perform the same attack on real web server. First we need to understand

how a real web server and client communicate with each other. Real web server

71
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uses hybrid cryptography - combination of asymmetric and symmetric cryptogra-

phy. Asymmetric cryptography is used to authenticate each other and to exchange

a symmetric key. The symmetric key is used for further data encryption.

Client Web Server

• •TCP Connection

• •SSL Handshake

• •
Data Encryption

Figure 7.1: Real life Client-Server communication

Figure 7.1 represents the real life communication of a web server and client. First

they make a TCP connection, which is followed by SSL handshake. During SSL

handshake client and server authenticate each other and share a symmetric key.

This symmetric key is used for further encrypted communication. RSA is used

during key exchange if the server selects appropriate cipher suite. So, during key

exchange step we can attack the real life server.

7.1.1 SSL Handshake

SSL Handshake is performed after making the initial TCP connection. This step

is done to authenticate each other and exchange a symmetric key. Figure 7.2

shows the messages exchanged between client and server during this step. We are

interested in ClientKeyExchange message, highlighted with red rectangle, through

which symmetric key is exchanged. RSA is used for key exchange if selected

cipher suite includes RSA algorithm as key exchange algorithm. Client generates

a ”master secret or symmetric key” and encrypts it using public key of server.

Client sends the encrypted message or ciphertext to server. Server decrypts the

ciphertext using its private key to extract the symmetric key. Only at this instance
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server uses its private key. Thus, this is the point where we can attack server to

recover the private key.

7.1.2 Attack Procedure

We target the ClientKeyExchange message during SSL handshake to attack the

real web server. We generate message g and replace the ClientKeyExchange mes-

sage with it and send it to server to decrypt it, similarly for ghi. Thus, we measure

the decryption time for g and ghi and use our algorithm to recover prime factor.

Figure 7.2: Messages exchanged during SSL Handshake

7.2 Future Enhancements

We could achieve a success rate of up to 96% that means we still need to brute

force the other 4% of bits. Also, recovery of bits is dependent on recovery of

previous bits. This makes the situation more complicated. Therefore we need error

detection and correction scheme. Thus, we foresee little scope of improvements.
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7.2.1 Error Detection and Correction

Decision of current bit depends on previously recovered bits. So, it becomes es-

sential that each bit is recovered accurately. So, we need a mechanism to detect

error in our guess and correct it.

Error correction and detection scheme is proposed by Chen et al [5]. According

to this proposed scheme the bitgap or δ will always be small after a bit is guessed

incorrectly. Assume a bit is guessed incorrectly. Thus both messages g and ghi

would either be ”larger than” or ”smaller than” q. Therefore, both case would

force us to guess the bit as 1 because the bitgap would always be small. We can

safely assume that there will not be 20 or more consecutive bits as 1 in prime

factor. So, if we find this, we know that there is an error in our guess and, then,

we can correct it. There is a drawback with this approach that we would not

detect the error immediately but after 20 or more bits. So, we must keep track of

this.

We propose this scheme as the future enhancement.

7.2.2 Dynamic Neighbourhood Size

Different parts of prime factor needs different neighbourhood size to get the de-

sired 0-1 gap. For example, initial bits need more neighbourhood size and as we

proceed further lesser neighbourhood size is enough. Our implementation fixes the

neighbourhood size for all bits. This seems inefficient as it needs more number of

queries, however we can perform the attack with fewer queries. We should con-

sider higher value of neighbourhood size for initial bits and then we can decrease

the value as it approaches further. The dynamic neighbourhood size approach will

give more efficient implementation.



Chapter 7. Conclusion 75

7.2.3 Implementation of Real Life Attack

We implemented the attack on a customised server. We figured out how the same

attack could be performed on a real web server. It looks worth to set up the

environment where we could perform the same attack on a real web server. It will

reinforce the seriousness of the attack. Researches suggest that real life attack on

a web server using Apache turned out be simpler.

7.3 Defences

Seriousness of the attack forces us to think about the defence. There is lot of

options available as defense. The basic idea behind all the defenses is that there

should not be any timing difference based on the input data or the secret. We

have listed three such defenses below.

1. Recall the reason behind the timing difference. The reasons are - (1) con-

ditional extra-reduction, and (2) two different multiplication routines. So,

first defense suggests to always carry out extra-reduction and to use only

one multiplication routine. If extra-reduction is not needed, one must carry

out a dummy one.

2. We can quantize all RSA operations such that all decryption must take the

maximum time of any decryption. This will make all RSA decryptions to

take the same amount of time.

