
Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Function as a Service
General Principles, Container Virtualization, OpenFaaS,

OpenWhisk – Winter Term 2018

Henry-Norbert Cocos
cocos@stud.fra-uas.de

Computer Science
Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 1/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Contents

1 Container Virtualization
Container Virtualization
Docker

2 Function as a Service
Function as a Service

3 OpenFaaS
OpenFaaS
Installing OpenFaaS
Creating an application using Minio in OpenFaaS

4 OpenWhisk
OpenWhisk
Installing OpenWhisk
Creating an application using MongoDB in OpenWhisk

5 Conclusion

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 2/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Container Virtualization

Container Virtualization capsulates Applications in
virtual environments!

This technology has a long going history!
(chroot was first implemented in 1979 [1])

Containers are more efficient than Hypervisor-based
Virtualization or Paravirtualization!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 3/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker

Figure: Docker

Source:
https://www.docker.com/
brand-guidelines

Docker
Released by dotCloud 2013
Enables Container Virtualization
A more advanced form of
Application Virtualization
Available for:
Linux, MacOS, Windows

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 4/62

https://www.docker.com/brand-guidelines
https://www.docker.com/brand-guidelines

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker Architecture

Figure: Docker Architecture

Source: https://en.wikipedia.org/
wiki/Docker_(software)

Docker Architecture
Docker uses the Linux Kernel
libcontainer creates
containers
libvirt manages Virtual
Environments
LXC will be replaced by
libcontainer

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 5/62

https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker Application Architecture I

Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Applications in Docker [2]
Client-Server Architecture
Docker Client docker
Docker Daemon dockerd

Docker Objects
Images
Containers

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 6/62

https://docs.docker.com/engine/docker-overview/#docker-architecture
https://docs.docker.com/engine/docker-overview/#docker-architecture

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker Application Architecture II

Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Docker Client docker
Manages Docker
Daemon/s

Docker Daemon dockerd

Listens to Requests
Manages Docker Objects
(images, containers, etc.)

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 7/62

https://docs.docker.com/engine/docker-overview/#docker-architecture
https://docs.docker.com/engine/docker-overview/#docker-architecture

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker Application Architecture III

Figure: Docker Application Architecture

Source: https://docs.docker.com/engine/
docker-overview/#docker-architecture

Docker Objects
Containers

Runnable Instance
Isolated from other
containers

Images
Read-Only File
Defines an Application

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 8/62

https://docs.docker.com/engine/docker-overview/#docker-architecture
https://docs.docker.com/engine/docker-overview/#docker-architecture

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Docker Benefits

Docker has the following benefits:
Less resource consumption than OS Virtualization
Isolation of Applications
Fast deployment
Perfect for testing purposes
Containers can be restarted

Docker Swarm and Kubernetes
The Docker Engine has a build in solution for Cluster deployment
and management. The swarm mode enables the control over
multiple Docker hosts and is crucial for the scalability of
applications [3]. Kubernetes is a different system that enables
deployment over multiple hosts.

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 9/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Function as a Service

Function as a Service (FaaS) has emerged as a new
technology in Cloud Computing!

FaaS reduces administration tasks and brings the focus
back to the Source Code! [4]

FaaS enables more effective event-driven applications!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 10/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Function as a Service

Figure: Google Trends for Serverless Computing

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 11/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Function as a Service

(a) (b)

(c) (d)

Figure: Popular FaaS Offerings:
(a) AWS Lambda [5]
(b) Google Cloud Functions [6]
(c) IBM Cloud Functions [7]
(d) Apache OpenWhisk [8]

Function as a Service (FaaS)
Event-driven
Scalable
Fast deployment of code
Payment per invocation

Amazon Alexa
Alexa Skills are executed in AWS
Lambda!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 12/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Public FaaS offerings – AWS Lambda

Figure: AWS Lambda [5]

AWS Lambda
Released in 2014
Fully automated
administration
Automated Scaling
Built in fault tolerance
Support for multiple
languages: Java, Node.js,
C# and Python

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 13/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Public FaaS offerings – IBM Cloud Functions

Figure: IBM Cloud Functions [7]

