
Master Information Technology

1

Master Thesis

Analysis and Deployment of

Honeypot Solutions on Single

Board Computers

Submitted by: Ovais Yousuf

Matriculation Number: 1025013

First examiner: Prof. Dr. Christian Baun

Second examiner: Prof. Dr. Dr. Herbert Nosko

Submission deadline : 11 April 2016

Master Information Technology

2

Statutory Declaration

I hereby declare that the thesis has been written by myself without any

external unauthorized help, that it has been neither presented to any

institution for evaluation nor previously published in its entirety or in parts.

Any parts, words or ideas, of the thesis, including figures etc., which are

quoted from or based on other sources, have been acknowledged as such

without exception.

06-April-2016

OvaisYousuf

Master Information Technology

3

Acknowledgement

I thank all those who prayed for my success specially to my parents and

continued asking about my achievements, hence boosting up my moral and

giving me hope to go ahead.

It is indeed a great honor for me to express my deep indebtedness to my

supervisor Prof. Dr. Christian Baun professor of Computer science and

engineering in Operating Systems, Computer Networks, Distributed Systems

(Cloud Computing) who gave the opportunity to write this thesis under his

supervision and guided me throughout the Project. Their devotion and

commitment enabled me to accomplish the task assigned. My countless

appreciation goes to my other committee members as well expressly Prof.

Dr. Dr. Herbert Nosko. I thank him for kindly agreeing to be on my master

committee and for his helpful advice and suggestions. He spent his precious

time and effort and provided a practical, international and friendly

environment during my entire course.

I would also like to acknowledge my colleagues and friends in particular and

all the family members in general. It is because of their devotion that I can

see this day today. They imparted me the power of knowledge which is a

base for not only this project, but also for the future tasks.

Master Information Technology

4

Table of Contents

Abstract 12

1 Chapter 1 13

1.1 Introduction ... 13

1.2 Goal ... 14

1.3 Advantage of a Honeypot over Network Intrusion Detection System

(NIDS) ... 15

1.4 High Interaction Honeypots .. 15

1.5 Low Interaction Honeypots ... 16

1.6 Physical Honeypots ... 18

1.7 Virtual Honeypots ... 18

Chapter 2 19

2 Secure Shell Honeypot Kippo 19

2.1 Background ... 19

2.2 Features ... 20

2.3 Kippo Directories .. 21

2.4 Kippo File System ... 21

2.5 Requirements ... 22

Chapter 3 23

3 Glastopf Web Application Honeypot 23

3.1 Background ... 23

3.2 General Approach ... 24

3.3 Requirements ... 26

Master Information Technology

5

Chapter 4 27

4 Honeyd the Virtual Honeypot 27

4.1 Background ... 27

4.2 Design of the HoneyD ... 27

4.3 Architecture ... 28

4.4 Personality Engine .. 30

4.5 Logging ... 31

Chapter 5 32

5 Raspberry Pi 2 32

5.1 Interfaces and Functions ... 32

5.2 Nmap ... 33

5.2.1 Most Commonly Used Commands ... 34

5.3 Hydra ... 35
5.3.1 Hydra Working .. 35

5.4 Medusa .. 36

5.5 Putty .. 37

Chapter 6 38

6 Realisation and Implementation 38

6.1 Installation of Raspbian Wheezy Image.. 39
6.1.1 Taking Remote of the Raspberry Pi through Putty 41

6.2 Installation of Honeyd on Raspberry Pi 2 ... 45
6.2.1 Setting up the fake virtual windows machine using HoneyD 55
6.2.2 Scanning the functionality of HoneyD by performing Nmap Foot

printing .. 58
6.2.3 Testing the functionality of HoneyD via Brute Force Attack using

Hydra ... 60

6.3 Installation of Kippo Honeypot on Raspberry Pi 2 63
6.3.1 Integrating MySQL Database with Kippo .. 74
6.3.2 Creating the Fake File System using fs.pickle 78

6.3.3 Testing the functionality of Kippo via Brute Force Attack using

Medusa from Attacker Machine .. 80

Master Information Technology

6

6.3.4 Logging Feature of Kippo Server ... 84

6.4 Installation of Glastopf Honeypot on Raspberry Pi 2 87
6.4.1 Install and Configure the PHP sandbox .. 95
6.4.2 Testing the Functionality of Glastopf Honeypot through a LFI attack

from a Linux Machine ... 105

7 Summary and Future Perspectives 110

7.1 Summary ... 110

7.2 Future perspectives .. 111

8 Abbreviations 113

Bibliography 116

Master Information Technology

7

List of Figures
Figure 1.1.1: General Block diagram of a Honey pot solution.......................12

Figure 1.4.1: Example of a High Interaction Honeypot…………………….15

Figure 1.5.1: An example of a Low Interaction Honeypot………………….16

Figure 3.2.1: Glastopf General Architecture..25

Figure 3.2.2: Flowchart of Glastopf Engine..26

Figure 4.2.1: Pictorial representation of the Honeyd design..........................28

Figure 4.3.1: the basic working architecture of Honeyd……………………30

Figure 5.1.1: Raspberry Pi Model B...32

Figure 5.2.1: Sample output of Nmap against a Linux host...........................34

Figure 5.3.1: The protocol list on which hydra has been tested.....................36

Figure 5.5.1: Putty Graphical User Interface GUI..37

Figure 6.1.1: Selection of Wheezy Image..39

Figure 6.1.2: Burning of the Image ...40

Figure 6.1.3: The Image has been mounted successfully...............................40

Figure 6.1.1.1: IP address assigned dynamically from the DSL Router........41

Figure 6.1.1.2: Putty manager to take the remote of the Raspberry Pi...........42

Figure 6.1.1.3: Raspberry Pi login screen..43

Figure 6.1.1.4: Raspberry Pi login screen..43

Figure 6.1.1.5: Raspberry Pi Setup Window..44

Figure 6.2.1: Updating the packages in raspberry pi......................................45

Figure 6.2.2: Installing the libdnet package...46

Figure 6.2.3: Installation of pre-requisite for Honeyd....................................47

Figure 6.2.4: Installing git..48

Figure 6.2.5: Changing the directory..48

Master Information Technology

8

Figure 6.2.6: Cloning the Honeyd to the local machine.................................49

Figure 6.2.7: Navigating to the directory Honeyd..49

Figure 6.2.8: Running the autogen.sh script...50

Figure 6.2.9: Configuring the build parameters...51

Figure 6.2.10: Screenshot of the make installation…………………………52

Figure 6.2.11: Installation of Honeyd software……………………………..53

Figure 6.2.12: Honeyd starting as background process……………………..54

Figure 6.2.13: Installation of „farpd‟..54

Figure 6.2.1.1: Conceptual setup of the HoneyD Implementation.................55

Figure 6.2.1.2: Configuration file screen shot..56

Figure 6.2.1.3: Launching screen shot of HoneyD...57

Figure 6.2.1.4: Ping output from the Windows machine................................58

Figure 6.2.2.1: Screen shot of Honeyd launching with -l flag........................59

Figure 6.2.2.2: Nmap scanned output...60

Figure 6.2.3.1: Screenshot of the Attack..61

Figure 6.2.3.2: Logs created by HoneyD..62

Figure 6.3.1: Snapshot of the configuration file...64

Figure 6.3.2: Restarting the server..64

Figure 6.3.3: Snapshot with the new port...65

Figure 6.3.4: Screenshot for installing git..66

Figure 6.3.5: Screen shot of the authbind...67

Figure 6.3.6: Screen shot for adding the new user...67

Figure 6.3.7: Screen shot of the user values...68

Figure 6.3.8: Screenshot for sudo user...69

Figure 6.3.9: Screenshot for git cloning...70

Figure 6.3.10: Screen shot of kippo.cfg file...71

Master Information Technology

9

Figure 6.3.11: Screenshot of start.sh..72

Figure 6.3.12: Screenshot of netstat output..72

Figure 6.3.13: Kippo running in the background...73

Figure 6.3.14: Screenshot of netstat output..73

Figure 6.3.1.1: Screenshot for installing MySQL..74

Figure 6.3.1.2: Screenshot for MySQL root user...75

Figure 6.3.1.3: Screenshot for creating database for Kippo...........................76

Figure 6.3.1.4: Screenshot of selecting kippo as a database………………...77

Figure 6.3.1.5: Screenshot of killing kippo process………………………...78

Figure 6.3.1.6: Screenshot of Database configuration………………………78

Figure 6.3.2.1: Screenshot of the fake file system in fs.pickle.......................79

Figure 6.3.2.2: Screenshot for new user and password..................................80

Figure 6.3.2.3: Screenshot for loading mysql and starting kippo...................80

Figure 6.3.3: Conceptual diagram of brute force attack on kippo..................81

Figure 6.3.3.1: Screenshot of Nmap foot printing..82

Figure 6.3.3.2: Screenshot of the attack from Linux machine.......................83

Figure 6.3.3.3: Screenshot of taking the access of kippo server....................84

Figure 6.3.3.4: Screenshot of fake file system...85

Figure 6.3.4.1: Screenshot of accessing the MySQL database.......................86

Figure 6.3.4.2: Screenshot of the sessions log created...................................86

Figure 6.3.4.3: Screenshot of auth log created...87

Figure 6.3.4.4: Screenshot for replay logs of the attacker sessions................88

Figure 6.4.1: Screenshot of putty manager...89

Figure 6.4.2: Screenshot of glastopf packages installations 1........................90

Figure 6.4.3: screenshot of glastopf package installation 2............................91

Figure 6.4.4: Screenshot of glastopf packages installation 3.........................92

Master Information Technology

10

Figure 6.4.5: Screenshot of glastopf packages installation 4.........................93

Figure 6.4.6: Screenshot of glastopf packages installation 5.........................94

Figure 6.4.7: Screenshot of glastopf packages installation 6.........................95

Figure 6.4.8: Screenshot of glastopf packages installation 7.........................96

Figure 6.4.1.1: Screenshot of php-sandbox cloning from git.........................96

Figure 6.4.1.2: Screenshot of php sandbox installation..................................97

Figure 6.4.1.3: Screenshot of configuration and enabling BFR.....................97

Figure 6.4.1.4: Screenshot of running make and installing make…………..98

Figure 6.4.1.5: Adding the path to php.ini file……………………………...99

Figure 6.4.1.6: Screenshot of php zend engine installation…………………99

Figure 6.4.1.7: Screenshot of libinjection cloning from git………………..100

Figure 6.4.1.8: Screenshot of pylibinjection cloning from git……………..100

Figure 6.4.1.9: Screenshot of building python setup.py…………………...101

Figure 6.4.1.10: Screenshot of cloning glastopf from git………………….101

Figure 6.4.1.11: Screenshot of python setup.py install…………………....102

Figure 6.4.1.12: Screenshot of glastopf-runner……………………………103

Figure 6.4.1.13: Screenshot of glastopf.cfg file…………………………...103

Figure 6.4.1.14: Screenshot of glastopf web server running………………104

Figure 6.4.1.15: Screenshot of the webpage running on glastopf…………104

Figure 6.4.1.16: Screenshot of glastopf……………………………………105

Figure 6.4.1.17: Screenshot for installation of sqlite3……………………..105

Figure 6.4.1.18: Screenshot of the database fields and events…………….106

Figure 6.4.2.1: Conceptual Figure of the Attack scenario…………………107

Figure 6.4.2.2: Screenshot of LFI attack from attacker machine………….107

Figure 6.4.2.3: Screenshot of the glastopf logs……………………………108

Figure 6.4.2.4: Screenshot of glastopf window……………………………108

Master Information Technology

11

Figure 6.4.2.5: Screenshot of /etc/passwd file accessed by the attacker…..109

Figure 6.4.2.6: Screenshot for the analysis of logs in sqlite3 database……109

Figure 6.4.2.7: Screenshot of further analysis of the logs…………………110

Master Information Technology

12

Abstract

In the past several years there has been extensive research into honeypot

technologies, primarily for detection and information gathering against

external threats. [1]

This thesis brings the concept of analysing and deployment of the open

source honeypot solutions on the raspberry pi 2. The selected honeypot

solutions are mainly low-level interaction but one used in the thesis work is a

medium-interaction. The honeypots are installed on single board computers

to test the functionalities. The test scenarios are created in the LAN without

the internet access. For this kind of situation when there is no availability of

internet self made tests and attacks are created to prove the functionality of

selected honeypots. Three kinds of honeypots are used in this thesis work.

One is a SSH server honeypot, second is the web server honeypot and the last

is the virtual honeypot.

To test the functionality of all the honeypots some brute force attack

techniques are used. These attacks are performed with the help of hacking

tools to crack the password credentials and by using some available python

scripts.

