Written examination in Cloud Computing

February 11th 2014

Last name:
First name:
Student number:
• Provide on all sheets (including the cover sheet) your last name, first name and student number.
\bullet Use the provided sheets. Own paper must not be used.
• Place your <i>ID card</i> and your <i>student ID card</i> on your table.
• You are allowed to use a <i>self prepared</i> , <i>single sided DIN-A4 sheet</i> in the exam Only <i>handwritten originals</i> are allowed, but no copies.
• You are allowed to use a calculator.
• Answers, written with pencil or red pen are <i>not</i> accepted.
• Time limit: 90 minutes
• Turn off your mobile phones!
Result:

12

10

11

 $\mathbf{\Sigma}$

 Grade

Question 1)

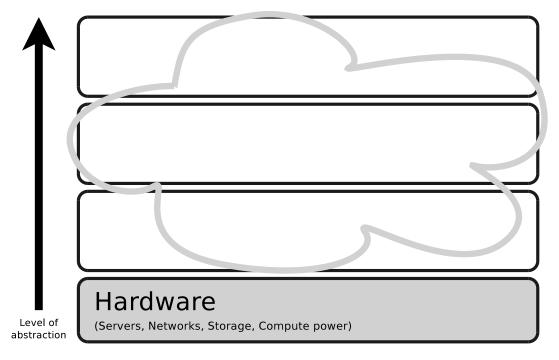
Points:

Maximum points: 5+5=10

a) How long does it take to transfer 5 PB of data via a 40 Gbit/s network?

b) How long does it take to transfer 5 PB of data via a 1000 Mbps Ethernet?

Question 2)


Maximum points: 7

- a) In which **category** of cloud services is human creativity offered for low cost or donated from volunteers?
- b) Why is the term "Cloud Operating System" misleading?
- c) In which **category** of cloud services can customers run virtual server instances and even realize virtual data centers?
- d) What is a **PaaS**, and what can customers do with it?
- e) What software do customers **need to use** software services?
- f) What is the **main difference** between Public and Private Cloud services?
- g) What is a **Hybrid Cloud**?

Question 3)

Points:

Maximum points: 6

Assign these categories of cloud services to the layers in the figure:

- a) PaaS
- b) Cloud Gaming
- c) Cloud Printing
- d) IaaS
- e) HuaaS
- f) SaaS

Question 4)		Points:
Maximum points: 8		
a) What is a Region in AW	VS EC2?	
b) What is an Availabilty	Zone in AWS E	C2?
c) What is the maximum nu	mber of Instance	s, an EBS volume can be connected with?
d) According to which princ	iple works the st	sorage service S3?
\Box block-based storage se	rvice \Box o	bject-based storage service
e) According to which princ	iple works the se	ervice EBS?
\square block-based storage se	rvice	bject-based storage service
f) Which storage services red \Box block-based storage se		stomer to choose and deploy a file system ? bject-based storage service
g) What is the purpose of the	ne Access Cont	crol List at S3?

h) How can users/customers increase the ${\bf availabilty}$ of EBS storage?

Question 5)

Points:

Maximum points: 1+1+1+1+4+1=9

- a) Which three roles contains the theoretical implementation of SOAP web services?
- b) Which markup language is used by SOAP web services for interaction?
- c) Describe the **difference** between the theoretical implementation of SOAP web services and the way, SOAP web services operate in **practice**.
- d) Which **protocol** is used by RESTful web services for interaction?
- e) Which four **HTTP methods** are enough to work with resources inside storage services like S3 or Google Cloud Storage?
- f) Why is it recommendable, that storage services do not only implement support for the four HTTP methods of subtask e), but also for the **HTTP method** HEAD?

\mathbf{Q}	uestic	on 6)	Points:	
	imum points	,		
a)	Google C	loud Print in	nplements	
	\square IaaS	\square PaaS	\square SaaS	
b)	Amazon S	Simple Stora	ge Service (S3) implements	
	\square IaaS	\square PaaS	\square SaaS	
c)	Google A	pp Engine in	plements	
	\square IaaS	\square PaaS	\square SaaS	
d)	Amazon l	Elastic Com	oute Cloud (EC2) implements	
	\square IaaS	\square PaaS	\square SaaS	
e)	AppScale	implements		
	\square IaaS	\square PaaS	\square SaaS	
f)	Google C	loud Storage	implements	
	☐ IaaS	\square PaaS	\square SaaS	
g)	Microsoft	Windows A	zure implements	
	☐ IaaS	\square PaaS	\square SaaS	
h)	HP Cloud	d Compute i	nplements	
	☐ IaaS	\square PaaS	\square SaaS	
i)	RedHat 0	OpenShift im	plements	
	☐ IaaS	\square PaaS	\square SaaS	
j)	Amazon I	Mechanical 7	urk implements	
	☐ IaaS	\square PaaS	\square SaaS	
k)	eyeOS im	_		
	\square IaaS	\square PaaS	\square SaaS	

l) **OnLive** implements...