IBM Cloud Functions
Released in 2016
Event-driven Architecture
Automated Scaling
Apache OpenWhisk is
basis of IBM Cloud
Functions (No Vendor
Lock-in!)
Support for multiple
languages: JavaScript,
Python, Ruby, . . . 1

1More on that in Section 4
Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 14/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

FaaS Generic Architecture I

Figure: Generic FaaS Architecture [9]

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 15/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

FaaS Generic Architecture II

Edge
UI – An UI for the management of functions
API Gateway – The general API for the implemented
functions

Event Queue/Dispatcher
Event Queue – Manages the triggered Events
Dispatcher – Manages the scaling of invocations

Worker
Worker Processes/Containers – Execute the function
invocations

Interesting Paper
Figure 10 and the explanation of the architecture are taken from
the paper of Baldini et.al. [9]

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 16/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Function as a Service

The Service consists of:
Scalability – Reaction to large number of Requests

Environment – Running the code on a Platform
Virtualization – Capsulation of running code

Figure: Evolution of Virtualization [10]

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 17/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenFaaS

Figure: OpenFaaS

Source:
https://github.com/openfaas

OpenFaaS
Open Source Platform
Functions can be deployed
and scaled
Event-driven
Lightweight
Support for multiple
languages: C#, Node.js,
Python, Ruby

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 18/62

https://github.com/openfaas

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenFaaS Architecture I

Figure: OpenFaaS Architecture [11]

OpenFaaS Architecture [11]
Gateway API

Provides a Route to the
functions
UI for the management of
functions
Scales functions through
Docker

Function Watchdog
Functions are added as
Docker Images
Entrypoint for HTTP
Requests
In → STDIN
Out → STDOUT

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 19/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenFaaS Architecture II

Figure: OpenFaaS Architecture [11]

OpenFaaS Architecture [11]
Prometheus

Collects Metrics
Function Metrics can be
inspected
Can be accessed through
Web-UI

Docker
Isolates Functions in Docker
Images
Docker Swarm distributes
functions
Kubernetes can be used to
orchestrate Docker Instances

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 20/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenFaaS Benefits

OpenFaaS has the following benefits:
Open Source
Low resource consumption
Deployment of functions
Autoscaling
Build in Monitoring and Metrics (Prometheus)

OpenFaaS on Raspberry Pi
OpenFaaS together with Docker Swarm have a low resource
consumption. Therefore OpenFaaS has been installed on a cluster
of 6 Raspberry Pis. Further evaluation of the service on Raspberry
Pis has to be made. More information about installation on
Raspberry Pi [12].

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 21/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenFaas

In order to work with OpenFaas 3 packages need to be installed:
Docker
OpenFaas Framework
OpenFaas CLI

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 22/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing Docker

Install Docker:
$ curl −sSL https://get.docker.com | sh

Add docker User to <USER> User Group:
$ usermod <USER> −aG docker <USER>

Initialize Docker Swarm on Master Node:
$ docker swarm init

Command on slaves to join workers to docker swarm cluster:
$ docker swarm join −−token <TOKEN>

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 23/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenFaas

Download OpenFaaS from github:
$ git clone https://github.com/alexellis/faas/

Changing into directory and deploy OpenFaaS 2:
$ cd faas && ./deploy_stack.armhf.sh

Install OpenFaaS CLI:
$ curl −sSL cli.openfaas.com | sudo sh

2The script deploy_stack.armhf.sh is necessary for the ARM platform
Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 24/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating Functions in OpenFaas

Now that Docker and OpenFaas have been installed
deployment of functions can begin!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 25/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating an application using Minio in OpenFaaS

Application Flow 3:
The Application downloads an image and stores it in a Bucket
The image is loaded from the Bucket and then converted to
Black/White
In the last step the image is stored in another Bucket
The Application consists of OpenFaas and Minio (a private
object-based storage with S3-API)

For this Application two Functions are needed!

