| Exercise | Sheet | 12 |
|----------|-------|----|
|----------|-------|----|

| Exercise 1 (Peer-to-Peer)                                                                                         |                                 |                   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|--|--|--|
| 1. Centralized services ex                                                                                        | xist in                         |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | $\Box$ Hybrid P2P |  |  |  |
| 2. No central point of at<br>(Two answers are corr                                                                | tack exists with<br>rect here.) |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 3. No centralized service                                                                                         | s exist with                    |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 4. Clients must know at least a single Peer to access systems, which implement<br>(Two answers are correct here.) |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 5. A central point of atta                                                                                        | ack exists with                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | $\Box$ Hybrid P2P |  |  |  |
| 6. Which architecture ca                                                                                          | uses the biggest netw           | vork overhead?    |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 7. Which architecture causes the lowest network overhead?                                                         |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 8. Which architecture implements a kind of dynamic, centralized service?                                          |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 9. Napster (1999 - 2001) implemented                                                                              |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 10. Which architecture implements Ultrapeers $(=$ Supernodes $)?$                                                 |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 11. Gnutella v0.4 impleme                                                                                         | ents                            |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
| 12. Gnutella v0.6 implements                                                                                      |                                 |                   |  |  |  |
| $\Box$ Centralized P2P                                                                                            | $\Box$ Pure P2P                 | □ Hybrid P2P      |  |  |  |
|                                                                                                                   |                                 |                   |  |  |  |

1

## Exercise 2 (Distributed Hash Table)

- 1. Why is **direct storage** of files in the Distributed Hash Table only suited for files  $< 1 \,\mathrm{kB}$ ?
- 2. What kind of data is stored in the Distributed Hash Table when **indirect storage** is implemented?
- 3. What is the objective of **hash functions**?
- 4. How can the **quality** of a hash functions be determined?
- 5. What is the **drawback** of linear search in the Chord ring?
- 6. What way of **searching** in the Chord ring is preferred?
- 7. To which node n gets a key k assigned to?
  - $\Box$  The node with the same ID as the key
  - Direct predecessor
  - Direct successor
  - $\Box$  First node (starting from ID 1) without any keys assigned yet
- 8. Calculate the **Finger Table values** of node n = 8 and **insert** the correct values into the provided Finger Table.



Finger Table of node n = 8

| Entry | Start | Node |
|-------|-------|------|
| 1     |       |      |
| 2     |       |      |
| 3     |       |      |
| 4     |       |      |
| 5     |       |      |

The table has 5 entries, because m contains the length of the ID in bits and m = 5

The Start value of entry *i* of the table on node *n* is  $n + 2^{i-1}$ 

The Node value of entry i points to the first node, which follows to n at a distance of at least  $2^{i-1}$ 

9. Which node is responsible for the key (resource) with ID 23 ?

10. Calculate the **Finger Table values** of node n = 13 and **insert** the correct values into the provided Finger Table.



Finger Table of node n = 13

| Entry | Start | Node |
|-------|-------|------|
| 1     |       |      |
| 2     |       |      |
| 3     |       |      |
| 4     |       |      |
| 5     |       |      |

The table has 5 entries, because m contains the length of the ID in bits and m = 5

The Start value of entry i of the table on node n is  $n + 2^{i-1}$ 

The Node value of entry i points to the first node, which follows to n at a distance of at least  $2^{i-1}$ 

11. Which node is responsible for the key (resource) with ID 18?