The proof of the functioning part of these selected honeypots is their attack

detection with the nature of attack and the logs that are generated after and

during the attacks. With this the network security can be made more

protected and secure.

Master Information Technology

13

1 Chapter 1

This chapter provides a deep background about the technologies involved in

this Master Thesis. In order to understand the realization of the research

work it is essential to have a look at the different possible technologies and

techniques. Therefore, it would be useful and necessary to understand

background knowledge of these technologies, protocols and software used in

this thesis work.

1.1 Introduction

Honeypots are an influential, new equipment with unbelievable prospective.

Honeypots are able to do everything from detecting fresh attacks never seen

in their natural habitat before, from tracking programmed credit card scam

and individuality stealing. By the passage of time and robust growth of the

technology many conceptual things related to commercial honeypots and

open source solutions with fully recognized sources are available.

Nevertheless, a vast arrangement of research pointed on capturing

discovering, and researching outdoor threats. Being nasty and treacherous,

attacks made by the attackers are frequently casual as the attackers further

interested in the quantity of the systems they can break into other then which

systems they shatter into. For hazardous and shocking type of threats the

amount of research is not as much as it should be at this point, the

sophisticated user of the organization. The network of the company is well

recognized by this reliable user who is actually not mainly interested in the

computers of the company but in the precise information of the company, and

this is extremely dangerous issue to handle and to diminish.

Master Information Technology

14

 Figure 1.1.1: General Blockdiagram of a Honey pot solution

A honeypot is considered as an inimitable security reserve. A resource for

that one wanted to be interconnected by the black chat community.

“A honeypot is an information system resource whose value lies in

unauthorized or illicit use of that resource.” [1]

The above lines of quotations explain that a honeypot is a resource that gains

their value if they interact with the attacks. And it is totally diverse from

usual security mechanisms. [1]

1.2 Goal

The goal of this thesis is as follows:

 This thesis work presents the analysis of three different honey pots

solutions on a single board computer that is Raspberry Pi 2.

 Check the functionalities of some honeypot solutions

 Implement a honeypot solution on a single board computer

 Investigate how to test the functionality.

 Perform some simulated attacks and real attacks.

 Summary of the final result based on functionalities of all three

honeypots.

Master Information Technology

15

1.3 Advantage of a Honeypot over Network

Intrusion Detection System (NIDS)

The purpose of this section is to present the basic comparison in NIDS and

honeypots. The main motivation in their use by contrasting honeypots with

network intrusion detection systems (NIDS) is that NIDS are losing their

importance of trickery techniques to make the network secure as the new

secure protocols are available which has the ability of encrypting the data

plus to secure the network traffic very privately.

Also NIDS undergoes from high false positive rates that decreases their

worth even more. Honeypots are capable to figure these types of problems.

Honeypot is somewhat a resource that is placed so that it should get

compromised and probed as it is strongly observed. A Honeypot becomes

indomitable from the received information when probed. The logging feature

of the honeypot is the main asset that provides the information about entering

and leaving of the data or information which is not available in NIDS. [2]

The logging ability of the honeypot is quite capable of logging the key

strokes of the associated session yet the network traffic is well encrypted.

On the other hand NIDS entail the signature of recognized attacks and

normally not succeeded when goes in contact with the coming signatures

when implemented.

But honeypots are able to notice vulnerabilities that are even not yet

understood. To make sense it means that honeypots keeps an eye on the

network traffic passing through the honeypot even if the signature of the

exploit is all new because directing any traffic to honeypot is suspicious

because honeypot is nothing but a decoy system.[2]

1.4 High Interaction Honeypots

A high-interaction honeypot is a straight computer system which means a

commercial off-the-shelf (COTS) computer. It may be a router or may be just

a normal switch. These sorts of systems have no usual activities in the

network as no active users are connected to them. So no normal or daily

routine traffic is generated as there is no processes are running other than

some services that are made to run to attract the intruder. This phenomenal

Master Information Technology

16

specialty of these kinds of honeypots helps in detecting the attack alarms. So

who ever comes in contact with the high-interaction honeypot will be

considered as apprehensive, and so every system activity will be logged and

stored for all the traffic towards high-interaction honeypots. For instance the

pictorial representation of the High interaction honeypot can be seen in the

figure 1.4.1 below.

Figure 1.4.1: Example of a High Interaction Honeypot [3]

High-interaction honeypots uses original operating systems with every

possible defect so that they can be completely compromised. No fake

services are used to emulate so that the original flavor of the system and

services can be enjoyed by the intruder. On the other hand the network

personals can observe the wide threat information by monitoring the tools

used by the intruder and gaining the knowledge about the bad ambitions of

the intruder once they got into the system without permission. The only dark

side of high-interaction honeypots is that they play their role on high risk as

the intruder has a full right to use the operating system. [2]

1.5 Low Interaction Honeypots

The factors which distinguish low-interaction honeypots are the emulated

services and the network stacks, which are the replica from an original

operating system. These types of honeypots are designed in a manner that

they provide only significant information to the network personals about the

activities performed by the attacker. The pictorial representation of the Low

interaction honeypot can be seen in the figure 1.5.1 below.

Master Information Technology

17

To, understand this lets take if an attacker asks for HTTP pattern from the

HTTP server the low-interaction honeypots will answers only then a specific

file from the complete HTTP pattern asked for. Here it means that the level of

control moves should be very precise to fool the attacker or the dangerous

tools used against the system, which can be a virus or a worm to bait the

system. The benefit of low-interaction honeypots is their straightforwardness

and simple upholding. It is really simple just go and deploy the system and

start collecting the information of the intruder.

Figure 1.5.1: An example of a Low Interaction Honeypot [4]

The intruder is helpless to completely compromise the honeypot since they

come in contact just with a simulation. Low-interaction honeypots build

controlled surroundings so the risk concerned is restricted. This gives a peace

to one that one does not have to fear that he abuses their honeypots. [2]

Table 1: Advantages and Disadvantages of High and Low Interaction

Honeypots [2]

Master Information Technology

18

The above Table 1 provides the summarized overview of high and low

interaction honeypots explaining the advantages and disadvantages of each

approach.

1.6 Physical Honeypots

The next possibilities are physical and virtual honeypots in the field of

honeypots. The physical honeypots are the one that are deployed on the

original machines which normally means a high-interaction honeypots but it

can be a low-interaction honeypot also. This means that a single honeypot is

deployed with one assigned IP address from the pool of IP addresses per

machine.

This type of system are very difficult to implement and to take care of as

assigning the IP address per machine is very unfeasible and sounds

unpractical. For such type of cases virtual honeypots are the best solutions

available in the market. [2]

1.7 Virtual Honeypots

The last type, which is the virtual honeypots they are very appealing. The

basic sense in their deployment is the scalability and easy look after. One can

deploy more than hundreds of honeypots just on a single physical machine.

The attractiveness of the virtual honeypots is they are very reasonable to

deploy and easily available on the internet for anybody who wants to have it.

In comparison with physical honeypots virtual honeypots are more trivial.

This means here that one can place thousands of virtual host on a network

with only one computer which acts as a honeypots other than deploying a

single honeypot on a single computer. This will help in maintenance of the

honeypots and the requirements for implementation will also be less. [2]

Master Information Technology

19

Chapter 2

In the following chapter the technology which is discussed is related to SSH

Honeypot named as Kippo. This chapter is a description regarding the

background and will discuss some important features, directories and the

system requirements for the SSH kippo honeypot.

2 Secure Shell Honeypot Kippo

2.1 Background

A very frequent method to take shell access remotely of any operating system

is by means of a Secure Shell network protocol SSH. SSH protocol is quite

able in providing a remote access to an insecure network area. For this the

SSH server is available to provide an authentic access to the user who uses

SSH protocol to get the remote access. The methods used by the attackers to

get the remote login of the SSH server might be any available technique or

tool available in the market it can be a brute force tool or a dictionary tool for

attack.

In order to study the activities executed by attackers after they get into a

system with an SSH server, one can use a Kippo honeypot. Kippo SSH

honeypot is somewhat in between the high-interaction and low-interaction

honeypot called medium-interaction honeypot. Kippo honeypot is intended to

log many of the brute force attacks and the most important feature is it logs

the complete shell interaction executed by the intruder

Kippo honeypot provides a feature of a fake file system by simulating a

Debian linux system which is seen by the intruder at the time of the login and

execution. The intruder can move around into the system but unable to

destroy anything.

Kippo honeypots provides the attacker the complete login facility of the

system and the feel to the attacker that he is into a genuine SSH seesion with

in the server. Once getting into the system after a successful breakup of the

password the intruder can go around into the fake system. Every single step

executed by the attacker is saved and observable. Kippo honeypot provides

Master Information Technology

20

many Linux commands that are used in daily routine. The attacker will be

provided a facility to download any file from the internet also, which will be

stored in the “dl” directory of the kippo honeypot.

Kippo honeypot is autonomous to any operating system as it is developed in

python programming language. In real meaning, through valuable imitation it

is able to let an attacker to log in and come in contact with what they think is

original, compromised system.

The main idea of the operation is to bring to the attacker the notion of

navigating the actual system. [5]

2.2 Features

The most attracted features of the Kippo honeypot that makes it attracted for

the users to use are as follows

 Fake file system with the capacity of building and deleting the files. A

completely artificial file system similar to a Debian 5.0 mechanism is

integrated.

 Opportunity provided for adding contents to a file which are not real

contents of any production system. This will trap the attacker who

will try to use „cat‟ command for files such as /etc/passwd. Only

nominal file contents are integrated.

 Kippo also support the UML file format for the session logs saved in.

which can later analyze with original timings.

 Accumulates all the files which were downloaded throughout the SSH

session (simulating the commands for downloading which is wget)

for later scrutiny.

 Accumulates the material about the intruder‟s activities in the

operating system (the used commands) in a format granting the replay

in a screen-cast format.

 Simulates the conclusion of the SSH session. Which means when the

attacker types the “exit” command to finish the session it actually

don‟t finish the session it will provide another shell like terminal for

collecting extra information about the attacker‟s activity.

Master Information Technology

21

2.3 Kippo Directories

Most vital directories and files of the kippo system are as follows

 data: It is a directory for the data files that are mixed in nature, such

as the database for passwords.

 fs.pickl: A virtual file system that is developed in the format of

Python pickle.

 dl: When an attacker downloads any worm or virus or any kind of

exploit from internet they are saved in this directory which is

designed only for this purpose.

 kippo.cfg: It is the heart of the kippo server which plays an

instructive role.

 honeyfs: In this directory one can design their own fake directories

which includes any file that can be accessed by the attacker.

 txtcmds: One can create some extra Linux commands that are not

available by default in the kippo honeypot and this is possible in this

directory.

 log: This directory is the main directory which provides every

possible information about the attack and the session created.

 start.sh: It‟s a directory in which the start script of the kippo is

available.

 utils: The playlog.py utility is available in this directory which is

used for the complete session replay.

2.4 Kippo File System

Kippo is capable of storing the files in a system known as pickle file.

Pickle is the benchmark mechanism for object soap. The object rebuilding is

provided by pickle as it uses a stack based virtualization process. Pickle can

be defined as a partial memory space that provides a binary format for the

objects to store on a hard disk. This will also help the user in retrieving the

stuff from the memory afterwards.

Whenever the new user connects to the kippo honeypot, it loads this pickle

file system into the memory. It does not affect the pickle file system in real

whatever the attacker did there it will be reloaded as fresh and new system on

the next access of the file system.

Master Information Technology

22

2.5 Requirements

The software that is compulsory to utilize Kippo honeypot are as follows

 An operating system (may be a Debian, CentOS and Windows

platforms)

 Python 2.5+

 Twisted 8.0+

 PyCrypto

 Zope Interface

Master Information Technology

23

Chapter 3

Chapter 3 discusses the background knowledge required and will discuss the

general approach needed to implement the Glastopf web application server

side honeypot including the system requirements for the glastopf technology.

3 Glastopf Web Application

Honeypot

3.1 Background

Presently, 60% of total number of attempted attacks over the internet is

against web applications. Organizations cannot bear the cost of their websites

to be compromised, as this can effect in serving mean content to customers,

or leaking customer's data. Certain features are commonly available to all

web applications, whether the particular web application is an element of a

personal web page, or a company's website. Mainly people belief in the

consistency of web applications and they are often hosted on powerful

servers with higher bandwidth connections with the Internet. Taking into

account the large number of attacks and knowing the possible consequences

of successful break-ins, we are determined to put more effort into the

development of honeypots to better recognize these attacks. Glastopf is

competent of emulating hundreds of vulnerabilities to assemble data from

attacks that aim web applications. The principle behind it is quite simple.