OpenFaaS als leichtgewichtige Basis für eigene Functions as a Service.
Henry-Norbert Cocos, Christian Baun. iX 9/2018, S.122-127, ISSN: 0935-9680

3Source Code and explanation available at:
https://blog.alexellis.io/openfaas-storage-for-your-functions/

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 26/62

https://blog.alexellis.io/openfaas-storage-for-your-functions/

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating Directory for Function

Create a functions directory:
$ mkdir functions

Change into this directory and issue the following command:
$ cd functions && faas−cli new −−lang python−armhf

loadimages
$ faas−cli new −−lang python−armhf processimages

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 27/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Templates for Python Functions

The command from the last slide will create the following
files in the functions directory:

loadimages/handler.py

loadimages/requirements.txt

loadimages.yml

processimages/handler.py

processimages/requirements.txt

processimages.yml

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 28/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Install Minio

Install Minio Client and Server as Docker Containers:
$ docker pull minio/mc
$ docker run minio/mc ls play
$ docker pull minio/minio
$ docker run −p 9000:9000 minio/minio server /data

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 29/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Start Minio Server

Start Minio Server and get Credentials:
$ docker run −p 9000:9000 minio/minio server /data
...
Endpoint: http://172.17.0.2:9000
http://127.0.0.1:9000
AccessKey: <ACCESSKEY>
SecretKey: <SECRETKEY>
...

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 30/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Configure the Minio Client

In the next step the Minio Client has to be configured.

Configure the Access:
$./mc config host add TestService http

://192.168.178.21:9000 <ACCESSKEY> <SECRETKEY>

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 31/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating the Buckets

The Minio Client is used to create two Buckets.

Creating the Buckets:
$./mc mb TestService/incoming
$./mc mb TestService/processed

One Bucket for incoming Images and one for processed Images

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 32/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

YAML File of Function loadimages

provider:
name: faas
gateway: http://192.168.178.21:8080

functions:
loadimages:

lang: python
handler: ./loadimages
image: loadimages
environment:
minio_hostname: "192.168.178.21:9000"
minio_access_key: <ACCESSKEY>
minio_secret_key: <SECRETKEY>
write_debug: true

Listing 1: File loadimages.yml

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 33/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

YAML File of Function processimages

provider:
name: faas
gateway: http://192.168.178.21:8080

functions:
processimages:
lang: python
handler: ./processimages
image: processimages
environment:
minio_hostname: "192.168.178.21:9000"
minio_access_key: <ACCESSKEY>
minio_secret_key: <SECRETKEY>
write_debug: true

convertbw:
skip_build: true
image: functions/resizer:latest
fprocess: "convert − −colorspace Gray fd:1"

Listing 2: File processimages.yml

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 34/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

requirements.txt of the Functions

minio
requests

Listing 3: File requirements.txt

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 35/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

loadimages Function in Python I

1 from minio import Minio
2 import requests
3 import json
4 import uuid
5 import os
6

7 def handle(st):
8 req = json.loads(st)
9

10 mc = Minio(os.environ[’minio_hostname’],
11 access_key=os.environ[’minio_access_key’],
12 secret_key=os.environ[’minio_secret_key’],
13 secure=False)
14

15 names = []
16 for url in req["urls"]:
17 names.append(download_push(url, mc))
18 print(json.dumps(names))

Listing 4: File loadimages Part I

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 36/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

loadimages Function in Python II

1 def download_push(url, mc):
2 # download file
3 r = requests.get(url)
4

5 # write to temporary file
6 file_name = get_temp_file()
7 f = open("/tmp/" + file_name, "wb")
8 f.write(r.content)
9 f.close()

10

11 # sync to Minio
12 mc.fput_object("incoming", file_name, "/tmp/"+file_name)
13 return file_name
14

15 def get_temp_file():
16 uuid_value = str(uuid.uuid4())
17 return uuid_value

Listing 5: File loadimages Part II

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 37/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

processimages Function in Python I

1 from minio import Minio
2 import requests
3 import json
4 import uuid
5 import os
6

7 def handle(st):
8 req = json.loads(st)
9

10 mc = Minio(os.environ[’minio_hostname’],
11 access_key=os.environ[’minio_access_key’],
12 secret_key=os.environ[’minio_secret_key’],
13 secure=False)
14

