
Written examination in

Cloud Computing

July 17th 2018

Last name:

First name:

Student number:

I con�rm with my signature that I will process the written examination alone

and that I feel healthy and capable to participate this examination.

I am aware, that from the moment, when I receive the written examination, I

am a participant of this examination and I will be graded.

Signature:

• Provide on all sheets (including the cover sheet) your last name, �rst name and

student number.

• Use the provided sheets. Own paper must not be used.

• Place your ID card and your student ID card on your table.

• You are allowed to use a self prepared, single sided DIN-A4 sheet in the exam.

Only handwritten originals are allowed, but no copies.

• You are allowed to use a non-programmable calculator.

• Answers written with pencil or red pen are not accepted.

• Time limit: 90 minutes

• Turn o� your mobile phones!

Result:

Question: 1 2 3 4 5 6 7 8 Σ Grade

Maximum points: 12 10 10 10 21 12 6 9 90 �

Achieved points:

Last name: First name: Student number:

Question 1) Points: .

Maximum points: 12

Name four cloud services (only platform and infrastructure services are allowed!) you used
for solving the exercise sheets. Also explain in a few words which functionality of these
services you used. It should become clear why you used each single service.

Name of Sort of Explain the functionality you used and also the

service service reason for using the service

f PaaS

f IaaS

f PaaS

f IaaS

f PaaS

f IaaS

f PaaS

f IaaS

Last name: First name: Student number:

Question 2) Points: .

Maximum points: 1+4+3+2=10

a) Name the functional category of OpenShift.

b) Name and explain two reasons for using OpenShift.

c) Name three software solutions / technologies that are used by OpenShift to implement
its functionality.

d) Explain what a Container is and how it works.

Last name: First name: Student number:

Question 3) Points: .

Maximum points: 10

Explain how the Mergesort algorithm works (in a non-parallel way).

See MPI Special Challenge 2.

Last name: First name: Student number:

Question 4) Points: .

Maximum points: 10

Explain how the Mergesort algorithm can be implemented in a way that it sorts in parallel
by using a cluster system. (In other words: Which parts of the sorting process can be
carried out in parallel by the nodes of a cluster and how is it done and what is the task of
the master?)

See the solution MPI Special Challenge 2.

Last name: First name: Student number:

Question 5 – Part 1/3) Points: .

Maximum points: 3+3+3+3+3+3+3=21

Please fill in useful comments into the source code of this MPI Mergesort implementation.
The comments should clarify what happens in the source code lines 34-36, 42, 48-49, 57-58,
71, 93-95 and 101-102.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <mpi.h>
5

6 void merge(int ∗, int ∗, int, int, int);
7 void mergeSort(int ∗, int ∗, int, int);
8

9 int main(int argc, char∗∗ argv) {
10 int n = atoi(argv[1]);
11 int ∗original_array = malloc(n ∗ sizeof(int));
12 int numProc = atoi(argv[2]);
13 double sequentialMasterRead1, sequentialMasterRead2;
14 double sequentialTime1, sequentialTime2;
15 double parallelTime1, parallelTime2;
16

17 sequentialMasterRead1 = MPI_Wtime();
18

19 int c;
20 srand(time(NULL));
21 for(c = 0; c < n; c++) {
22 original_array[c] = rand() % n;
23 }
24

25 sequentialMasterRead2 = MPI_Wtime();
26

27 int world_rank;
28 int world_size;
29

30 // Please fill in here what the lines 34−36 are doing:
31 //
32 //
33 //
34 MPI_Init(&argc, &argv);
35 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
36 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

Listing 1: Mergesort with MPI (part 1/3)

Last name: First name: Student number:

Question 5 – Part 2/3) Points: .

Maximum points: 3+3+3+3+3+3+3=21
37

38 // Please fill in here what the line 42 is doing:
39 //
40 //
41 //
42 int size = n/world_size;
43

44 // Please fill in here what the lines 48−49 are doing:
45 //
46 //
47 //
48 int ∗sub_array = malloc(size ∗ sizeof(int));
49 MPI_Scatter(original_array, size, MPI_INT, sub_array, size, MPI_INT, 0,

MPI_COMM_WORLD);
50

51 parallelTime1 = MPI_Wtime();
52

53 // Please fill in here what the lines 57−58 are doing:
54 //
55 //
56 //
57 int ∗tmp_array = malloc(size ∗ sizeof(int));
58 mergeSort(sub_array, tmp_array, 0, (size − 1));
59

