Exercise Sheet 6

Exercise 1 (File Systems)

- 1. Describe which information inodes store.
- 2. Name three examples of metadata in the file system.
- 3. Describe what a cluster in the file system is.
- 4. Describe how a UNIX file system (e.g. ext2/3), which does not implement extents, can address more than 12 clusters.
- 5. Describe how directories in the Linux file systems are technically implemented.
- 6. Name one advantage and one drawback of small clusters in the file system compared with large clusters.
- 7. Do DOS/Windows file systems differentiate between uppercase and lowercase?

 \Box Yes \Box No

8. Do UNIX file systems differentiate between uppercase and lowercase?

 \Box Yes \Box No

9. Do modern operating systems accelerate requests to stored data with a cache in the main memory.

 \Box Yes \Box No

10. Most operating systems operate according to the principle...

 \Box write-back \Box write-through

- 11. Name one advantage and one disadvantage of a cache in the main memory, which is used by the operating system to accelerate the requests to stored data.
- 12. Explain what an absolute path name is.
- 13. Explain what a relative path name is.
- 14. /var/log/messages is an/a...

 \Box absolute path name \Box relative path name

15. BTS_Vorlesung/Vorlesung_05/bts_slides_05_en.tex is an/a...

 \Box absolute path name \Box relative path name

16. Documents/MasterThesis/thesis.tex is an/a...

 \Box absolute path name \Box relative path name

17. /home/<username>/Mail/inbox/ is an/a...

 \Box absolute path name \Box relative path name

- 18. Describe what information the boot sector (also called boot block) of a file system stores.
- 19. Describe what information the super block of a file system stores.
- 20. Explain why some file systems (e.g. ext2/3) do combine the clusters of the file system to block groups.
- 21. Describe what the File Allocation Table (FAT) is and describe the information it stores.
- 22. Describe the objective of the journal in a journaling file system.
- 23. Describe a benefit of using a journaling file system compared with using a file system without a journal.
- 24. Name the three values that are required to store an extent.
- 25. Describe the benefit of using extents compared with direct addressing of the clusters.
- 26. Describe the result of defragmenting a file system.
- 27. Describe the sort of data processing that is maximum accelerated by defragmenting.
- 28. Describe the scenario where defragmenting is useful.

Exercise 2 (File Systems)

Please mark for each statement about file systems, whether the statement is true or false.

Statement	true	false
Inodes store all metadata of files.		
File systems address clusters and not blocks of the storage medium		
or storage drive.		
The smaller the clusters are, the more overhead for large files occur.		
The bigger the clusters are, the lesser capacity is lost due to internal		
fragmentation.		
In UNIX, file extensions have always been of great significance.		
Modern file systems operate so much efficient that buffering by the		
operating system is no longer common.		
Absolute path names describe the complete path from the root to		
the file.		
The separator in path names is identical for all operating systems.		
An advantage of block groups is that the inodes are physically		
located close to the clusters, they address.		
For each cluster in the file system, an entry exists in the FAT.		
Because of the Master File Table in NTFS, fragmentation cannot		
occur.		
The journal of journaling file systems reduces the number of write		
operations.		
Journaling file systems narrow down the data, which need to be		
checked during the consistency check.		
When using journaling file systems, a loss of data is impossible.		
If metadata and file contents are journaled both, all write operati-		
ons are carried out twice.		
Extents cause lesser overhead compared with block addressing.		

Exercise 3 (Pattern Comparison and Data Analysis)

- 1. Name (or describe) <u>one</u> useful application for the command **sed**.
- 2. Create a file sedtest.txt with the following content:
 - Line 1 Line 2 Line 3 Line 4

Line 5 Line 6

Insert with sed 3 blanks at the beginning of each line.

- 3. Print out with sed the lines 2 to 5 of the file sedtest.txt.
- 4. Remove with sed each second line of the file sedtest.txt.
- 5. Create a file htmlcode.txt with the following content:

```
<a href="BTSWS2019/index.html">Operating Systems (OpSys)</a><b>This is a <i>HTML file</i></b><br><h2>This is a headline<h2>
```

Remove with sed all HTML tags from the file htmlcode.html.

6. Create a file umlaute.txt with the following content:

Bäume, Äpfel, Bücher, Übertreibung Töpfe, Öffentlichkeit, Straße, Spaß

Modify with sed all umlauts in the file umlaute.txt into "ae", "oe", "ue", "Ae", "Oe", "Ue" and "ss".

7. Create a file bundesliga_08_0405.txt with the results of the 8th match day of the season 2004/2005:

Schalke	-	Bochum	3	:	2	61500	spectators
Bielefeld	-	Stuttgart	0	:	2	22700	spectators
Dortmund	-	Nürnberg	2	:	2	73500	spectators
Leverkusen	-	Hamburg	3	:	0	22500	spectators
Freiburg	-	Mainz	1	:	2	24000	spectators
Kaiserslautern	-	Berlin	0	:	2	30500	spectators
Wolfsburg	-	Mönchengladbach	2	:	1	26500	spectators
Rostock	-	Hannover	1	:	3	16500	spectators
Bremen	-	München	1	:	2	42000	spectators

- 8. Name (or describe) <u>one</u> useful application for the command awk.
- 9. Determine with awk all matches, which had more than 30000 spectators.
- 10. Determine with awk all matches, which had less than 50000 spectators and where the home team won.
- 11. Determine with awk for each game the sum of the scored goals.
- 12. Determine with awk in which city the most spectators visited the match and print out the result this way:

The most spectators were in CITY (NUMBER).