15 names = []
16 source_bucket = "incoming"
17 dest_bucket = "processed"
18

19 for file_name in req:
20 names.append(convert_push(source_bucket, dest_bucket,

↪→ file_name, mc))
21

22 print(json.dumps(names))

Listing 6: File processimages Part I

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 38/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

processimages Function in Python II

1 def convert_push(source_bucket, dest_bucket, file_name,
↪→ mc):

2 mc.fget_object(source_bucket, file_name, "/tmp/" +
↪→ file_name)

3

4 f = open("/tmp/" + file_name, "rb")
5 input_image = f.read()
6

7 # call function for b/w conversion
8 r = requests.post("http://gateway:8080/function/

↪→ convertbw", input_image)
9

10 # write to temporary file
11 dest_file_name = get_temp_file()
12 f = open("/tmp/" + dest_file_name, "wb")
13 f.write(r.content)
14 f.close()
15

16 # sync to Minio
17 mc.fput_object(dest_bucket, dest_file_name, "/tmp/"+

↪→ dest_file_name)
18

19 return dest_file_name
20

21 def get_temp_file():
22 uuid_value = str(uuid.uuid4())
23 return uuid_value

Listing 7: File processimages Part II

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 39/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Building and Deploying the Functions

Build the Functions:
$ faas−cli build −f loadimages.yml
$ faas−cli build −f processimages.yml

Deploy the Functions:
$ faas−cli deploy −f loadimages.yml
$ faas−cli deploy −f processimages.yml

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 40/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Downloading and Converting the images

Download images into the incoming Bucket:
$ echo ’{
"urls": [
"https://images.pexels.com/photos/72161/pexels−photo

−72161.jpeg?dl&fit=crop&w=640&h=318",
"https://images.pexels.com/photos/382167/pexels−photo

−382167.jpeg?dl&fit=crop&w=640&h=337"]
}’ | faas invoke loadimages

Convert the images to grey and store in processed Bucket:
$ echo ’["b0f38ebc−675c−43c1−ada7−8fb95dccee57", "34

d0ad5d−9a24−4b32−bc3e−25337f6f2f5d"]’ | faas invoke
processimages

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 41/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Incoming Bucket in Minio

Figure: Incomming Bucket

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 42/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Processed Bucket in Minio

Figure: Processed Bucket

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 43/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenWhisk

Figure: OpenWhisk [8]

OpenWhisk
Open Source Platform
Functions can be deployed
in a production ready
environment
Support for multiple
languages: JavaScript,
Python 2, Python 3, PHP,
Ruby, Swift
C, C++, Go programs
need to be compiled
before upload, Java
programs need to be
uploaded as JAR-Archives

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 44/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenWhisk Architecture I

Figure: OpenWhisk Architecture

Source:
https://tinyurl.com/y7plrxbw

OpenWhisk Architecture [8]

Components:
Nginx

Controller

Kafka

CouchDB

Invoker

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 45/62

https://tinyurl.com/y7plrxbw

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenWhisk Architecture II

Figure: OpenWhisk Architecture

Source:
https://tinyurl.com/y7plrxbw

Nginx
Loadbalancer for
incoming requests
Forwarding requests to
the controller

Controller
Checks incoming
requests
Controls the further
action

Kafka
Publish-Subscribe
Messaging Service
Queues the requests

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 46/62

https://tinyurl.com/y7plrxbw

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenWhisk Architecture III

Figure: OpenWhisk Architecture

Source:
https://tinyurl.com/y7plrxbw

CouchDB
Authentication of
requests
(permission checking)
Stores information on
the imported Functions

Invoker
Docker Container(s)
running the Function
Each Invoker can be
paused for faster
request fullfilment

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 47/62

https://tinyurl.com/y7plrxbw

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenWhisk

There are 3 ways of installing OpenWhisk:
In a Docker Container

As a virtual machine using vagrant and e.g. VirtualBox

Inside a Kubernetes Cluster

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 48/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenWhisk – Docker Container

Install OpenWhisk as Docker Containers:
$ git clone https://github.com/apache/incubator−

openwhisk−devtools.git
$ cd incubator−openwhisk−devtools/docker−compose
$ make quick−start