Reply to the attack using the reaction the attacker is expecting from his

endeavour to exploit the web application. There are presently other web

application honeypots available, but ours uses a diverse approach. For

example, Inspite of the adapted web app templates used by search entities to

catch the fanciness more attacks over time, Glastopf supports multistage

attacks, list of vulnerable requests and a vulnerability emulator. The key

principle of a low interaction honeypot is simple. With most of the currently

available automated honeypots, one just have to start the program, watch the

bad guys attacking, send the collected files to a sandbox, exhibit the attack

Master Information Technology

24

events in a web interface. This will help one to assess the collected data and

to understand how to collect and process incoming attacks. [6]

Glastopf compiles data by emulating hundreds of network holes. Contrasting

many other honeypots, Glastopf focuses on responding with the correct reply

to the attacker exploiting the targeted Web application, and not the particular

vulnerability.

3.2 General Approach

Lukas Rist has founded Glastopf, which is basically a python based web

application server side honeypot. [7]

 Vulnerability type emulation which means not mainly vulnerability

emulation. Glastopf can handle mysterious attacks of the same type

after the vulnerability type is once emulated. Might be bit slower and

more complicated during the implementation phase, but it remains

ahead of the intruders until they appears with a new technique or

determine a new fault in this realization.

 Modular design to include new logging capabilities or attack type

handlers. A variety of database capabilities are already situated.

HPFeeds logging is facilitated for centralized data collection.

 Known attack kind emulation is previously located. Remote File

Inclusion via an integrated PHP sandbox, Local File Inclusion

facilitating files from a virtual file system and HTML injection by

using POST requests.

 Adversaries, typically make use of search engines and special crafted

search requests to locate their victims. In order to magnetize them,

Glastopf offers those keywords (as known as "dork") and in addition

extracts them from requests, extending its attack plane involuntarily.

Resulting, the honeypot gets more and more striking with each fresh

attack made over it.

 SQL injection emulator will be made public, which will provide IP

assigning for crawler detection and intelligent dork selection.

Master Information Technology

25

Figure 3.2.1: Glastopf General Architechture [6]

It has limited capability of responding to particular types of attacks, so as to

aggravate the attacker to send further information, while trying to

compromise the emulated web server. The general architecture of the

glastopf can be seen in the figure 3.2.1 above.

There is a central database for attack information storing. The central

database helps to centralize the hits on every single Glastopf honeypot. These

way researchers may have access to large information about web server

attacks.

It supports statistics fun-out through irc channels or tweeter. It connects to a

particular channel and in real time, broadcasts information about incoming

attacks. Figure 3.2.2 is the pictorial representation of the Glastopf flowchart

below.

Master Information Technology

26

Figure 3.2.2: Flowchart of Glastopf Engine [6]

3.3 Requirements

 Install the required dependencies

 Install and configure the PHP sandbox

 Install pylibinjection

 Install Glastopf

 Configuration

 Testing the Honeypot

Master Information Technology

27

Chapter 4

This chapter provides an overview of the virtual honeypot technology used in

this master thesis. This chapter discusses the background knowledge with the

basic design and architecture of the virtual honeypot Honeyd.

4 Honeyd the Virtual Honeypot

4.1 Background

With the passage of time the IT business is expanding on daily basis, with

this expansion of IT infrastructure the importance of the internet security is

also increasing rapidly. There are many available internet security solutions

in the market.

Honeyd is software for virtual honeypots. It has an ability to simulate the

systems at the third layer of the OSI model. Honeyd provides a facility to

configure the services for every virtual honeypot by responding the network

requests for each virtual host as honeyd facilitates the IP protocol stack of the

OSI model. This means that when a request comes it goes to the personality

engine where it compares it with the network stack of the personality

assigned to the operating system.

Honeyd is a framework with too much power it depends on the user how one

is using it on the network. Honeyd is quite capable of identifying and

stopping the viruses and network worms. [8]

4.2 Design of the HoneyD

Honeyd is trivial software used to create thousands of virtual hosts. One can

take simply a single machine and can deploy thousands of IP addresses with

different network services running individually. In this part of the thesis lets

briefly describes the design of the honeyd.

Master Information Technology

28

In the design of the honeyd the designer of this tool keeps in mind that

honeyd should operate at the network layer which means the attacker who

tries to interact with this system is limited to the third layer of the network. In

easy words the simulation of the network stack take into account not the

whole aspect of the operating system. The dark side is the attacker is not able

to compromise the complete emulated service. But nevertheless it can

monitor the active connections and the attempts made. With this ability TCP

and UDP including the ICMP responses are also well served. Figure 4.2.1 is

the pictorial representation. [8]

Figure 4.2.1: Pictorial representation of the Honeyd design [8]

4.3 Architecture

Honeyd's architecture contains several components, a central packet

dispatcher, an optional routing component, protocol handlers, a personality

engine, and a configuration database that is shown in the figure below 4.3.1.

Central packet dispatcher processes the incoming packets. It first takes the

length of an IP packet into account and packet's checksum is verified.

Framework is conscious about the three major Internet protocols TCP, ICMP

and UDP. Packets for other protocols are saved and simply discarded.

Master Information Technology

29

The dispatcher must inquire the configuration database before it processes

any packet, to find a honeypot configuration that corresponds to the

destination IP address. A default template is used, if no specific configuration

exists. Given a configuration, the packet and subsequent configuration is

forwarded to the protocol specific handler.

Most ICMP requests are backed up by the ICMP protocol handler. By

default, all honeypot configurations react to echo requests and

produce destination unreachable messages. Handling of other requests

depends on the configured characteristics.

For TCP and UDP, the framework is able to launch connections to arbitrary

services. Services are exterior applications, which receive data at stdin and

their output are sent to stdout. The performance of a service depends

completely on the external application. The tool examines if the packet is part

of an established connection when there is a connection request is received.

In that case, every new entry is sent to the ongoing service application. If the

packet contains a connection request, a fresh process is shaped to run the

proper service. The framework backs up subsystems and internal services

instead of establishing a new process for each connection made. The function

that executes in the name space of the virtual honeypot is called subsystem.

The subsystem specific application is started when the subsequent virtual

honeypot is incorporated. A subsystem can connect to ports, acknowledge

connections, and commence network traffic. An internal service is executed

within Honeyd, which is a Python script while a subsystem runs as an

external process. Internal services require even fewer possessions than

subsystems but are only able to accept connections and not begin them.

A simple TCP state machine is contaminated in a Honeyd. The three-way

handshake for connection initialization and teardown using FIN or RST is

totally supported, but receiver and congestion window management is not

completely implemented.

UDP datagram are passed directly to the application. When the software

receives a UDP packet for a closed port, it sends an ICMP port

unreachable message until this is not allowed by the configured personality.

In sending ICMP port unreachable messages, the framework permits network

mapping tools like traceroute to determine the simulated network topology.

[8]

Master Information Technology

30

Figure 4.3.1: the basic working architecture of Honeyd [8]

4.4 Personality Engine

Fingerprinting tools like Xprobe or Nmap are commonly run by adversaries

to compile credentials about a objective system. It is essential that honeypots

do not move out of the way, when fingerprinted. To make them emerge real

to a probe, Honeyd simulates the network behaviour of a given OS. This is

known as the characteristic of a virtual honeypot. Various characteristics can

be assigned to various virtual honeypots. The personality engine makes a

honeypot's network stack perform as specified by the characteristic by

introducing changes into the headers of the protocol of each outgoing packet

in order to match the personalities of the configured OS.

The framework uses Nmap's fingerprint database as its reference for a

personality's TCP and UDP behaviour. Xprobe's fingerprint database is used

as reference for a personality's ICMP behaviour.

Master Information Technology

31

4.5 Logging

The Honeyd framework backs up numerous ways of logging network

activities. It can construct connection logs, which reports attempted and

concluded connections for every single protocol. More beneficially,

credentials can be compiled from the services. Service applications are be

able to report information to be logged to Honeyd by uding stderr. The

framework utilizes syslog to accumulate the information on the machine. [8]

 -l is a flag that is used to store the packets and connections to the

logfile

Master Information Technology

32

Chapter 5

In this chapter 5 the things which are discussed are the tools needed to

simulate the attack to hack and to perform the foot printings of the network in

which the honeypots are running. The single board computer is also briefly

discussed how it works and what are the important features included in the

new model of this single board computer.

5 Raspberry Pi 2

The enormous popularity of the Raspberry Pi 2 minicomputers with the

majority stems from a variety of DIY projects powered by this inexpensive

hardware, as well as many freely available open-source software suites.

Figure 5.1 shows the hardware components of the Raspberry Pi 2

5.1 Interfaces and Functions

This is not a consumer device, and depending on what we intend to do with

Raspberry Pi 2. The figure 5.1.1 below shows the picture of the Raspberry Pi

2.

Figure 5.1.1: Raspberry Pi Model B [9]

Master Information Technology

33

 The Secure Digital (SD) Card slot: Pi doesn‟t have a local storage

like HDD or a SDD; everything is stored on an SD Card.

 USB port: There are two USB 2.0 ports. A powered external hub can

be used if a desired peripheral needs more power.

 Ethernet port: The model one RJ45-Ethernet port.

 HDMI connector: The HDMI port offers digital audio/video output.

14 unlike video resolutions are supported, and the HDMI signal can

be changed to DVI, composite, or SCART with external adapters.

 Status LEDs: Pi has five display LEDs that provide visual feedback.

ACT Green Lights when the SD card is accessed, PWR Red Curved

up to 3.3V power, FDX gets green if the network adapter is fully

duplex, LNK Green Network motion light 100, Yellow On if the

network connection is 100Mbps.

Raspberry Pi 2 is a single board computer (SBC) and performance level is

also adequate. Presently, Raspberry Pi 2 is not open source hardware. It uses

the ARM based multimedia system-on-chip (SoC) with exclusively-

functional, entirely open-source drivers, vendor-provided.

5.2 Nmap

Nmap, a network exploration tool and security scanner, is defined by its

author, Fyodor, which is really a substitute for operating system fingerprint.

Various numbers of hosts on the Internet can be promptly scanned with

Nmap to find out which operating system is being used and which services

are being offered. To resolve the operating systems and services running

on 192.168.1.1, Nmap can be invoked as a root user with the below

mentioned command:

nmap -sS -O -F 192.168.1.1

The output in Figure 5.2.1 informs us that 192.168.1.6 is running a current

version of the Linux kernel. Nmap cannot quite inform which version, so it

gives a choice between Linux version 2.4.18 and Linux version 2.6.7. These

versions keep up a correspondence to the kernel versions that are run by the

hosts. Each kernel might select to execute TCP vaguely differently, and

Master Information Technology

34

Nmap uses these differences to identify the operating system being run by the

host. In this case, the scanned Linux host was certainly running 2.6.7. It is

interesting to see that TCP timestamps, allow Nmap to conclude, how long

the machine has been running. In this particular case, the host has been up for

about one hour. The general foot printing signature of the nmap can be seen

in the figure 5.2.1 below. [10]

Figure 5.2.1: Sample output of Nmap against a Linux host running several services [10]

5.2.1 Most Commonly Used Commands

Nmap is a beyond doubt a composite tool, though a concise overview of the

most frequently used command lines are:

 -p port-ranges: Specifies ports to be scanned

 -sV: Enables version detection, i.e.; Nmap tries to recognize which

service is running along with the version on the specified port.

 -O: Enables remote operating system‟s detection

 -A: Enables OS detection and version detection

Master Information Technology

35

 -T[0-5]: Sets the timing option that is a bigger number, which means

smaller amount of time between these probes.

 -oN/-oX/-oG file: These options specify the output format as normal

and XML, respectively. The scan report saved for further analysis.

These six command line flags are sufficient for common use of Nmap. The

tool is principally supportive for verification of the targeted honeypot is

up/running. It can also find out whether all services are running or not.

5.3 Hydra

A very well-known network log on cracker which can support various

different services is Hydra, which is now in version 8.1 and last updated

December 12th 2014 (Similar projects and tools include [13] and [12]).

5.3.1 Hydra Working

Hydra is a password breaking tool. In network security (IT security),

password breaking is the method of guessing passwords from databases that

are stored in or are in transit contained by a computer system or network. A

general approach, and the approach used by Hydra and many other similar

testing tools is referred to as Brute Force. A concise bytes on „Brute Force

Hacking‟ could be simply done but since this part of the thesis is all relating

Hydra let‟s leave the brute-force attack concept surrounded by this password-

guessing tool.

