Abschlussklausur

Betriebssysteme

14. Februar 2014

Name:	
Vorname:	
Matrikelnummer:	

- Tragen Sie auf allen Blättern (einschließlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein.
- Schreiben Sie Ihre Lösungen auf die vorbereiteten Blätter. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren *Lichtbildausweis* und Ihren *Studentenausweis* bereit.
- Als Hilfsmittel ist ein selbständig vorbereitetes und handschriftlich einseitig beschriebenes DIN-A4-Blatt zugelassen.
- Als Hilfsmittel ist ein Taschenrechner zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit beträgt 90 Minuten.
- Schalten Sie Ihre Mobiltelefone aus.

Bewertung:

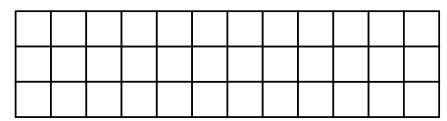
1	2	3	4	5	6	7	8	9	10	11	12	13	Σ	Note

Name:	Vorname:	Matr.Nr.:
Aufgabe	,	Punkte:
	ussetzung muss bei Stape Aufgabe begonnen werden	elbetrieb erfüllt sein, bevor mit der Abar- kann.
b) Wie geschieht	beim Dialogbetrieb die	Verteilung der Rechenzeit?
c) Wie heißt die	quasi-parallele Program	ım- bzw. Prozessausführung?
d) Wie heißt die gramm laufe		dem Zeitpunkt nur ein einziges Pro-
e) Was versteht	man unter halben Multi-	User-Betriebs systemen?
f) Es gibt zwei A	Arten von Echtzeitbetrie	ebssystemen. Geben Sie deren Namen an.

Name	e:	Vorname:	Matr.Nr.:
Αι	ufgabe 2)		Punkte:
Maxi	male Punkte: 0,5+1+	0,5+0,5+0,5+1+1+3=8	
a)	Nennen Sie einen me	echanischen digitalen Dater	nspeicher.
b)	Nennen Sie zwei rot i	derende magnetische digit	ale Datenspeicher.
c)	Nennen Sie einen nic	chtrotierenden magnetisc	chen digitalen Datenspeicher.
d)	Nennen Sie einen op	tischen digitalen Datenspei	cher.
e)	Nennen Sie einen nic	cht-persistenten digitalen l	Datenspeicher.
f)	•	· •	märspeicher, Sekundärspeicher Kategorie(n) kann der Prozesson
g)	Auf welche Kategori Controller zugreife	<i>-</i> ,	der Prozessor nur über einer

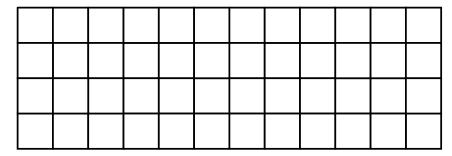
h) Nennen Sie für jede ${\bf Kategorie}$ aus Teilaufgabe f) zwei Beispiele.

Aufgabe 3)


Punkte:

Maximale Punkte: 1+8=9

a) Was ist die Kernaussage der Anomalie von Laszlo Belady?


b) Zeigen Sie **Belady's Anomalie**, indem sie die gegebene Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Speicher mit einer Kapazität von 3 Seiten und einmal mit 4 Seiten durchführen. (Die Berechnung der **Hitrate** und **Missrate** für beide Szenarien ist Teil der Aufgabe.)

Anfrage: 3 2 1 0 3 2 4 3 2 1 0 4

Hitrate: Missrate:

Anfrage: 3 2 1 0 3 2 4 3 2 1 0 4

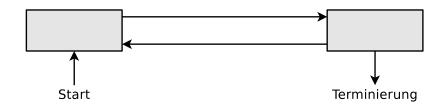
Hitrate: Missrate:

Name:	Vorname:	Matr.Nr.:
Aufgab	e 4)	Punkte:
Maximale Punkte	e: 1+1+1+1+1+1=7	
a) Welche beid	len Faktoren beeinflussen die	Zugriffszeit einer Festplatte?
b) Warum ist o	es falsch, SSDs als Solid Sta	te Disks zu bezeichnen?
c) Welche zwe	i Arten von NAND-Speich	er gibt es?
d) Welche Auf	gabe haben Wear Leveling -	$oldsymbol{ ext{Algorithmen}}$?
e) Welche RAl	D-Level verbessern die Date	entransferrate beim schreiben?
\square RAID-0	\square RAID-1 \square R	AID-5
f) Welche RAI	D-Level verbessern die \mathbf{Ausf} $\square \text{ RAID-1} \qquad \square \text{ R}$	allsicherheit? AID-5
g) Warum ist	es sinnvoll, Paritätsinform	ationen nicht auf einem Laufwerk zu spei-

chern, sondern auf allen Laufwerken zu verteilen?