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 49/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenWhisk – vagrant

Install OpenWhisk with vagrant and VirtualBox:
$ git clone −−depth=1 https://github.com/apache/

incubator−openwhisk.git openwhisk
$ cd openwhisk/tools/vagrant
$./hello

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 50/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Installing OpenWhisk – Kubernetes

Install OpenWhisk inside a Kubernetes Cluster:
$ minikube start −−memory 4096 −−kubernetes−version v1

.10.5
$ minikube ssh −− sudo ip link set docker0 promisc on
$ kubectl label nodes −−all openwhisk−role=invoker
$ helm init −−wait
$ kubectl create clusterrolebinding tiller−cluster−admin

\
−−clusterrole=cluster−admin −−serviceaccount=kube−system:

default
$ git clone https://github.com/apache/incubator−openwhisk

−deploy−kube
$ helm install ./incubator−openwhisk−deploy−kube/helm/

openwhisk/ \
−−name openwhisk −−wait −−timeout 900 \
−−set whisk.ingress.type=NodePort \
−−set whisk.ingress.api_host_name=$(minikube ip) \
−−set whisk.ingress.api_host_port=31001 \
−−set nginx.httpsNodePort=31001

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 51/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating an application using MongoDB in OpenWhisk

Application Flow 4

The Application manages the Stock of a Market
For this task it stores the data in a database
The Application recieves parameters for product ID and
number of items
The Application consists of OpenWhisk and MongoDB
(NoSQL) database

Functions as a Service mit OpenWhisk. Henry-Norbert Cocos, Marcus
Legendre, Christian Baun. iX 12/2018, S.126-130, ISSN: 0935-9680

4Source Code available at: https:
//github.com/OrangeFoil/openwhisk-examples/tree/master/inventory

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 52/62

https://github.com/OrangeFoil/openwhisk-examples/tree/master/inventory
https://github.com/OrangeFoil/openwhisk-examples/tree/master/inventory

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating a function in OpenWhisk

1 import pymongo
2

3 mongo_url = ’mongodb+srv://user:password@example.org/
↪→ database’

4 mongodb_client = pymongo.MongoClient(mongo_url)
5 mongodb = mongodb_client.my_database
6

7

8 def main(params):
9 product_id = params[’product_id’]

10 stock_change = int(params[’stock_change’])
11

12 result = mongodb.inventory.find_one_and_update(
13 {’product_id’: product_id},
14 {’$inc’: {’count’: stock_change}},
15 upsert=True,
16 return_document=pymongo.collection.ReturnDocument.AFTER
17)
18

19 return {
20 ’product_id’: result[’product_id’],
21 ’count’: result[’count’]
22 }

Listing 8: File __main__.py

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 53/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Deploy the function in OpenWhisk

Deploy the function in OpenWhisk:
$ mkdir tmp−build
$ cp __main__.py tmp−build/
$ pip3 install dnspython pymongo −t tmp−build/
$ cd tmp−build
$ zip −r ../exec.zip ./∗
$ cd ..

As a ZIP-File. . .
In order to run the function in OpenWhisk, the dependencies
dnspython and pymongo need to be installed with the Python
Package Manager pip3 (Python Installs Packages)! Those
dependencies are stored with the application inside a ZIP-File.

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 54/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating Actions and Triggers

In the OpenWhisk platform events are characterized by Trigger.
An Action is used to invoke the function. A Rule binds an Action
to a Trigger.

Creating an action for updating the database:
$ wsk action create updateInventory exec.zip −−kind

python:3

Creating Triggers for increment and decrement operations:
$ wsk trigger create itemSold −−param stock_change −1
$ wsk trigger create itemRestocked −−param stock_change

1

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 55/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Creating a Rule and Trigger an Event

In order to invoke an action, a trigger needs to be fired. The Rule
restockRule and saleRule are bound to the updateInventory
action.

