
Cluster Computing HA, HPC and HTC Libraries Gearman

2nd Slide Set Cloud Computing

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences
(1971–2014: Fachhochschule Frankfurt am Main)
Faculty of Computer Science and Engineering

christianbaun@fb2.fra-uas.de

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 1/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Agenda for Today

Cluster computing
History of cluster computing
Distinguishing criteria

Structure (homogeneous, heterogeneous)
Installation concepts (Glass-house, Campus-wide)
Fields of application
High Availability Clustering
High Performance Clustering
High Throughput Clustering
Behaviour in the event of failed nodes (Active/Passive, Active/Active)

Current situation
Advantages and drawbacks of clusters
Cluster application libraries (PVM, MPI)
Gearman

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 2/72

Cluster Computing HA, HPC and HTC Libraries Gearman

History of Cluster computing

1983: Digital Equipment Corporation (DEC) offers for its VAX-11
system a cluster solution (VAXcluster)

VAXcluster allows to connect multiple computers via a serial link
By combining multiple VAX systems, their computing power and memory
can be accessed equal to a single computer system

1987 DEC sells VAX 8974 and VAX 8978
These are clusters, which contain 4 or 8 nodes
(VAX 8700 systems) and a MicroVAX II, which is
used as console

Further information

VAXcluster system. Digital Technical Journal. Number 5. September 1987
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v01-05_sep1987.pdf

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 3/72

http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v01-05_sep1987.pdf

Cluster Computing HA, HPC and HTC Libraries Gearman

VAXcluster

CI = ComputerInterconnect
HSC = Hierarchical Storage Controller
Star = Star Coupler

Image sources:

http://hampage.hu/oldiron/vaxen/eikvms1.jpg
http://odl.sysworks.biz/disk$vaxdocmay941/decw$book/d3ywaa51.p37.decw$book
http://www.computerhistory.org/collections/catalog/102635385

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 4/72

http://hampage.hu/oldiron/vaxen/eikvms1.jpg
http://www.computerhistory.org/collections/catalog/102635385

Cluster Computing HA, HPC and HTC Libraries Gearman

History of Cluster computing

Early 1990s:
Client/Server architecture became mainstream
UNIX workstations were used in companies and universities
Workstations are only utilized 5-10% during their everyday work

The biggest part of the potential computing power is wasted
Wanted: A middleware, which makes the free computing power available
for solving complex tasks
PVM and MPI both, implement a Message Passing Layer, which is
independent of the nodes’ architecture and allows to develop cluster
applications

Mid-1990s:
Growing popularity of Clusters with commodity hardware nodes
Compared to mainframes, Clusters provide for a low price, depending on
their hardware and structure, high computing performance and/or
availability
Flexibility in terms of the application and extensibility

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 5/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Definition of Cluster Computing

Cluster computing
Clustering is parallel computing on systems with distributed memory

A cluster consists of at least 2 nodes
Each node is an independent computer system
The nodes are connected via a computer network

In clusters with just a few nodes, inexpensive computer network
technologies (Fast or Giga-Ethernet) are used
Clusters with several hundred nodes require high-speed computer
networks (e.g. InfiniBand)

Often, the nodes are under the control of a master and are attached to a
shared storage
Nodes can be ordinary PCs, containing commodity hardware,
workstations, servers or supercomputers

From the user perspective (in a perfect world). . .

the cluster works like a single system =⇒ a virtual uniprocessor system
Ideally, the users don’t know, that they work with a cluster system

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 6/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Cluster of Workstations / „Feierabendcluster“

If the nodes are only available at specific times, the cluster is called
Clusters of workstations (COWs) or Network of Workstations (NOWs)
During normal working times, the employees use the nodes of such a
cluster system as workstations

The concept was popular around the year 2000
Today, this concept not popular any more

Oliver Diedrich, NT-Workstations als Feierabend-Cluster, c’t 22/2000, P.246

More than 200 computers with Pentium II/III CPUs and with at least 64MB RAM in the
plastics laboratory of BASF in Ludwigshafen
All computers are centrally administered and run Windows NT 4.0
A WinSock server runs on every computer as a service all the time
If the WinSock server receives a request from the central host, it confirms the request
Next, the central host transmits a file (size: 10-100KB) via TCP/IP to the server, which
includes data for processing
If the transmission was successful, the WinSock server processes the data and transmits the
results back to the central host