Name:	Vorname:	Matr.Nr.:
Aufgab	e 5)	Punkte:
Maximale Punkt	e: 1+1+1+1+1=6	
a) In welche b	eiden Bereiche wird der Hau	ptspeicher unterteilt?
b) Wie arbeite	et der Real Mode ?	
c) Warum ist	der Real Mode für Multitas	sking ungeeignet?
d) Wie arbeite	et der Protected Mode ?	
tierung?	e Partitionierung	titionierung entsteht interne Fragmen-
☐ Buddy-A		
f) Bei welcher tierung?	i Konzepten der Speicherpart	titionierung entsteht externe Fragmen-
\square Dynamis	e Partitionierung sche Partitionierung Algorithmus	

Name:	Vorname:	Matr.Nr.:
Aufgabe	e 6)	Punkte:
Maximale Punkte:	5	
Kreuzen Sie bei jedfalsch ist.	der Aussage zur Speicherv e	erwaltung an, ob die Aussage wahr oder
a) Bei Segmenti belle.	erung verwaltet das Betrieb	ssystem für jeden Prozess eine Segmentta-
\square Wahr	☐ Falsch	
b) Interne Fragn	nentierung gibt es bei Segme \Box Falsch	entierung nicht.
c) Externe Frag	mentierung gibt es bei Segm \square Falsch	entierung nicht.
d) Beim Paging \Box Wahr	haben alle Seiten die gleiche	e Länge.
e) Bei Segmentie	erung haben die Segmente ei \Box Falsch	ine unterschiedliche Länge.
f) Moderne Bet Wahr	riebssysteme verwenden auss \Box Falsch	schließlich Segmentierung.
g) Ein Vorteil la Wahr	nger Seiten beim Paging ist \square Falsch	geringe interne Fragmentierung.
kann.	_	ist, das die Seitentabelle sehr groß werden
\square Wahr	☐ Falsch	
i) Die MMU üb physische Ad:		e Speicheradressen mit der Seitentabelle in
\square Wahr	☐ Falsch	
j) Moderne Beta schließlich Pa	,	en im Protected Mode und verwenden aus-
\square Wahr	\square Falsch	


Name:	Vorname:	Matr.Nr.:		
Aufgab	e 7)	Punkte:		
Maximale Punkt	e: 6+0.5+0.5=7			
Kreuzen Sie bei	ieder Aussage zu Dateisys	temen an, ob die Aussage wahr	oder fa	lsch ist.
Aussage			wahr	falsch
Inodes speicher	n alle Verwaltungsdaten (N	Metadaten) der Dateien.		
Dateisysteme a	dressieren Cluster und nich	nt Blöcke des Datenträgers.		
Je kleiner die C Dateien.	luster, desto größer ist der	Verwaltungsaufwand für große		
Je größer die C terne Fragment		er Kapazitätsverlust durch in-		
	systeme arbeiten so effizie: cht mehr üblich sind.	nt, dass Puffer durch das Be-		
	Blockgruppen bei ext2 ist, n liegen, die sie adressieren	dass die Inodes physisch nahe		
Eine Dateizuore ter im Dateisys	0 ()	t die belegten und freien Clus-		
Bei Dateisyster Schreibzugriffe.	nen mit Journal reduziert	das Journal die Anzahl der		
		er Konsistenzprüfung zu über-		
Bei Dateisysten	nen mit Journal sind Dater	nverluste ausgeschlossen.		
Vollständiges Jo	ournaling führt alle Schreib	operation doppelt aus.		
Extents verursa	chen weniger Verwaltungsa	ufwand als Blockadressierung.		
☐ Absolute	/Betriebssysteme/klaus er Pfadname	ativer Pfadname		
☐ Absolute	er Pfadname 🗆 Rela	ativer Pfadname		

Aufgabe 8)

Punkte:

Maximale Punkte: 1+1+2+1=5

- a) Was ist die Aufgabe des **Dispatchers**?
- b) Was ist die Aufgabe des **Schedulers**?
- c) Das 2-Zustands-Prozessmodell ist das kleinste, denkbare Prozessmodell. Tragen Sie die Namen der **Zustände** in die Abbildung des **2-Zustands-Prozessmodells** ein.

d) Ist das 2-Zustands-Prozessmodell sinnvoll? Begründen Sie kurz ihre Antwort.