☐ PaaS

 \square SaaS

 \square IaaS

Last name: First name:	Student number:
------------------------	-----------------

lack	
Question	- <i>(</i>)
& account	• ,
•	,

Maximum points: 10

Statement	true	false
The Google App Engine supports all programming languages.		
Applications inside the GAE can use different infrastructure and		
storage services.		ı
Free re-implementations of the GAE exist.		
The GAE supports authentication/authorization via Google ac-		
counts.		ı
Objects, stored in the Datastore are erased automatically after 24 h.		
Datastore is a persistent storage service, implemented as a key/va-		
lue database.		ı
Datastore provides a query language, which is similar to the SQL		
(Structured Query Language).		ı
Memcache is a persistent storage service.		
Memcache uses tape storage to store the data.		
Memcache is a high-performance storage service for temporary da-		
ta.		ı
Memcache uses physical main memory to store the data.		
Objects in the Datastore and Memcache can be of any size.		
Applications in the GAE can send and receive emails with any		
sender address.		ı
Applications in the GAE can send and receive XMPP messages.		
Applications in the GAE have read and write access to the file		
system of the physical servers.		ı
Applications in the GAE can communicate with other web services		
via all ports.		l
The GAE provides support for Python 3.		
Customers of the GAE can upload and run multiple versions of		
each one of their applications.		
Each customer of the GAE can have an infinite number of applica-		
tions.		
Application names must be unique inside the GAE namespace.		

Question 8)

Points:

Maximum points: 5

a) Name a field of application, where MapReduce is helpful.

b) What is the advantage of the $64\,\mathrm{MB}$ chunk size of the Hadoop Distributed File System (HDFS)?

c) What is the drawback of the 64 MB chunk size of the **HDFS**?

d) What kind of data stores the **Namenode**?

e) What kind of data store the **Datanodes**?

Question 9)

Points:

Maximum points: 1+1+1+1+1+2=7

- a) By which approach does High Availability Clustering achieve its objective?
- b) Give an **advantage** of High Performance Clusters, compared with supercomputers (mainframes).
- c) Give a **drawback** of High Performance Clusters, compared with supercomputers (mainframes).
- d) What is a **Beowulf Cluster**?
- e) What is the difference of a **Beowulf Cluster** in contrast to a **Wulfpack Cluster**?
- f) Can High Throughput Clusters be used to process the same **tasks** as High Performance Clusters? (Explain your answer in just 1 or 2 sentences.)

Last name: First name: Student number:
--

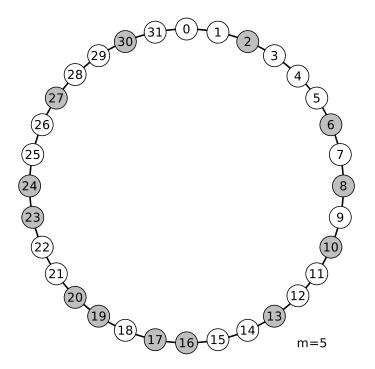
Last Haine.	r irst name.	Student number.
Questio:	,	Points:
a) Physical res	sources are offered in	
b) Virtualized \Box Grids	resources are offered in ☐ Clouds	
c) Full-automa	atization (industrialized IT) \Box Clouds	is an attribute of
d) Weak autor \Box Grids	matization (traditional IT) i	is an attribute of
e) Virtual Org	ganizations are implemented	in
f) Resources \circ Grids	without centralized control \Box Clouds	ol are usually connected in
g) Resources \Box Grids	under central control are u \square Clouds	sually connected in
h) Consumption	on-based billing (Pay-as-yo	u-go principle) is an attribute of

Last name:	First name:	Student number:
Question	11)	Points:
Maximum points: 4		
a) No centralized □ Centralized I	l services exist with P2P □ Pure P2P	☐ Hybrid P2P
	nt of attack exists with.	v
☐ Centralized I	_	☐ Hybrid P2P
c) Which architect Centralized I	cure causes the biggest \mathbf{ne} P2P \square Pure P2P	etwork overhead?
d) Which architect	ture causes the lowest ne	etwork overhead?
\square Centralized I	P2P □ Pure P2P	☐ Hybrid P2P
e) Which architect	cure implements a kind of	dynamic, centralized service?
\square Centralized I	P2P □ Pure P2P	☐ Hybrid P2P
f) Napster (1999	- 2001) implemented	
\Box Centralized I	P2P □ Pure P2P	☐ Hybrid P2P
g) Gnutella v0.4	implements	
☐ Centralized I	P2P	☐ Hybrid P2P

☐ Pure P2P

 \square Hybrid P2P

h) Gnutella v
0.6 implements...


 \Box Centralized P2P

Question 12)

Points:

Maximum points: 1+1+1+10+1=14

- a) What is the **drawback** of linear search in the Chord ring?
- b) What way of **searching** in the Chord ring is preferred?
- c) To which node n gets a key k assigned to?
 - ☐ Direct predecessor
 - ☐ Direct successor
 - ☐ First node (starting from ID 1) without any keys assigned yet
- d) Calculate the **Finger Table values** of node n = 20 and **insert** the correct values into the provided Finger Table.

Finger Table of node n = 20

Entry	Start	Node
1		
2		
3		
4		
5		

The table has 5 entries, because m contains the length of the ID in bits and m = 5

The Start value of entry i of the table on node n is $(n + 2^{i-1}) \mod 2^m$

The Node value of entry i points to the first node, which follows to n at a distance of at least 2^{i-1}

e) Which node is **responsible** for the key (resource) with ID 11?