Brute force simply means that the program launches a persistent stream of

passwords at a log in for password guessing. As it is known, majority of the

users have relatively weak passwords and all too often they can be easily

guessed. A bit of social engineering and the probability of finding the exact

password for a user are enhanced. Most people (especially those non-IT

professionals, base their „secret‟ passwords on nouns and words that they

might not easily forget. Those words are usually: loved ones, children‟s

names, street addresses, place of birth etc. All of these are easily obtained

through social media so as soon as the hacker has collected this data, it can be

without much effort be compiled within a „password list‟.

https://www.concise-courses.com/security/category/concise-bytes/

Master Information Technology

36

Brute force will include the list that the hacker has built up and will likely

merge it with other known tools and begin the attack. Depending on the

processing speed of the hacker‟s machine, Internet connection the brute force

method will analytically poll through each credential until the exact one is

determined. The protocol access list for hydra can be seen in the figure 5.3.1

below. [11]

Figure 5.3.1: The protocol list on which hydra has been tested [11]

5.4 Medusa

Medusa is projected to be a prompt, extremely parallel, modular, login brute-

forcer. The objective is to sustain as many services which permit remote

validation as possible. Brute-force testing can be performed against numerous

hosts, users or passwords in parallel.

Flexible user input. Target information (host/user/password) can be specified

in a range of ways. For example, each item can either be a single entry or a

Master Information Technology

37

file containing several entries. Moreover, a combinational file format allows

the user to filter their target record.

It has a modular architecture which means every single service module exists

as a self-governing .mod file. This means that no modifications are essential

to the core application in order to enlarge the supported list of services for

brute-forcing. [13]

5.5 Putty

Putty is an SSH and telnet client, designed initially by Simon Tatham for the

Windows platform. Putty is available with source code and is open source

software, developed and supported by a group of volunteers. The GUI of

putty can be seen in the figure 5.5.1 below.

To download putty:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Figure 5.5.1: Putty Graphical User Interface GUI [14]

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Master Information Technology

38

Chapter 6

This section of the report gives a detailed implementation of the whole

testing environment which includes setting up raspberry pi 2, Honeypot

packages installations, configurations and screenshots containing various

outputs.

6 Realisation and Implementation

To simplify implementation procedures and understand the realization

concept, it can be divided into following parts:

 The raspberry pi 2 setup which includes installation of

Raspbian wheezy image on the 16GB SD card using

WinDiskImager32 to get run on raspberry pi 2.

 Installation of Kippo Honeypot packages along with the

supporting tools to be deployed on raspberry pi and can make

in a running condition and can then later tested internally or

locally by another linux machine on the same LAN.

 Installation of Glastopf Honeypot packages along with the

supporting tools to be deployed on raspberry pi 2 and can

make in a running condition and can then later tested

internally or locally on the same LAN.

 Installation of HoneyD Honeypot packages along with the

supporting tools to be deployed on raspberry pi 2 to get it in a

running condition and can then later tested by brute forcing it

through the Linux machine internally or locally on the same

LAN.

Master Information Technology

39

6.1 Installation of Raspbian Wheezy Image

The first step in installation and deployment of different server side

honeypots it is needed to burn the Raspbian Wheezy image on the Micro SD

card using Win32 Disk Imager.

 Download the Win32 Disk Imager from the following web link

http://www.chip.de/downloads/Win32-Disk-Imager_46121030.html

 Then Download the Raspbian Wheeyz Image from the following link

https://www.raspberrypi.org/downloads

After downloading of both the software lets first open the Win32 Disk

Imager and select the path under the name (Device) from the download

directory of the computer where Raspbian Wheezy is downloaded to burn on

the Micro SD card.

Figure 6.1.1: Selection of Wheezy Image to burn with Win32 Disk Imager

After the selection of the right image path from the download section the next

step is to press the (Write) button to burn the Image on the SD card which

can be seen in the figure 6.1.2 below.

http://www.chip.de/downloads/Win32-Disk-Imager_46121030.html
https://www.raspberrypi.org/downloads

Master Information Technology

40

Figure 6.1.2: Burning of the Image in progress by pressing Write option

After the progress has been completed the Image will be effectively mounted

on the SD card which can be seen in the figure 6.1.3 below.

Figure 6.1.3: The Image has been mounted successfully

Master Information Technology

41

After the successful mounting of the Raspbian ISO image on the SD card one

should insert the SD card into the SD slot space of the Raspberry PI. The next

one thing needed to make raspberry pi 2 up is to give the electricity which

can be provided by the separate power adapter or in our case through the PC

with the normal charging cable

6.1.1 Taking Remote of the Raspberry Pi through Putty

There are many ways to configure the Raspberry Pi.

 One can configure the Raspberry Pi through connecting the Raspberry

Pi with the HDMI cable into the Screen with a mouse and keyboard

and can take the Desktop of the Raspberry Pi by installing the VNC

server to take GUI of raspberry Pi.

 The other option is taking the Remote session by using Putty manager

to work in the CLI mode of the Raspberry Pi

Let‟s download the Putty manager from the following link:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

To connect or to take the remote session of the Raspberry Pi 2 an IP address

must be known which can be provided by the DSL TP-Link home router as

the Raspberry Pi 2 is connected with a 5e Ethernet cable with the TPlink DSL

home router.

The IP is being dynamically provided by the DSL router and can be seen in

the figure below 6.1.1.1.

Figure 6.1.1.1: IP address assigned dynamically from the DSL Router

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Master Information Technology

42

After obtaining the IP address for the Raspberry Pi which is

192.168.178.105. The port should be set to 22 always as this method is used

to take the SSH session of the raspberry Pi. Let‟s open the Putty manager and

provide the IP address obtained from the router and press open button to get

the remote SSH access of the raspberry Pi CLI terminal. Which can be seen

in the figure 6.1.1.2 below.

Figure 6.1.1.2: Putty manager to take the remote of the Raspberry Pi CLI

Master Information Technology

43

After the successful connection from putty manager to the raspberry Pi a

black window will be open to provide the credentials of the Raspberry Pi

shown in figure 6.1.1.3 below.

Figure 6.1.1.3: Raspberry Pi login screen

After this step the next figure 6.1.1.4 below shows the credentials needed to

get the terminal access of the Raspberry pi which is by default:

Login: pi

Password: raspberry

Figure 6.1.1.4: Raspberry Pi login screen

Master Information Technology

44

Once the Pi has been started for the first time, a configuration window called

the "Setup Options" will emerge after entering the command

$ sudo raspi-config

After entering the above command the next a window will be opened which

can be seen in the figure 6.1.1.5 below

Figure 6.1.1.5: Raspberry Pi Setup Window

Now that the Setup Options window is active, next have to fix one thing.

After finishing each of the steps above, if it asks to restart the raspberry pi 2,

please follow the instructions. Selecting the first option in the list of the

setup window, than select the "Expand File system" option and press enter

button. To make this sure just make use of all the space available on the SD

card as a complete partition. All this solution is, expanding the operating

system to fit the whole space on the memory card which can be used as the

storage memory for the raspberry pi 2 and then start the system again.

Master Information Technology

45

6.2 Installation of Honeyd on Raspberry Pi 2

By default, the initial user is not a superuser, unlike other linux distributions,

where the user is a superuser by default. On the other hand, the user is

normally in the sudo-ers group. Thus, one has to be typing a lot of "sudo" in

front of the following commands. If one receives a message that the user

doesn‟t have the permission, just slap a sudo onto the front of the command

and it should work.

After following the instructions mentioned in the above section 6.1.1

The next thing is to start deploying the Honeyd software on the raspberry pi.

First the best thing is to do is to run the update on the raspberry pi by typing

the following command in the terminal

root@raspberripi:/# sudo apt-get update -y

The output of the above command can be seen into the following figure 6.2.1

Figure 6.2.1: Updating the packages in raspberry pi

Master Information Technology

46

The next step in installation of the Honeyd is the installation of a pre-

requisite for some network activities that Honeyd carries out. This can be

seen in the figure 6.2.2 below

root@raspberripi:/# sudo apt-get install libdnet -y

Figure 6.2.2: Installing the libdnet package

Libdnet provides a basic and moveable interface to numerous low-level

networking routines which includes [15].

 The manipulation of the network addresses

 network filtering

 It provides network manipulation and interface lookup

 The tunneling of IP protocol

 The transmission of IP packets with Ethernet frames

The next step is the installation of the pre-requisitte for HoneD itself which

can be seen in the following figure 6.2.3

Master Information Technology

47

The command used to install the pre-requisite is

root@raspberripi:/# sudo apt-get install libevent-dev libdumbnet-dev

libpcap-dev libpcre3-dev libedit-dev bison flex libtool automake

Figure 6.2.3: Installation of pre-requisite for Honyd

libevent: It is defined as an event notification library [16]

libdumbnet: A dumb, portable networking library. This package contains the

static library and the C header files [17]

Libpcap: It provides a transportable structure for low level network

monitoring. Libpcap can offer network statistics compilation, monitoring and

debugging [18]

Libpcre3-dev: This is a library of functions to carry usual expressions whose

grammar and semantics to which the language Perl 5 are alike as possible.

[19]

Libedit-dev: BSD library for editing lines and history [20]

The next step in installation is installing the git repository by the following

command so that the honeyd source files can be cloned from the git

repository

root@raspberripi:/# sudo apt-get install git –y

Master Information Technology

48

The output of the above command can be seen in the figure 6.2.4 below

Figure 6.2.4: Installing git

The next step after cloning the source files of the honeyd is to navigate to

/usr/src directory

Figure 6.2.5: Changing the directory

The next step is the step of cloning the Honeyd source files to the local

machine by means of Git by typing the subsequent command in the terminal

and the output can be seen into the figure 6.2.6 below.

Master Information Technology

49

sudo git clone https://github.com/DataSoft/Honeyd.git

Figure 6.2.6: Cloning the Honeyd to the local machine .e.i Raspberry Pi

After cloning the git repository to the raspberry pi navigate to the Honeyd

directory which can be seen in the figure 6.2.7 below

Figure 6.2.7: Navigating to the directory Honeyd

After getting into the Honeyd directory the next command needed to run is as

follows

root@raspberrypi:/usr/src/Honeyd# sudo ./autogen.sh

Master Information Technology

50

And the output of the above command can be seen in the figure 6.2.8 below

Figure 6.2.8: Running the autogen.sh script

 Autogen.sh: It offer automatic assembling system grounding and is

usually useful to projects that use GNU build system [21]

The next step is the configuration of the build parameters by typing the

following command into the terminal which can be seen in the Figure 6.2.9

below

root@raspberrypi:/usr/src/Honeyd# sudo ./configure

Master Information Technology

51

Figure 6.2.9: Configuring the build parameters

Type the following command in the terminal to make the installation

directories and the output is shown in the Figure 6.2.10 below

root@raspberrypi:/usr/src/Honeyd# sudo make

Master Information Technology

52

Figure 6.2.10: Screenshot of the make installation

After this step the next step is installing the Honeyd the command needed to

be typed in the terminal is as follows

root@raspberrypi:/usr/src/Honeyd# sudo make install

And the output can be seen in the Figure 6.2.11 below. In the figure below

there is a red mark down in the bottom in the screen shot is (honeyd) this

bold d is the indication that honeyd software is installed on the local

machine. After writing honey press tab and the d will automatically appear in

the end of the honey command.

Master Information Technology

53

Figure 6.2.11: Installation of Honeyd software

At this point one can be able to run HoneyD very easily and firmly.

Furthermore to get it up and running type the following command in the

terminal of the raspberry pi

root@raspberrypi:/usr/src/Honeyd# sudo honeyd –i eth0

Master Information Technology

54

This command will start the honeyd as a deamon listening on device‟s eth0

interface, by means of uncovered default settings.

The output of this command can be seen in the Figure 6.2.12 below

Figure 6.2.12: Honeyd starting as background process

The final point where one can have fully running Honeyd software is adding

up a new command as the last above command will not get the emulated

machines and networks noticed alone. For this purpose a package named

„farpd‟ is used for the purpose of directing the ARP requests to the HoneyD

daemon.

root@raspberrypi:/usr/src/Honeyd# sudo apt-get install farpd

Figure 6.2.13: Installation of „farpd‟

Master Information Technology

55

 Farpd- Fake ARP user space daemon [22]

6.2.1 Setting up the fake virtual windows machine using

HoneyD

For this setup the needed machines are one windows machine and one

raspberry pi which are using raspbian wheezy distribution of linux.

Raspberry pi is the machine that is running honeyd.

The idea can be seen in the Figure 6.2.1.1 below

Figure 6.2.1.1: Conceptual setup of the HoneyD Implementation

After the successful installation of honeyd on raspberry pi the next thing that

is needed to do is to create a configuration file. A honeyd configuration file is

Master Information Technology

56

the heart of the honeypot. The configuration file guides honeyd which type of

operating system to emulate, which ports to open and which type of services

should be executed etc. This configuration file can be changed to emulate all

sorts of setups but for right now let‟s focus on the conceptual setup which is a

simple setup and get that up and running.