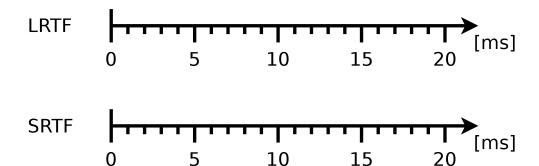
Aufgabe 9)

Punkte:

Maximale Punkte: 3+1+1+1+1+1=8

a) Die drei Abbildungen zeigen alle existierenden Möglichkeiten, einen neuen Prozess zu erzeugen. Schreiben Sie zu jeder Abbildung, welche(r) Systemaufruf(e) nötig sind, um die gezeigte Prozesserzeugung zu realisieren.

- b) Was **unterscheidet** einen Kindprozess vom Elternprozess **kurz nach der Erzeugung**?
- c) Was passiert, wenn ein Elternprozess vor dem Kindprozess beendet wird?
- d) Welche Daten enthält das **Textsegment**?
- e) Welche Daten enthält der **Heap**?
- f) Welche Daten enthält der Stack?


Aufgabe 10)

Punkte:

Maximale Punkte: 3+3+2+2=10

Prozess	CPU-Laufzeit [ms]	Ankunftszeit [ms]
A	3	0
В	7	2
С	4	5
D	2	7
E	4	10

a) Auf einem Einprozessorrechner sollen 5 Prozesse verarbeitet werden. Skizzieren Sie die Ausführungsreihenfolge der Prozesse mit einem Gantt-Diagramm (Zeitleiste) für Longest Remaining Time First und Shortest Remaining Time First.

- b) Berechnen Sie die mittleren Laufzeiten der Prozesse.
- c) Berechnen Sie die **mittleren Wartezeiten** der Prozesse.

Name:	Vorname:	Matr.Nr.:
Aufgab	e 11)	Punkte:
Maximale Punkt	e: 1+1+2+2=6	
a) Was ist ein	e Race Condition?	
b) Wie werder	n Race Conditions vermieder	n?
\		
c) Welche bei	den Probleme können durch S ı	perren entstehen?
d) Was ist der	Unterschied zwischen Signa	lisierung und Sperren?

Name:

Vorname:

Matr.Nr.:

Aufgabe 12)

Punkte:

Maximale Punkte: 4

a) Kommt es zum **Deadlock**?

Führen Sie die Deadlock-Erkennung mit Matrizen durch.

Ressourcenvektor =
$$\begin{pmatrix} 8 & 6 & 7 & 6 \end{pmatrix}$$

$$Belegungsmatrix = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 3 & 1 & 0 & 4 \end{bmatrix}$$

$$\mbox{Belegungsmatrix} = \left[\begin{array}{cccc} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 3 & 1 & 0 & 4 \end{array} \right] \qquad \qquad \mbox{Anforderungsmatrix} = \left[\begin{array}{cccc} 6 & 2 & 6 & 5 \\ 4 & 3 & 5 & 3 \\ 3 & 1 & 5 & 0 \end{array} \right]$$

Name:	Vorname:	Matr.Nr.:	
Aufgabe	,		
waxiiiiale r ulikte.	1+1+1+1+1+1+1+1=	=0	
a) Nach welcher □ Round Ro		hrichtenwarteschlangen (\mathbf{Messa}	age Queues)?
b) Wie viele Pro	ozesse können über eine	e Pipe miteinander kommuniz	ieren?
c) Was ist ein S	emaphor und was ist	sein Einsatzzweck?	
d) Was ist der U	Interschied zwischen ${f Se}$	emaphoren und Sperren?	
e) Was ist ein s	tarkes Semaphor?		
f) Was ist ein se	chwaches Semaphor	?	
g) Welche Form	der Semaphoren hat d	ie gleiche Funktionalität wie	e der Mutex?
h) Welche Zust	ände kann ein Mutex a	annehmen?	