Creating A Rule to combine Triggers and Actions:
$ wsk rule create restockRule itemRestocked

updateInventory
$ wsk rule create saleRule itemSold updateInventory

Firing the Trigger:
$ wsk trigger fire itemRestocked −−param product_id 1234

−−param stock_change 100
$ wsk trigger fire itemSold −−param product_id 5678

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 56/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Trigger an Event

Figure: Action Invocation

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 57/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

OpenWhisk Benefits

OpenWhisk has the following benefits:
Open Source
Deployment of functions
Autoscaling
Robust and flexible (ideal for production)
Migration to public offering IBM Cloud Functions possible

OpenWhisk and IBM Cloud Functions
OpenWhisk is the basis of the public offering IBM Cloud Functions.
Therefore applications developed for OpenWhisk can be ported to
IBM Cloud Functions and vice versa without additional refactoring.
This fact gives Enterpises more flexibility in developing their service
offering!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 58/62

Container Virtualization Function as a Service OpenFaaS OpenWhisk Conclusion

Conclusion

Function as a Service characteristics:
More fine grained buisiness model (payment per invocation)
Functions have no side effects, stateless model
Scaling of functions with Container Virtualization (Docker)
Shorter developement and deployment cycles (DevOps)
Suitable technology for microservices

Outlook
FaaS is a new technology in the field of Cloud Platform Services.
With the developement of IoT, Smart Homes and other
event-driven technologies the number of private FaaS Frameworks
and public FaaS offerings will grow in the near future!

Henry-Norbert Cocos | Cloud Computing | Winter Term 2018 | Function as a Service 59/62

References I

[1] M. Eder, “Hypervisor- vs. Container-based Virtualization,”
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/
NET-2016-07-1_01.pdf, accessed December 11, 2018.

[2] “Docker Docs,” https://docs.docker.com/, accessed December 11,
2018.

[3] “Docker Swarm,” https://docs.docker.com/engine/swarm/,
accessed December 11, 2018.

[4] “Golem – Mehr Zeit für den Code,” https://www.golem.de/news/
serverless-computing-mehr-zeit-fuer-den-code-1811-137516.html,
accessed December 11, 2018.

[5] “AWS Lambda,” https://aws.amazon.com/lambda/, accessed
December 11, 2018.

[6] “Google Cloud Functions BETA,”
https://cloud.google.com/functions/, accessed December 11, 2018.

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2016-07-1/NET-2016-07-1_01.pdf
https://docs.docker.com/
https://docs.docker.com/engine/swarm/
https://www.golem.de/news/serverless-computing-mehr-zeit-fuer-den-code-1811-137516.html
https://www.golem.de/news/serverless-computing-mehr-zeit-fuer-den-code-1811-137516.html
https://aws.amazon.com/lambda/
https://cloud.google.com/functions/

References II

[7] “IBM Cloud Functions,” https://www.ibm.com/cloud/functions,
accessed December 11, 2018.

[8] “Apache OpenWhisk,” https://openwhisk.apache.org/, accessed
December 11, 2018.

[9] I. Baldini, P. C. Castro, K. S. Chang, P. Cheng, S. J. Fink,
V. Ishakian, N. Mitchell, V. Muthusamy, R. M. Rabbah,
A. Slominski, and P. Suter, “Serverless Computing: Current Trends
and Open Problems,” CoRR, vol. abs/1706.03178, 2017. [Online].
Available: http://arxiv.org/abs/1706.03178

[10] T. Lynn, P. Rosati, A. Lejeune, and V. Emeakaroha, “A Preliminary
Review of Enterprise Serverless Cloud Computing
(Function-as-a-Service) Platforms,” in 2017 IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), Dec 2017, pp. 162–169.

https://www.ibm.com/cloud/functions
https://openwhisk.apache.org/
http://arxiv.org/abs/1706.03178

References III

[11] “OpenFaaS - Serverless Functions Made Simple,”
https://docs.openfaas.com/, accessed December 11, 2018.

[12] “Your Serverless Raspberry Pi cluster with Docker,”
https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/,
accessed December 11, 2018.

https://docs.openfaas.com/
https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/

	Container Virtualization
	Function as a Service
	OpenFaaS
	OpenWhisk
	Conclusion
	Appendix
	References