 Below in figure 6.2.1.2 is the configuration file used to set up the virtual

machine

This configuration file can be created by any of the editor of choice here nano

is used as a text editor to create this configuration file.

Figure 6.2.1.2: Configuration file screen shot

The “create default” is a statement which informs the honeyd to drop traffic

unless and until it is defined in the configuration file. These lines are needed

when one let the honeypot to acquire an IP address via dhcp. Every time one

look “create” within the configuration file means creating a template for a

honeypot, so one can create as many honeypots as it is essential within the

honeyd.conf file. For this windows template let‟s define some important

Master Information Technology

57

things. First it is needed to set the “personality”. Personality means when

another device on the network connects to this honeypot it will emerge to be

a Windows XP Pro SP1 machine. This is done by emulating the network

stack fingerprints. The windows template contains four ports (22,135, 139,

and 445) which are kept open. These are common ports that are open on a

windows system, other than SSH port 22.

This “action reset” word plays a fundamental role in this configuration file

as it will not take traffic in account if it is not targeted at the open ports

mentioned in this configuration file. Here the “set windows ethernet”

command will set the MAC address for the virtual honeypot host. This will

be necessary if one is running the honeypot by means of dhcp. One can

plainly make up any MAC address of their choice, it is best to keep it nearly

similar to the physical MAC address of the linux machine on which the

honeypot is running.

At the end “dhcp” declaration instructs the windows template to obtain an IP

address from dhcp. Subsequent to the honeyd.config configuration file is

properly setup, the next thing is to launch the honeyd, below is the command

that is used when initially getting honeyd up and running.

Furthermore it is very important to launch the honeyd with the logging –l flag

so that all the connections that are made from the attacker on the honeypot

can be logged and stored in the log folder. This will be shown and discussed

in later section.

root@raspberrypi:/usr/src/Honeyd# sudo honeyd –d –f honeyd.conf

Figure 6.2.1.3: Launching screen shot of HoneyD

Master Information Technology

58

In the above command the -d is used so that it should not run in the

background (or should not run as a daemon process in Linux terminology).

This will allow for more verbose output so that it can be troubleshoot when

needed.

Running in this mode will also show the IP that was given to the honeypot

via dhcp.

Figure 6.2.1.4: Ping output from the Windows machine

In the figure 6.2.1.4 above it can be clearly seen that dhcp allowed the

honeypot the address of 192.168.178.100. The connectivity can tested from

the windows machine 192.168.178.101 by ping the honeypot.

6.2.2 Scanning the functionality of HoneyD by

performing Nmap Foot printing

At this point the honeyd is successfully deployed and tested. Let‟s perform a

scan through the well known scanning tool NMAP [10]. This will prove in

checking the availability of the fake system that is created by the Honeyd

software.

This test of scanning is performed by the separate Linux machine running on

the same network.

Master Information Technology

59

Figure 6.2.2.1: Screen shot of Honeyd launching with –l flag

In the above figure 6.2.2.1 it can be clearly seen that one additional line of

command is used that is the –l flag to stored the logs of the connection made

to the honeypot and can be stored on the separate folder “logs.log”

Master Information Technology

60

Figure 6.2.2.2: Nmap scanned output

In the figure 6.2.2.2 above the results that are presented are from the network

scanning application Nmap. In the above screen shot it can be clearly seen

that after scanning on the IP address 192.168.178.100 which is the IP address

of the HoneyD software and the fake virtual system deployed on the honeyD

is Windows XP professional SP1 with the common services and ports

opened.

6.2.3 Testing the functionality of HoneyD via Brute

Force Attack using Hydra

In this part of the report let‟s perform a brute force attack using hydra tool on

port 22 to test the functionality of the virtual host created on HoneyD and

analysing the logs created by HoneyD.

Master Information Technology

61

This test is performed on a separate Linux machine running on the same

network.

In the terminal of the Linux machine acting as an attacker machine the

command needed to perform the test is as follows

root@kali:/#hydra -v -l -pi -P Test.lst 192.168.178.100 ssh

Figure 6.2.3.1: Screenshot of the Attack

As it can been in the Figure 6.2.3.1 above that after detecting the open ports

on the fake host using Nmap tool the attack has been performed using

Hydra on the IP address 192.168.178.100 on port 22 which is the SSH port.

As the system created on HoneyD was a fake system it has no real existence

it‟s just a trap made to fool the attacker and made his efforts and time useless

who tries to attack this fake system.

The statement in the red marking is the proof that this system is nothing but a

fake host and the attack was unsuccessful and could not connect through SSH

on the destined IP address 192.168.178.100.

Master Information Technology

62

In the Figure 6.2.3.2 below the logs which were maintained by HoneyD

software can be analysed that were generated using the -l flag at the time of

HoneyD launching.

Figure 6.2.3.2: Logs created by HoneyD

In the screenshot above the logs are saved in logs.log folder under the home

directory.

After using the cat command the logs are displayed. These logs clearly show

that at which date and time the TCP connection for the attack was made. The

attacker source IP 192.168.178.103 , the attacker random source port 43466 ,

the destination IP address 192.168.178.100 which is the honeyD IP address

and the port destination port 22 which was mainly targeted by the attacker.

With these information the logs displays the type of the system which was

used by the attacker in this case it‟s a Linux 2.2 20-24 system. The S and E

parameters are presenting the establishment of the tries and the cessation of

the tries. After realising these logs the network administrator could block or

mark it as black list IP address in the firewall of the network to prevent the

network assets to be attacked or probed for the next time from this IP

address.

Master Information Technology

63

6.3 Installation of Kippo Honeypot on Raspberry

Pi 2

In this section let‟s look into the installation from the scratch to a fully

running honeypot to actually record the attacks. The honeypot that will be

implemented is kippo a straightforward SSH honeypot developed in Python

with quite a lot of promises. The setup applies to Raspberry Pi 2 but the

process on any other Ubuntu or Debian-based system will be the identical.

The first step required to start deploying the honeypot is the same as in the

previous section 6.2 to make the SSH connection through Putty by getting the

IP address 192.168.178.102 from the DSL router‟s Dhcp Client List.

After the update and upgrading of the newly installed raspberry pi system lets

start the main code of lines to bring the kippo honeypot in running mode.

Kippo by default “listens” on port 2222, which is all right for testing causes,

but this particularly reduces the probability to trace any attacks, because the

common computerized network tools that are used by attacker targets the

default SSH port 22. Therefore, it is good to allow Kippo listen on port 22.

For this one must first alter the port normally the SSH server has, which is

22. To be able to connect back properly with the system port should be set to

2222. So let‟s change the configuration file of the kippo SSH server by

simply typing the following command in the terminal of raspberry pi.

root@raspberry pi:/# sudo nano /etc/ssh/sshd_config

The changed configuration file can be seen in the figure 6.3.1 below

Master Information Technology

64

Figure 6.3.1: Snapshot of the configuration file

In the above screen shot the port 22 is changed to port 2222 so that the SSH

port 22 will stay free to attract the attacker.

After doing so the next command needed to restart the server is as follows

and the output can be seen in the figure 6.3.2 below.

root@raspberry pi:/# sudo /etc/init.d/ssh restart

Figure 6.3.2: Restarting the server

After running this command disconnects the server first and then connects it

again through putty on the new port which can be seen in the figure 6.3.3

below.

Master Information Technology

65

Figure 6.3.3: Snapshot with the new port

The next step required is the installation of necessary software packages for

kippo server.

For this type the following command in the terminal window

root@raspberrypi:# sudo apt-get install python-dev openssl python-

openssl python-pyasn1 python-twisted

 python-dev: Header files and a static library for python. [23]

 openssl: It‟s a general purpose cryptography library that generates

RSA keys and provides the implementation of the open SSL and TLS.

[24]

 python-openssl: A python covering for the open ssl library. [25]

Master Information Technology

66

 python-pyasn1: This is an implementation of ASN.1 types and codec

in Python programming language.[26]

 python-twisted: A special structure for python language with

specially emphasized on event driven network programming. [27]

The next point includes the downloading of kippo for this here git is used to

download it and this is done with the following command.

root@raspberry pi:# sudo apt-get install git

The output can be seen in the figure 6.3.4 below

Figure 6.3.4: Screenshot for installing git

There is one more issue in using port 22 which is a problem and it is that in

Linux just the root user is granted to use the well known ports which are less

than 1024 and one should not run Kippo as a root for the sake of security. To

execute the honeypot on port 22 the easiest way is via the utility authbind.

To use the authbind utility one must to install it using the apt-get repository

by typing the following command.

root@raspberry pi:/# sudo apt-get install authbind

The output screen shot can be seen in the figure 6.3.5 below:

Master Information Technology

67

Figure 6.3.5: Screen shot of the authbind

Before moving further it is important to create a non-root user to made kippo

run by typing the following command

root@raspberry pi:/# sudo adduser kippo

The output can be seen in the figure 6.3.6 below.

Figure 6.3.6: Screen shot for adding the new user

For creating the new non-root user it asks about the new UNIX password

which is 123456. The password is made very easy so that the system can be

compromise easily as it is a decoy system.

In the next figure 6.3.7 the server asks about the basic information for

creating the new user which should be left as default value by just pressing

the Enter button.

Master Information Technology

68

Figure 6.3.7: Screen shot of the user values

The next thing that should be done is adding this new user in the list of users

that has access to use Sudo. Type the following command in the terminal

root@raspberry pi:/# sudo nano visudo

This above line of command will open the file where it is needed to add the

kippo ALL= (ALL: ALL) ALL to have sudo access to the new user. In

figure 6.3.8 it can be seen.

Master Information Technology

69

Figure 6.3.8: Screenshot for sudo user

After the typing the above lines under the root user one is needed to finish the

steps by providing the commands below.

root@raspberry pi: /# touch /etc/authbind/byport/22

root@raspberry pi: /# chown kippo:kippo /etc/authbind/byport/22

root@raspberry pi: /# chmod 777 /etc/authbind/byport/22

At this point it‟s important to move into as kippo user and navigate to /home

directory and clone the Git which can be seen in the figure 6.3.9 below.

Master Information Technology

70

Figure 6.3.9: Screenshot for git cloning

After cloning it is important to copy the kippo.cfg.dist to kippo.cfg file by

typing the following command in to terminal and then open the kippo.cfg file

in nano editor and change the port from 2222 to 22.

kippo@raspberrypi ~ $ sudo nano kippo.cfg

The following figure 6.3.10 will be appeared on the terminal screen in which

the ports has to be changed with the hostname to File Server form the default

svr03 to attract the attacker.

Master Information Technology

71

Figure 6.3.10: Screen shot of kippo.cfg file

At last it is needed to edit the kippo start script by typing the command

kipo@raspberrypi ~$ sudo nano start.sh

To change the lines marked in red in the figure 6.3.11 below. In this just put

the hash sign (#) in the start of the above command and add the next

command.

Master Information Technology

72

Figure 6.3.11: Screenshot of start.sh

Let‟s check that kippo is running on port 22 or 2222 by typing the following

command into the terminal and the output can be seen in figure 6.3.12.

kippo@raspberrypi ~ /kippo$ sudo netstat -antp

Figure 6.3.12: Screenshot of netstat output

Master Information Technology

73

As it can be seen in the screenshot above that there is no line found in which

kippo server is running on the port 22. For this it is important to run the kippo

server on port 22 by typing the following command into the terminal

kippo@raspberrypi ~ /kippo$./start.sh

Figure 6.3.13: Kippo ruuning in the background

After running the kippo server lets one again check the status using netstat –

antp command in the figure 6.3.14 below in which it is clearly seen that the

python script which is actually kippo server is listening on port 22.

Figure 6.3.14: Screenshot of netstat output

Master Information Technology

74

6.3.1 Integrating MySQL Database with Kippo

At this point kippo can log all the attacks into the Log directory and can

show all the attacks session on the terminal.

To see the logs in a more controlled way it‟s significant to store the logs in

the databases. For this here MySql database is used to see the logs into proper

format and for easiness. For installing MySql server into kippo the following

command should be run as root user.

root@raspberry pi: /#apt-get install python-mysqldb mysql-server

Figure 6.3.1.1: Screenshot for installing MySQL

After the above step the window for Mysql database password for root user

will be appeared on the terminal screen which can be seen in the next figure

6.3.1.2 below.

Figure 6.3.1.2: Screenshot for MySQL root user

Master Information Technology

75

The password set for this is kippo123456789 although the password must be

set a bit complex.