3. Other defense is known as RSA Blinding. We consider a random value r,

encrypt it, and then perform the decryption. We calculate x = gre mod N

before decryption [12, p. 12]. After that, x is decrypted. The decryption

is followed by division by r. Since r is random, this introduces randomness

in the decryption time. This is a preferable defines and has performance

penalty of 2-10%.
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RSA blinding is already implemented in OpenSSL, however it was optional and

was disabled by default. It was enabled by default with version 0.9.7b onwards as

a countermeasure to the timing attack.

7.4 Summary

The work, presented here, deals with timing attack on a server, which uses OpenSSL,

a SSL/TLS library, to provide security. Using the attack it is possible to recover

the private key of the server. The work discusses and demonstrates the vulnera-

bility in implementation of RSA decryption by OpenSSL. The attack requires on

average 1.5 million queries and takes 2.5 hours to complete. It also presents few

defences and proposes one as preferable defence.

It seems needless to emphasise on the seriousness of the attack because private

key is the identity of an individual or Organization in the computing world. If

private key is compromised it simply implies that the identity is compromised.

For example, if an attacker is able to get the private key of a server, say Google

server, he can pose himself as Google server and can trick consumers of Google

server. One can only imagine the impact of it. It is a big deal. If an attacker

recovers the private key of a Certificate Authority, it can corrupt the whole Public

Key Infrastructure (PKI). We can go on and on to mention the impact, however

we will find ourselves unable to discuss all.

The attack is demonstrated on OpenSSL, which is a widely used SSL/TLS library.

It is an open source library. Most web servers are hosted using Apache, which uses

OpenSSL for providing security.

The attack leverages the vulnerability in RSA implementation. RSA is an asym-

metric cryptography algorithm, which is used now a day by servers to exchange

symmetric key with clients. So the server is vulnerable to this attack when it uses

RSA as key exchange algorithm.
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The attack is demonstrated on a switched network. However, it can be performed

on small local networks with few routers. Researchers have pointed it out that

the network with less than 1 millisecond variation is vulnerable to such attacks.

The attack needs more precise measurements and sophisticated setup on big net-

works. Nevertheless, it does not completely reject the feasibility of such attack

over big networks. Moreover, the attacker can position himself nearby the server

and transform it into a local network attack. One can argue that Intrusion De-

tection System (IDS) would catch those many requests from client and report it

as rogue connection deeming the attack impractical. Firstly, there are many ways

to trick the IDS and, secondly, the attacker can transform the attack into a local

network attack where IDS would not interfere.

7.5 Conclusion

Timing attacks have been demonstrated mostly in the context of hardware. It

is a common belief that these attacks are impractical in software context due to

factors that impede in precise time measurement. Owing to this notion as well

as lack of knowledge regarding timing attacks, developers tend to ignore timing

vulnerabilities in their implementation. On the contrary, this sophisticated attack

breaks all such notions and establishes the idea as a fact that timing attacks are

practical and it can leak big deal of information. Therefore, it becomes necessary

to defend against timing attacks in a world where everything is connected to other

and the connectivity is growing day by day. There is a saying that ”there is no

bigger enemy than ignorance”. Lack of knowledge will endanger us. Therefore,

developers should be made aware of such attacks so that they can critically examine

their implementation in light of such timing attacks. I would like to conclude with

the statement that remote timing attacks are practical and we must defend against

it.



Appendix A

Code Snippets

A.1 Benchmark a Function

1 unsigned int hi, lo;

2 uint64_t start, end, elapsedCount;

3 start = end = elapsedCount = 0;

4

5 //Record TSC before the function call

6 __asm__ volatile(

7 "cpuid\n\t"

8 "rdtsc\n\t"

9 "mov %%edx, %0\n\t"

10 "mov %%eax, %1\n\t":"=r"(hi),"=r"(lo)::"%rax","%rbx","%rcx","%rdx"

11 );

12 start = ( (uint64_t)hi << 32 ) | lo;

13

14 //Call the function

15 performDecryption();

16

17 //Record TSC after the function call

18 __asm__ volatile(

19 "cpuid\n\t"

78



Chapter 7. Conclusion 79

20 "rdtsc\n\t"

21 "mov %%edx, %0\n\t"

22 "mov %%eax, %1\n\t"

23 "cpuid\n\t":"=r"(hi),"=r"(lo)::"%rax","%rbx","%rcx","%rdx"

24 );

25 end = ( (uint64_t)hi << 32 ) | lo;

26

27 //Calculate the difference to get the elapsed time

28 elapsedCount = end - start;

Listing A.1: Sample Code to benchmark a function
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