
Develop a parallel application that does multiply two Matrices C
and MPI

Program : High Integrity System

Course: Cloud Computing

Professor : Christian Baun

Present By : Shamima Akhter
ID: 1188387

Message Passing Interface (MPI)

• Distributed memory architectures which standard designed by a group of researchers
from academia and industry to function on a wide variety of parallel computing
architectures.

• MPI is a specification for the developers and users of message passing libraries.

• MPI consists of
• a header file mpi.h
• a library of routines and functions,
• and a runtime system.

• MPI is for parallel computers, clusters, and heterogeneous networks.

• MPI used in many cases like when a master process needs to broadcast information to all
of its worker processes.

• MPI can be used with C/C++, Fortran, and many other languages.

Algorithm : Matrix Multiplication with MPI

• Start with two matrices A is m*n and B is n*p.

• The product C = A*B is a matrix of m*p.

• The multiplication "row by column" gives a complexity of O(m*n*p).

Followed: Parallel Implementation Linear Partitioning

1. Scatter A to LocalA and Broatcast B.

2. Compute LocalC = localA* B;

3. Gather LocalC to C;

Matrix Multiplication

Advantages:
• Execution times reduce and the speedup increases.

• Simple computation for each processor.

• Distribution of each element localA[i][j], the columns of B must be
traversed.

Process : Linear Matrix Multiplication

Linear Matrix Multiplication

Algorithm 1: Broadcasting with MPI_Bcast

 A broadcast is one of the standard collective communication
techniques.

 During a broadcast, one process sends the same data to all
processes in a communicator.

 One of the main uses of broadcasting is to send out user input to a
parallel program, or send out configuration parameters to all
processes.

 In MPI, broadcasting can be accomplished by using MPI_Bcast
Fig: Communication pattern of a broadcast.

In this example, process zero is the root process, and it has the initial copy of data. All of the other processes
receive the copy of data

Algorithm 1 : Broadcasting with MPI_Bcast

Broadcasting with MPI_Send and MPI_Recv MPI_Bcast implementation & Comparison

Comparison of MPI_Bcast with MPI_Send and MPI_Recv

Algorithm 2: Scatter with MPI_Scatter

 MPI_Scatter is a collective routine that
is very similar to MPI_Bcast.

 MPI_Scatter involves a designated
root process sending data to all
processes in a communicator.

Small difference between MPI_Bcast and
MPI_Scatter.

 MPI_Bcast sends the same piece of
data to all processes while
MPI_Scatter sends chunks of an array
to different processes.

Algorithm 2: MPI_Gather

 MPI_Gather is the inverse of MPI_Scatter.

 Instead of spreading elements from one
process to many processes, MPI_Gather takes
elements from many processes and gathers
them to one single process.

 Similar to MPI_Scatter, MPI_Gather takes
elements from each process and gathers
them to the root process.

 The elements are ordered by the rank of the
process from which they were received.

 The function prototype for MPI_Gather is
identical to that of MPI_Scatter

MPI Functions

Configurations

Settings to Run MPI on Local Virtual
• Install oracle Virtual Box to install ubuntu.

• Install MPI on Master node.

• Run Code With MPI in local Virtual

• Compile command: mpicc filename.c –o compile_filename

• Run Command: mpiexec –np process_number ./compile_filename

Test on our University Network
• Install OpenVPN

• Install ssh – to connect with remote node.

• Connect OpenVPN and transfer file with ssh and test.

TEST CASES
Process Matrix Size Algorithm 1 :

Sequential Algorithm with
MPI_Send and MPI_Receive

(Seconds)

Algorithm 2 :
MPI_BroadCast , MPI_Scatter/Gather

Matrix Algorithm
(Seconds)

2 10 0.001274 0.000292

10 100 0.275533 0.122409

100 100 5.537235 2.791060

10 500 3.727987 4.329222

100 500 21.43198 9.163678

10 1000 43.39623 39.553845

100 1000 67.97839 41.028296

Test Summary
From the last test cases , noticed that :

• It would not always beneficial, if we grow the number of process proportional
to our problem size.

• Sometimes less number of process work faster for a particular size of
problem.

• If our problem size is more big enough then we can increase our process to
divide the problems.

• For a small problem, specific process or small number of process is perform
faster.

References

1. https://www.mathsisfun.com/algebra/matrix-multiplying.html

2. http://mpitutorial.com/tutorials/mpi-broadcast-and-collective-communication/

3. http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

4. http://mpi.deino.net/mpi_functions/MPI_Barrier.html

5. https://stackoverflow.com/questions/9269399/sending-blocks-of-2d-array-in-c-using-mpi

6. https://stackoverflow.com/questions/40080362/how-to-use-mpi-scatter-and-gather-with-array

7. https://stackoverflow.com/questions/29415663/how-does-mpi-in-place-work-with-mpi-scatter

8. http://www.cs.umanitoba.ca/~comp4510/examples.html

https://www.mathsisfun.com/algebra/matrix-multiplying.html
http://mpitutorial.com/tutorials/mpi-broadcast-and-collective-communication/
http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/
http://mpi.deino.net/mpi_functions/MPI_Barrier.html
https://stackoverflow.com/questions/9269399/sending-blocks-of-2d-array-in-c-using-mpi
https://stackoverflow.com/questions/40080362/how-to-use-mpi-scatter-and-gather-with-array
https://stackoverflow.com/questions/29415663/how-does-mpi-in-place-work-with-mpi-scatter
http://www.cs.umanitoba.ca/~comp4510/examples.html

Questions