After installing and setting up the password the next step is to enter into the

mysql and create the database under the name kippo by typing the following

command

root@raspberry pi: /#mysql –u root –p

Figure 6.3.1.3: Screenshot for creating database for Kippo

The database needs to be created only once, but one must select it for use

each time one begin a mysql session. One can do this by issuing a

USE statement. Then integrate it with the source file mysql.sql so that it can

extract the tables and fields for the kippo database from the script mysql.sql

automatically, but first it should be made executable before integrating it.

The command needed is to be executed under the kippo user under the

/home/kippo/kippo directory.

kippo@raspberrypi ~/kippo $ mysql –u kippo –p

mysql> USE kippo;

mysql> source ./dot/sql/mysql.sql

mysql> exit

The output can be seen into the figure 6.3.1.4 below.

https://dev.mysql.com/doc/refman/5.5/en/mysql.html
https://dev.mysql.com/doc/refman/5.5/en/use.html

Master Information Technology

76

Figure 6.3.1.4: Screenshot of selecting kippo as a database

At this stage re-login as kippo user into the system, but first it is important

kill the kippo in order to change the configurations and start it again. This can

be achieve by running the following command into the terminal

kippo@raspberrypi ~/kippo $ ps x

Look for a line like this:

14974 ? S 0:04 /usr/bin/python /usr/bin/python/twiested -y kippo.tac -1

log/kippo.log --pid

Master Information Technology

77

In the above line the first column is the process ID and this ID is important to

kill the process. This can be seen done by typing the command in the

terminal and can be seen in the figure 6.3.1.5 below.

kippo@raspberrypi ~/kippo $ Kill 14974

Figure 6.3.1.5: Screenshot of killing kippo process

The next step is the step of configuration of the database into the kippo.cfg

file by the following command into the terminal.

kippo@raspberrypi ~/kippo $ sudo nano kippo.cfg

This will open the window in which the following changes are needed to run

the MySQL database which can be seen in the figure 6.3.1.6 below.

Figure 6.3.1.6: Screenshot of Database configuration

Master Information Technology

78

6.3.2 Creating the Fake File System using fs.pickle

Here it is important to setup the fake file system facility provided by the

Kippo honeypot. One can create a full fake file system that will attract the

attacker and to fool him that he is successful and he got the access to the real

production system of the company.

For this type the following command into the terminal to get into the

fs.pickle directory of the kippo server.

kippo@raspberrypi~/kippo/utils$ sudo /home/kippo/kippo/utils/fsctl.py

/home/kippo/kippo/fs.pickle

This will open the new window where one can make a complete fake file

system this can be seen in the figure 6.3.2.1 below.

Figure 6.3.2.1: Screenshot of the fake file system in fs.pickle

All these above directories shown in the figure 6.3.2.1 are created manually

and they are nothing but the fake directories that has no values. The attacker

will see these directories after entering into the system and can navigate in

between them can harm them by deleting.

Master Information Technology

79

With this functionality of kippo , kippo provides its own fake directories that

are also to fool the attackers who can cat different directories and can delete

them like passwd under the /etc and /proc directories.

In addition kippo supports a facility to add new users and their passwords

through which the intruder or attacker can get the access into the fake kippo

server. To do this navigate to data directory under the /kippo user and then

navigate to userdb.txt file.

This can be done by typing the following command into the terminal

kippo@raspberrypi ~/kippo/data $sudo nano userdb.txt

Here let‟s create a new user and password for the kippo server.

Here the user is: ovais

And the password is: ovais123

It is shown in the figure 6.3.2.2 below.

Figure 6.3.2.2: Screenshot for new user and password

After creating the new user and configuring the kippo.cfg file for the

database settings let‟s start the kippo server again in which the mysql server

will be also started that is shown in the next figure 6.3.2.3 below.

Figure 6.3.2.3: Screenshot for loading mysql and starting kippo

Master Information Technology

80

6.3.3 Testing the functionality of Kippo via Brute Force

Attack using Medusa from Attacker Machine

In the figure 6.3.3.1 the conceptual scenario is shown of the attack. The

Kippo server is running on raspberry Pi 2 on the IP address 192.168.178.102

and listening on port 22. The attacker machine is a also another Linux

machine who‟s IP address is 192.168.178.103 and the DSL router is acting as

a gateway for both of the machines in the LAN.

Figure 6.3.3: Conceptual diagram of brute force attack on kippo

In this test the first thing needs to do is to scan the network from a separate

Linux machine for the available systems and the open ports on the same

LAN. As here it is known that the IP address on which Kippo server is

running is 192.168.178.102 with some open ports. The scanning will be

performed through the Nmap tool. The command needed to run this foot

printing is as follows and the result can be seen in the figure 6.3.3.1 below.

root@kali:~# nmap -S -P0 -A -v -p 22, 80, 3302, 21 192.168.178.102

Master Information Technology

81

Figure 6.3.3.1: Screenshot of Nmap foot printing

In the above figure 6.3.3.1 it is clearly seen that the port 22 is open which is

the SSH port on which the Kippo server is running.

After scanning the kippo server lets perform an attack from the Linux

machine having IP address 192.168.178.103. This attack has been performed

by one of the hacking tool Medusa often used by hackers to gain the access

of SSH servers through brute forcing.

Master Information Technology

82

The command used to hack the kippo server needs some parameters to hack

the server which includes the target IP address which is 192.168.178.102, the

user.lst, pass.lst and the protocol.

 The command needed to perform the hack is as follows.

root@kali~:/Desktop# medusa -U user.lst -P pass.lst -h 192.168.178.102

-M ssh

Figure 6.3.3.2: Screenshot of the attack from Linux machine

In the above figure 6.3.3.2 it is seen that after some unsuccessful tries of the

attack the attacker got success in finding the correct username and the

password of the kippo server. The default username of the kippo server is

root and the default password set was 123456.

In the next part the attacker will get into the fake kippo server by providing

the correct username root and password 123456 found by the successful

brute force attack.

The command needed to get into the system is as follows

Master Information Technology

83

root@kali~:/Desktop# ssh root@192.168.178.102

Figure 6.3.3.3: Screenshot of taking the access of kippo server

In the above figure 6.3.3.3 it is shown that the attacker is entered into the

kippo server. Here the attacker or intruder finds some useful directories

which is actually the fake file system. The intruder will navigate between

different directories thinking that it‟s a real server but it is a fake system to

fool the attacker. The attacker can delete any of the files and directories but

they will be not deleted as they don‟t have the real existence.

The attacker can cat the passwd and the result that will be available to the

attacker which is a fake file generated by kippo‟s honeyfs directory is shown

in the figure 6.3.3.4 below.

Master Information Technology

84

Figure 6.3.3.4: Screenshot of fake file system

6.3.4 Logging Feature of Kippo Server

The logs that are generated by the kippo are stored under the logs directory of

the kippo server. For a better understanding of the logs, previously MySQL

database was integrated with kippo server. To access the logs through

MySQL the command needed is as follows.

kippo@raspberrypi ~/kippo $ mysql -u kippo -p

Where this enters into mysql terminal, to access the database under the name

of kippo the following command is needed

mysql > USE kippo;

Use is a MySQL query used to change to the database selected in this case it

is kippo. This can be seen in the figure 6.3.4.1 below.

Master Information Technology

85

Figure 6.3.4.1: Screenshot of accessing the MySQL database

After accessing the kippo data base lets select the field sessions to show the

attacker IP address which is 192.168.178.103 the start time of the attack

session and the end time of the attack session. This is also presented in figure

6.3.4.2 below.

This is done by using the MySQL query as follows

mysql > SELECT * FROM sessions;

Figure 6.3.4.2: Screenshot of the sessions log created

The next thing to look into the logs is the auth field in the kippo database,

this field of log will help to see the attacker hacking activity means which

successful usernames and password he tried and at which time stamp.

This is done by using the MySQL query as follows

Master Information Technology

86

mysql > SELECT * FROM auth;

The output of this field can be seen in the figure 6.3.4.3 below.

Figure 6.3.4.3: Screenshot of auth log created

The last thing that is very important to mention about kippo is its real-time

sessions replay feature. Every time when then attacker gets into the server

and look around into the system, whatever he does all his activities are

recorded as a movie even a single word typing of the command is recorded

which can be played to analyse the activities performed by the attacker on the

kippo ssh server.

The logs of the replay sessions are stored under the /log/tty/ directory

Figure 6.3.4.4: Screenshot for replay logs of the attacker sessions

Master Information Technology

87

In the above figure 6.3.4.4 there are two logs that are marked with different

colours. The log marked with red colour is the log in which the attacker

navigates around the fake system and deleted some of the directories in order

to damage the system as he thoughts it‟s a real system, but with the new

session again the new attacker finds the fake system is still on its position

with the same fake file system and directories

The log marked in blue colour is the fresh session made by the attacker and

where he founds that nothing has been deleted everything is back there as it

was there before deleting and damaging.

To see the replay of the attacker session type the following command into the

terminal

kippo@raspberrypi~/kippo/log/tty$ /home/kippo/kippo/utils/playlog.py

20160225-133434-3400.log

The above command will play the replay of the attacker session on the kippo

terminal window and one can see the exact activities what the attacker did

into the fake server step by step.

6.4 Installation of Glastopf Honeypot on

Raspberry Pi 2

The initial steps are the same as in the above sections 6.2 and 6.3 for setting

up the pi and taking the remote connection via putty manager. The remote

connection process on the IP address 192.168.178.102 can be seen in the

figure 6.4.1 below.

Master Information Technology

88

Figure 6.4.1: Screenshot of putty manager

The login and the password is same as by default comes with raspberry pi 2.

After setting up the raspberry pi the first step in the deployment of glastopf is

installing the dependencies of the glastopf which are raspberry pi platform

dependent.

root@raspberrypi:/# sudo apt-get install python python-openssl

python-gevent libevent-dev build-essential make

 python: python language required for glastopf

 python-openssl: A python wrapper around the open ssl library. [25]

 python-gevent: A library used to offer different co routine events.

[28]

Master Information Technology

89

 libevent-dev: This describes the Asynchronous event notification

library. [29]

 build-essential: This is an orientation necessary to compile all the

packages in a Debian distribution.

The result can be seen in the figure 6.4.2 below.

Figure 6.4.2: Screenshot of glastopf packages installation 1

The next packages needed are installed by the following command into the

terminal window

root@raspberrypi:/# sudo apt-get install python-argparse python-

chardet paython-requests python-sqlalchemy python-lxml

 python-argparse: It is a parser for command line based arguments

and sub-commands. [30]

 python-chardet: A universal encoder who detects python 2 and 3.

[31]

 python-requests: python-requests is nothing than just a Non-GMO

HTTP package for python. [32]

Master Information Technology

90

 python-sqlalchemy: It basically maps the relational data for Sql with

full flexibility. [33]

 python-lxml: A good library used to process the Xml and Html for

python. [34]

The results can be seen in the figure 6.4.3below.

Figure 6.4.3: screenshot of glastopf package installation 2

The next packages needed are installed by the following command into the

terminal window which can be also seen in the figure 6.4.4.

root@raspberrypi:/# sudo apt-get install python-beautifulsoup python-

pip paython-dev python-setuptools

 python-beautifulsoup: It‟s a python library required for extracting

data out of HTML and XML file formats. [35]

 python-pip: Pip is a package management library needed to deploy

packages written in python. [36]

 python-dev: It contains header files, and static library and the tools

for structuring python modules. [37]

Master Information Technology

91

 python-setuptools: It is a package expansion process library intended

to facilitate the wrapping of python projects by advancing the python

standard library. [38]

Figure 6.4.4: Screenshot of glastopf packages installation 3

root@raspberrypi:/# sudo apt-get install g++ git php5-cli php5-dev

liblapack-dev gfortran cython

 g++: It‟s a Linux/Unix based C++ compiler generally operated

through the command line. [39]

 git: Git is a broadly used management system source code for the

development of software. [40]

 php5-cli: Php5-cli is an abbreviation for PHP Command Line

Interface used to construct individual graphical applications using

CLI. [41]

 php5-dev: Development files for php5 module. [42]

 liblapack-dev: A package of linear algebra routines (3). [43]

Master Information Technology

92

 gfortran: It‟s a GNU Fortran language compiler which is an element

of GCC. [44]

 cython: Cython is an idealistic static compiler for cython

programming language. It builds C extensions for python. [45]

Figure 6.4.5: Screenshot of glastopf packages installation 4

root@raspberrypi:/# sudo apt-get install libxml2-dev libxslt-dev

 libxml2-dev: The library of GNOME Xml can be Developed with the

help of this development file. [46]

 libxslt-dev: A library used for the transformation of XML style

sheets. [47]

The result can be seen in the figure 6.4.6 below.