60 int ∗sorted = NULL;
61 if(world_rank == 0) {
62 sorted = malloc(n ∗ sizeof(int));
63 }
64

65 parallelTime2 = MPI_Wtime();
66

67 // Please fill in here what the line 71 is doing:
68 //
69 //
70 //
71 MPI_Gather(sub_array, size, MPI_INT, sorted, size, MPI_INT, 0,

MPI_COMM_WORLD);
72

73 sequentialTime1 = MPI_Wtime();

Listing 2: Mergesort with MPI (part 2/3)

Last name: First name: Student number:

Question 5 – Part 3/3) Points: .

Maximum points: 3+3+3+3+3+3+3=21
74

75 if(world_rank == 0) {
76 int ∗other_array = malloc(n ∗ sizeof(int));
77 mergeSort(sorted, other_array, 0, (n − 1));
78

79 free(sorted);
80 free(other_array);
81 }
82

83 sequentialTime2 = MPI_Wtime();
84

85 free(original_array);
86 free(sub_array);
87 free(tmp_array);
88

89 // Please fill in here what the lines 93−95 are doing:
90 //
91 //
92 //
93 if(world_rank == 0) {
94 printf("%i \t %.3f \t\t %f \t %f \t\t %f \n",numProc, (

sequentialTime2 − sequentialMasterRead1), (sequentialMasterRead2 −
sequentialMasterRead1), (parallelTime2 − parallelTime1), (sequentialTime2
− sequentialTime1));

95 }
96

97 // Please fill in here what the lines 101−102 are doing:
98 //
99 //

100 //
101 MPI_Barrier(MPI_COMM_WORLD);
102 MPI_Finalize();
103 }
104

105 /∗∗∗∗∗∗∗∗∗∗ Merge Function ∗∗∗∗∗∗∗∗∗∗/
106 void merge(int ∗a, int ∗b, int l, int m, int r) { ... }
107

108 /∗∗∗∗∗∗∗∗∗∗ Recursive Merge Function ∗∗∗∗∗∗∗∗∗∗/
109 void mergeSort(int ∗a, int ∗b, int l, int r) { ... }

Listing 3: Mergesort with MPI (part 3/3)

Last name: First name: Student number:

Question 6) Points: .

Maximum points: 12

This two diagrams show the total execution time of the Mergesort application from question
5 for two different problem sizes = number of integer values to be sorted.

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

	1.8

	2

	2.2

1 2 4 8 16 32 64 128 256 512

Total	Execution	Time

Ex
ec

ut
io

n	
Ti

m
e	

in
	s

ec
on

ds

Number	of	Processes

Merge	Sort	Array	Size	1k

0.051 0.074 0.080 0.094 0.115

0.220
0.273

0.511

0.748

1.947

Figure 1: Problem Size = 1,000 values

	24

	26

	28

	30

	32

	34

	36

	38

1 2 4 8 16 32 64 128 256 512

Ex
ec

ut
io

n	
Ti

m
e	

in
	s

ec
on

ds

Number	of	Processes

Merge	Sort	Array	Size	10m

36.54

30.05

27.07

25.83
25.34 25.39

25.70

26.65
27.03

28.23

Figure 2: Problem Size = 10,000,000 values

The two diagrams demonstrate two fundamental laws and limitations of parallel computing.

a) Name the two fundamental laws and limitations of parallel computing which are
relevant here.

b) Explain the two fundamental laws and limitations of parallel computing by using the
two diagrams.

Last name: First name: Student number:

Question 7) Points: .

Maximum points: 1+1+1+1+1+1=6

a) Explain what an Active/Active-Cluster is.

b) Explain what an Active/Passive-Cluster is.

c) Explain what the meaning of Failover is.

d) Explain what the meaning of Failback is.

e) Explain what a Beowulf Cluster is.

f) Explain what a Wulfpack Cluster is.

Last name: First name: Student number:

Question 8) Points: .

Maximum points: 9

a) During the guest lecture from Novatec on June 13th, the six quality goals from the
ISO/IEC 9126 standard, which classifies software quality, have been discussed. Name
three of them. Just name them! No explanation is required.

b) During the guest lecture from Novatec on June 13th, the twelve factors from the
twelve-factor app, which are recommended for building software-as-a-service apps,
have been discussed. Name and explain (in short!) six of them.