Master Information Technology

93

Figure 6.4.6: Screenshot of glastopf packages installation 5

root@raspberrypi:/# sudo apt-get install libmysqlclient-dev

 libmysqlclient: Binary wrap up for MySQL database expansion files.

[48]

The output of the above command can be seen in the figure 6.4.7 below.

Master Information Technology

94

Figure 6.4.7: Screenshot of glastopf packages installation 6

The final command needed to install the dependencies is as follows.

root@raspberrypi:/# sudo pip install --upgrade distribute

The output can be seen in the following figure 6.4.8 below.

Master Information Technology

95

Figure 6.4.8: Screenshot of glastopf packages installation 7

6.4.1 Install and Configure the PHP sandbox

PHP sandbox executes external PHP scripts in a separate process. It runs

PHP CLI version to carry out a given external scripts as a detach process so if

it is unsuccessful the called script does not also fail. [49]

Here it can be downloading from the git. First navigate from root to /opt

directory the run the following command.

root@raspberrypi:/opt#git clone git://github.com/mushorg/BFR.git

The output can be seen in the figure 6.4.1.1 below.

Figure 6.4.1.1: Screenshot of php-sandbox cloning from git

Master Information Technology

96

To verify that php sandbox has been successfully installed lets navigate to

BFR directory and then run the following command.

root@raspberrypi:/opt/BFR# sudo phpize

The output of the above can be seen in the figure 6.4.1.2 below.

Figure 6.4.1.2: Screenshot of php sandbox installation

The next step is to configure and enable BFR which is achieved by th

following command.

root@raspberrypi:/opt/BFR# sudo ./configure --enable-bfr

The output is presented in the following figure 6.4.1.3.

Figure 6.4.1.3: Screenshot of configuration and enabling BFR

Master Information Technology

97

Run and install make in the next step by running the following command.

root@raspberrypi:/opt/BFR# sudo make && make install

The result can be seen in the following figure 6.4.1.4

Figure 6.4.1.4: Screenshot of running make and installing make

After running the make and installing make the important thing to do is to

copy the search path for bfr.so and to add into php.ini file which is located

in /etc/php5/cli directory. Php.ini file can be opened and edited using nano

editor by typing the following command.

Search Path: zend_extension = /usr/lib/php5/20100525+lfs/bfr.so

root@raspberrypi:/etc/php5/cli# sudo nano php.ini

This will open a window which can be seen in the figure 6.4.1.5 below.

Master Information Technology

98

Figure 6.4.1.5: Adding the path to php.ini file

Checking the path is successfully added can be tested by the following

command and the output is shown in the figure 6.4.1.6 below.

root@raspberrypi:/etc/php5/cli# php --version

Figure 6.4.1.6: Screenshot of php zend engine installation

The next step is the installation of pylibinjection python wrapper for the

libinjection library which is downloaded via git by the subsequent line.

/opt# sudo git clonehttps://github.com/client9/libinjection.git

The output can be seen in the figure 6.4.1.7 below.

Master Information Technology

99

Figure 6.4.1.7: Screenshot of libinjection cloning from git

/opt# sudo git clonehttps://github.com/mushorg/pylibinjection.git

The output is presented in the figure 6.4.1.8 below.

Figure 6.4.1.8: Screenshot of pylibinjection cloning from git

The next command needed to build the setup.py package can be typed by

navigating to the /pylibinjection directory under the /opt directory

root@raspberrypi:/opt/libinjection# sudo python setup.py build

The output can be seen in the following figure 6.4.1.9 below.

Master Information Technology

100

Figure 6.4.1.9: Screenshot of building python setup.py

After all the required dependencies and installation the next thing to do is to

install the glastopf which is done by cloning from the git by typing the

following command.

/opt# sudo git clone https://github.com/mushorg/glastopf.git

The output is displayed below in figure 6.4.1.10.

Figure 6.4.1.10: Screenshot of cloning glastopf from git

Master Information Technology

101

The last step in installation of glastopf is to install the python package called

setup.py.

root@raspberrypi:/opt/libinjection# sudo python setup.py install

Output of the above command is presented in figure 6.4.1.11 below

Figure 6.4.1.11: Screenshot of python setup.py install

After the clean installation of glastopf web application honeypot one has to

prepare the glastopf environment by configuring it.

For this navigate to /opt directory and make a new directory under the name

of myhoneypot and run the following command into the terminal.

Master Information Technology

102

Figure 6.4.1.12: Screenshot of glastopf-runner

This above command will create a new default glastopf.cfg file in

/myhoneypot directory which can be customized as per requirement.

The next thing is to open the glastopf.cfg file and change the IP address from

0.0.0.0 to 192.168.178.102. This can be done by opening the file via nano

editor

root@raspberrypi:/opt/myhoneypot#Sudo nano glastopf.cfg

A window will be opened which can be seen in the figure below 6.4.1.13

below.

Figure 6.4.1.13: Screenshot of glastopf.cfg file

Master Information Technology

103

After the above step finally run the glasstopf-runner command again to start

the glastopf on the IP address 192.168.178.102 set in the glastopf.cfg file.

The output for glastopf running can be seen in the figure 6.4.1.14 below.

Figure 6.4.1.14: Screenshot of glastopf web server running

After running the glastopf-ruuner command one can open the webpage by

providing the IP on which the glastopf is running with the port 8080. The

screenshot can be seen in the figure 6.4.1.15 below.

Figure 6.4.1.15: Screenshot of the webpage running on glastopf

Master Information Technology

104

After opening the webpage, the logs on the glastopf window starts appearing

this can be seen in the figure 6.4.1.16 below.

Figure 6.4.1.16: Screenshot of glastopf

The last step is to install the SQLITE3 database to view the complete logs for

the attacks made towards the glastopf web server honeypot.

For this the command needed to install the database is as follows

root@raspberrypi:/opt/myhoneypot/# sudo apt-get install sqlite3

The output can be seen in the figure 6.4.1.17 below.

Figure 6.4.1.17: Screenshot for installation of sqlite3

Master Information Technology

105

To access the database after the installation the command needed is as

follows

/opt/myhoneypot/#sqlite3/opt/myhoneypot/db/glastopf.db

The output of the above command and the tables in the database including

the important events that are needed to note can be seen in the following

figure 6.4.1.18 below.

Figure 6.4.1.18: Screenshot of the database fields and events

6.4.2 Testing the Functionality of Glastopf Honeypot

through a LFI attack from a Linux Machine

This test is to show the functionality of the glastopf web server which is

achieved with the help of a python script provided by the ENISA (European

Union Agency for Network and Information Security). [50]

The script can be found under the following link below.

https://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_

CERT_Exercise_Handbook.pdf

https://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_CERT_Exercise_Handbook.pdf
https://www.enisa.europa.eu/activities/cert/support/exercise/files/Honeypots_CERT_Exercise_Handbook.pdf

Master Information Technology

106

This test can be explained with the conceptual figure 6.4.2.1 below.

Figure 6.4.2.1: Conceptual Figure of the Attack scenario

The attacker starts the attack by executing the python script from the separate

Linux machine under the same LAN which can be seen into the next figure

6.4.2.2 below.

Figure 6.4.2.2: Screenshot of LFI attack from attacker machine

Master Information Technology

107

In the above screenshot it can be seen that the attacker attacks the glastopf

web server which is running on the IP address 192.168.178.102:8080. It is a

local file inclusion attack for illegally accessing the /etc/passwd file.

In the figure 6.4.2.3 below that can be accessed by typing the command

below

root@raspberrypi:/opt/myhoneypot/logs/# tail glastopf.logs

In the screenshot of the logs it can be seen that the attack was attempted by

the IP address 192.168.178.103 which is the IP address of the attacker

machine. The method used is GET and the file which the attacker wants to

steal is the passwd under /etc directory.

Figure 6.4.2.3: Screenshot of the glastopf logs

In the figure 6.4.2.4 underneath there are the real time logs that can be seen

on the glastopf window on real time. These logs are also important as they

provide the information that what the attacker wants from the attack and what

kind of file glastopf has to emulate in order to fool the attacker by providing

the fake file under the directory that is marked as red in the figure 6.4.2.4

below.

 /opt/myhoneypot/data/virtualdocs/linux/etc/passwd

Figure 6.4.2.4: Screenshot of glastopf window

Master Information Technology

108

The figure 6.4.2.5 below is the emulated output that the attacker will see after

the successful attack.

Figure 6.4.2.5: Screenshot of /etc/passwd file accessed by the attacker

The final thing that has to be noted in this type of attack is to identify that

what type of attack it was. To have a better idea one can see by the help of

the sqlite3 database. To access the database one has to type the following

command into the terminal.

sqlite>select id, time, source, request_url, pattern from events;

In the figure 6.4.2.6 below one can see that in the end of the log marked

under the red is printed “lfi” this indicates that it‟s a local file attack on the

web server honeypot from the attacker IP address 192.168.178.103.

Figure 6.4.2.6: Screenshot for the analysis of logs in sqlite3 database

The further logs can be accessed by the following command.

Master Information Technology

109

sqlite> select request_raw, filename, version, sensorid, pattern from

events;

The following figure 6.4.2.7 displays the information of the host IP address

192.168.178.102 which is the IP of glastopf web server honeypot. Including

the User-Agent used in the attack and the version used which are the Python-

urllib/2.7 and the type of attack which is “lfi”

Figure 6.4.2.7: Screenshot of further analysis of the logs in sqlite3 database

Master Information Technology

110

7 Summary and Future

Perspectives

This chapter describes brief summary for all the tests of the honeypots

solutions. In addition, there will be proposal of the future perspectives,

possible ways to extend the existing test cases and suggestion for

improvements.

7.1 Summary

The whole analysis and deployment of the honeypot solutions on the single

board computers can be summarized in the following way.

The first part includes the installation and testing of the virtual honeypot

called as HoneyD. HoneyD is able to create 65535 virtual hosts on a single

physical machine to fool the attackers with different personalities. These

personalities act as a whole production system which in actually are the fake

decoy systems placed on the network of the company to fool the attackers.

The functionality test made to check the proper functionality of the honeypot

was deployment of the honeypot on the raspberry pi 2 and perform a brute

force attack by the help of hacking tool hydra to hack the virtual host

honeypot. As the attack was made to the HoneyD honeypot the honeypot

started to log the activities and information received by the HoneyD

honeypot. The functionality also includes that it is not possible to hack a fake

system as it has no real existence. This will waste the time of the attacker in

probing and attacking the system and on the same time gaining the

information of the attacker to block him for the next time to attack.

The second part includes the installation and testing the functionality of a

Kippo SSH server honeypot. Kippo server was deployed on Raspberri Pi 2

using Wheezy. To check the functionality a brute force attack was made by

the help of a hacking tool Medusa. The kippo SSH honeypot was listening on

port 22 which was scanned by the Nmap tool. Later a successful brute force

attack was made to hack the SSH server and after gaining the access of the

SSH server the functionality was shown by looking into the logs of the kippo

SSH server.

Master Information Technology

111

One more functionality of the kippo SSH server is that it stores the replay

logs of the remote session of the attacker‟s activity command to command

which can be later analysed to figure out the interests displayed by the

attacker into the fake kippo SSH server.

The third and the last part include the installation and deployment of the

Glastopf web server honeypot on Raspberry Pi 2 using the wheezy image.

The functionality of the Glastopf includes that it serves some emulated

vulnerabilities to the attacks made towards it. It stores different types of

attacks which include SQL injection, Remote File Inclusion, Local File

inclusion and provides the expected emulated result to the attacker to fool

him.

The functionality test made was a brute force Local File Inclusion attack with

the help of a python script made to perform a LFI attack. This attack was able

to extract the credentials needed to hack the web server. Glastopf is

intelligent enough to figure out the type of the attack with the type of the

method used to perform the attack and provides the emulated result that was

expected by the attacker.

The conclusion of this master thesis is all the three honeypot solutions used

are well implemented on the single board computers and fully tested with the

full functionalities. All the three honeypot solutions can play a good role in

making the IT security more secure.

7.2 Future perspectives

This analysis and functionality testing is just the ground towards honey

potting. Many things can be done with these honeypot solutions to make

them more efficient and attractive to the hackers to attack.

Network security is a lot to do work where as honeypots is one of the

solutions to make the network more secure.

The virtual honeypot discussed in this master thesis can be a more powerful

and attractive tool. One can simulates HoneyD for arbitrary routing

topologies which mean it can be configure for latency and packet loss.

Master Information Technology

112

Asymmetric routing can be done on HoneyD and integration of physical

machines into topology is also possible.

Subsystem virtualization can run real UNIX applications under the virtual

HoneyD IP addresses that can be a web server and ftp server etc. Using GRE

tunnelling, HoneyD allows the making of distributed setups that let the

HoneyD to extent to larger networks. It also grants virtual machines to be

extend transversely separate addresses as GRE tunnel.

The future work which can be done in the kippo honeypot is one can monitor

kippo with custom made scripts. Which means a user can see the graphical

statistics from kippo by using kippo-graph utility. Kippo graph is a complete

featured tool to demonstrate statistics in a kippo honeypot.

The next future work which can be done in the kippo honeypot is using a

kippo-malware. This tool is just a python script that would store every

infected file as a URLs in a kippo honeypot folder. This can be useful in

places where one has missing their files or something incredible happened to

the server but one have still their database intact.

One more thing can be done in future is in kippo a tool can be integrated

named as pipal. This tool can be used for quick and easy analysis of

password‟s tendency across the manually created passwords by the human.

Pipal is a password examination tool that gives pertinent statistics of

passwords give a password dump. One can use this tool to examine the

passwords gathered by kippo.

The last part of this master thesis is the glastopf honeypot. The future job

which can be completed in glastopf to formulate it more striking and

industrious is by using its abilities to detect additional types of attacks.

Different types of network attacks can be performed on glastopf which

includes SQL injection, Password Guessing, Cross-Site scripting and DoS

attacks.

As the glastopf has a limited capability of responding to specific type of

attacks, so by using this functionality one can provoke the attacker to send

more information.

One can modify the glastopf to stores the statistics through irc channels or

tweeter. One can advertise the vulnerable web pages, through indexing in

Google for attracting the potential attackers.

113

8 Abbreviations

A

ARP Address Resolution Protocol

B

BFR Better Function Replacer

C

CLI Command Line Interface

COTS Commercial Off-The-Shelf

D

DHCP Dynamic Host Control Protocol

DSL Digital Subscriber Line

DNS Domain Name Service

DMZ Demilitarize Zone

DoS Denial of Service

E

ENISA European Union Agency for Network and Information

Security

F

FARPD Fake ARP User Space Daemon

FIN Finish Flag

Master Information Technology

114

G

GUI Graphical User Interface

GCD Greatest Common Deviser

GRE Generic Routing Encapsulation

H

HDMI High Definition Multimedia Interface

HTTP Hyper Text Transfer Protocol

I

IP Internet Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Message Protocol

IDS Intrusion Detection System

ISN Initial Sequence Number

IETF Internet Engineering Task Force

IT Information Technology

L

LED Light Emitting Diode

LAN Local Area Network

M

MAC Media Access Control

Master Information Technology

115

N

NAT Network Address Translation

NIDS Network Intrusion Detection System

NIC Network Interface Card

O

OSI Open Systems Interconnection

P

POST Power On Self Test

R

RSA Rivest Shamir Adleman

S

SSL Secure Socket Layer

SQL Structured Query Language

SYN Synchronization Flag

SSH Secure Shell

T

TLS Transport Layer Security

TCP Transmission Control Protocol

U

Master Information Technology

116

UDP User Datagram Protocol

URL Uniform Resource Locator

Bibliography

[1] Lance Spitzner. Honeypot: Catching the Insider 2003

https://www.acsac.org/2003/papers/spitzner.pdf

 [Accessed on 10-Nov-2015]

[2] Virtual Honeypots: From Botnet Tracking to Intrusion Detection 2007

 http://books.gigatux.nl/mirror/honeypot/final/ch01lev1sec2.html

 [Accessed on 15-Nov-2015]

[3] http://image.slidesharecdn.com/honeypots-140921055835-

phpapp02/95/honeypots-6-638.jpg?cb=1411279481

 [Accessed on 16-Feb-2016]

[4] http://image.slidesharecdn.com/honeypots-140921055835-

phpapp02/95/honeypots-7-638.jpg?cb=1411279481

 [Accessed on 16-Feb-2016]

[5] http://resources.infosecinstitute.com/tracking-attackers-honeypot-part-

2-kippo/

 [Accessed on 10-Dec-2015]

[6] A dynamic, low-interaction web application honeypot: Lukas Rist

2010

https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-

Final_v1.pdf

[Accessed on 11-Dec-2015]

https://www.acsac.org/2003/papers/spitzner.pdf
http://books.gigatux.nl/mirror/honeypot/final/ch01lev1sec2.html
http://image.slidesharecdn.com/honeypots-140921055835-phpapp02/95/honeypots-6-638.jpg?cb=1411279481
http://image.slidesharecdn.com/honeypots-140921055835-phpapp02/95/honeypots-6-638.jpg?cb=1411279481
http://image.slidesharecdn.com/honeypots-140921055835-phpapp02/95/honeypots-7-638.jpg?cb=1411279481
http://image.slidesharecdn.com/honeypots-140921055835-phpapp02/95/honeypots-7-638.jpg?cb=1411279481
http://resources.infosecinstitute.com/tracking-attackers-honeypot-part-2-kippo/
http://resources.infosecinstitute.com/tracking-attackers-honeypot-part-2-kippo/
https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf
https://www.honeynet.org/sites/default/files/files/KYT-Glastopf-Final_v1.pdf

Master Information Technology

117

[7] https://github.com/mushorg/glastopf?files=1

 [Accessed on 18-Dec-2015]

[8] A Virtual Honeypot Framework. Niels Provos 2003

 http://www.australianscience.com.au/research/google/1.pdf

 [Accessed on 13-Jan-2016]

[9] http://cdn.pollin.de/article/xtrabig/X702670.JPG

 [Accessed on 02-Mar-2016]

[10] http://books.gigatux.nl/mirror/honeypot/final/ch01lev1sec3.html

 [Accessed on 11-Feb-2016]

[11] https://www.concise-courses.com/security/what-is-hydra/

 [Accessed on 28-Jan-2016]

[12] https://www.concise-courses.com/hacking-tools/password-

crackers/john-the-ripper/

[13] https://www.concise-courses.com/hacking-tools/password-

crackers/medusa/

 [Accessed on 27-Jan-2016]

[14] http://img.clubic.com/0320025801592960-photo-putty.jpg

 [Accessed on 14-Dec-2015]

[15] http://libdnet.sourceforge.net/

 [Accessed on 02-Jan-2016]

[16] http://libevent.org/

[Accessed on 02-Jan-2016]

 [17] https://launchpad.net/ubuntu/precise/+package/libdumbnet-dev

 [Accessed on 02-Jan-2016]

[18] https://www.rpmfind.net/linux/rpm2html/search.php?query=libpcap-

devel

https://github.com/mushorg/glastopf?files=1
http://www.australianscience.com.au/research/google/1.pdf
http://cdn.pollin.de/article/xtrabig/X702670.JPG
http://books.gigatux.nl/mirror/honeypot/final/ch01lev1sec3.html
https://www.concise-courses.com/security/what-is-hydra/
https://www.concise-courses.com/hacking-tools/password-crackers/john-the-ripper/
https://www.concise-courses.com/hacking-tools/password-crackers/john-the-ripper/
https://www.concise-courses.com/hacking-tools/password-crackers/medusa/
https://www.concise-courses.com/hacking-tools/password-crackers/medusa/
http://img.clubic.com/0320025801592960-photo-putty.jpg
http://libdnet.sourceforge.net/
http://libevent.org/
https://launchpad.net/ubuntu/precise/+package/libdumbnet-dev
https://www.rpmfind.net/linux/rpm2html/search.php?query=libpcap-devel
https://www.rpmfind.net/linux/rpm2html/search.php?query=libpcap-devel

Master Information Technology

118

 [Accessed on 02-Jan-2016]

[19] https://packages.debian.org/de/squeeze/libpcre3-dev

 [Accessed on 03-Jan-2016]

[20] https://packages.debian.org/wheezy/libedit-dev

 [Accessed on 03-Jan-2016]

[21] http://freecode.com/projects/buildconf

 [Accessed on 04-Jan-2016]

[22] https://packages.debian.org/sid/net/farpd

 [Accessed on 04-Jan-2016]

[23] http://packages.ubuntu.com/de/precise/python-dev

 [Accessed on 13-Nov-2015]

[24] http://whatis.techtarget.com/definition/OpenSSL

 [Accessed on 13-Nov-2015]

[25] https://github.com/pyca/pyopenssl

 [Accessed on 15-Nov-2015]

[26] https://pypi.python.org/pypi/pyasn1

 [Accessed on 15-Nov-2015]

[27] https://pypi.python.org/pypi/Twisted

 [Accessed on 17-Nov-2015]

[28] http://www.gevent.org/

 [Accessed on 09-Dec-2015]

[29] https://launchpad.net/ubuntu/trusty/+package/libevent-dev

 [Accessed on 09-Dec-2015]

[30] https://docs.python.org/3/library/argparse.html

 [Accessed on 12-Dec-2015]

https://packages.debian.org/de/squeeze/libpcre3-dev
https://packages.debian.org/wheezy/libedit-dev
http://freecode.com/projects/buildconf
https://packages.debian.org/sid/net/farpd
http://packages.ubuntu.com/de/precise/python-dev
http://whatis.techtarget.com/definition/OpenSSL
https://github.com/pyca/pyopenssl
https://pypi.python.org/pypi/pyasn1
https://pypi.python.org/pypi/Twisted
http://www.gevent.org/
https://launchpad.net/ubuntu/trusty/+package/libevent-dev
https://docs.python.org/3/library/argparse.html

Master Information Technology

119

[31] https://pypi.python.org/pypi/chardet

 [Accessed on 12-Dec-2015]

[32] http://docs.python-requests.org/en/master/

 [Accessed on 14-Dec-2015]

[33] http://www.sqlalchemy.org/

 [Accessed on 14-Dec-2015]

[34] http://lxml.de/

 [Accessed on 14-Dec-2015]

[35] http://www.crummy.com/software/BeautifulSoup/bs4/doc/

 [Accessed on 14-Dec-2015]

[36] https://en.wikipedia.org/wiki/Pip_(package_manager)

 [Accessed on 15-Dec-2015]

[37] https://launchpad.net/ubuntu/precise/+package/python-dev

 [Accessed on 15-Dec-2015]

[38] https://en.wikipedia.org/wiki/Setuptools

 [Accessed on 15-Dec-2015]

[39] http://www.cprogramming.com/g++.html

 [Accessed on 15-Dec-2015]

[40] https://en.wikipedia.org/wiki/Git_(software)

 [Accessed on 15-Dec-2015]

[41] http://www.php-cli.com/

 [Accessed on 15-Dec-2015]

[42] http://packages.ubuntu.com/trusty/php/php5-dev

 [Accessed on 16-Dec-2015]

[43] http://packages.ubuntu.com/trusty/liblapack-dev

https://pypi.python.org/pypi/chardet
http://docs.python-requests.org/en/master/
http://www.sqlalchemy.org/
http://lxml.de/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://launchpad.net/ubuntu/precise/+package/python-dev
https://en.wikipedia.org/wiki/Setuptools
http://www.cprogramming.com/g++.html
https://en.wikipedia.org/wiki/Git_(software)
http://www.php-cli.com/
http://packages.ubuntu.com/trusty/php/php5-dev
http://packages.ubuntu.com/trusty/liblapack-dev

Master Information Technology

120

 [Accessed on 16-Dec-2015]

[44] https://gcc.gnu.org/wiki/GFortran

 [Accessed on 19-Dec-2015]

[45] http://cython.org/

 [Accessed on 19-Dec-2015]

[46] https://launchpad.net/ubuntu/trusty/+package/libxml2-dev

 [Accessed on 20-Dec-2015]

[47] https://pkgs.alpinelinux.org/package/main/x86/libxslt-dev

 [Accessed on 21-Dec-2015]

[48] https://launchpad.net/ubuntu/trusty/+package/libmysqlclient-dev

 [Accessed on 21-Dec-2015]

[49] http://www.phpclasses.org/package/7015-PHP-Execute-external-

PHP-scripts-in-a-separate-process.html

 [Accessed on 28-Dec-2015]

[50] European Union Agency for Network and Information Security

 https://www.enisa.europa.eu/activities/cert/support/exercise/files/

 [Accessed on 31-Dec-2015]

https://gcc.gnu.org/wiki/GFortran
http://cython.org/
https://launchpad.net/ubuntu/trusty/+package/libxml2-dev
https://pkgs.alpinelinux.org/package/main/x86/libxslt-dev
https://launchpad.net/ubuntu/trusty/+package/libmysqlclient-dev
http://www.phpclasses.org/package/7015-PHP-Execute-external-PHP-scripts-in-a-separate-process.html
http://www.phpclasses.org/package/7015-PHP-Execute-external-PHP-scripts-in-a-separate-process.html
https://www.enisa.europa.eu/activities/cert/support/exercise/files/