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 7/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Distinguishing Criteria of Clusters

Structure
Homogeneous structure
Heterogeneous structure

Installation concept
Glass-house
Campus-wide

Fields of application
High Performance Clustering
High Availability Clustering
High Throughput Clustering

Behavior in the event of failed nodes
Active/Passive-Cluster
Active/Active-Cluster

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 8/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Homogeneous and Heterogeneous Clusters

The structure of clusters can be homogeneous and heterogeneous

I have never seen a
heterogeneous cluster
with different operating
systems in practice. . .

In practice, the construction of a heterogeneous cluster is generally a bad idea
The administration of homogeneous clusters is challenging, but the administration of
heterogeneous clusters is hell (especially when commodity hardware is used)

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 9/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Installation Concepts of Clusters (1/2)

Glass-house
The cluster is located in a
single room or server rack

Advantages:
Fast access to all
components for
maintenance and
troubleshooting
Nodes can be connected
via high-performance
networks
Increased protection
against sabotage

Drawbacks:
In case of a power failure or fire in the building, the operation of the
entire cluster is at risk

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 10/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Installation Concepts of Clusters (2/2)

Campus-wide
The nodes are located in
multiple buildings and
spread across the site of
the research center or
company

Advantages:
It is hard to destroy the
cluster completely

Drawbacks:
It is impossible to use
high-performance
computer networks
Often, the nodes contain
different hardware
components

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 11/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Fields of Application of Clusters

Clusters for different applications exist

1 High Availability Clustering
Objective: high availability

2 High Performance Clustering
Objective: high computing power

3 High Throughput Clustering
Objective: high throughput

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 12/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Availability Clustering (1/2)

For High Availability Clustering, highly available systems are required
This is achieved by:

Redundancy of nodes and their components
Avoiding a single point of failure

Redundancy
Redundancy comes from the Latin word redundare and means that more than enough of
something is available

Redundancy means: A system contains components, which are not
required for the functioning of the system, but they can take over the
work of identical components in case of error
By using redundant nodes, it is possible to emulate the technology and
benefits of mainframes for a low price and a high level of flexibility is
achieved
The aim of HA clustering is to archive a high availability

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 13/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Availability

The availability of a system is calculated from the mean uptime (Mean
Time Between Failures), divided by the sum of the mean uptime and
the mean downtime (Mean Time To Repair)

availability = mean uptime
mean uptime + mean downtime

To achieve high availability of the cluster, it is not sufficient to use
redundant nodes and redundant hardware inside the nodes

Uninterruptible power supplys (UPS) are required
Protection against improper use, and sabotage

For systems, which are declared as fail-safe, a replacement computer
must always be available and running, which takes over the services and
provides them in case of error

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 14/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Availability Clustering (2/2)

For High Availability Clustering, not the availability of the nodes has
top priority, but the availability of the offered services
2 groups of High Availability Clusters exist, which differ in their
behaviour in the event of failures of nodes:

Active/Passive-Cluster
Active/Active-Cluster

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 15/72

Cluster Computing HA, HPC and HTC Libraries Gearman

HA-Clustering – Active/Passive and Active/Active

Active/Passive-Cluster (also called: Hot-Standby-Clusters)
During normal operation, at least a single node is in passive state
Nodes in passive state do not provide services during normal operation
If a node fails, a passive node takes over its services
Failover = a node takes over the services of a failed node
Benefit: The services must not be designed for cluster operation
Drawback: Much potentially available performance remains unused in
normal operation

Active/Active-Cluster
All nodes run the same services
All nodes are in active state
If nodes fail, the remaining active nodes need to take over their tasks
Advantage: Better distribution of load between nodes
Drawback: Services need to be designed for cluster operation, because all
nodes access shared resources (data!) simultaneously

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 16/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Availability Clustering – Failover and Failback

Failover: Ability to automatically transfer the tasks of a failed node to
another node for minimizing the downtime

The failover functionality is usually provided by the operating system
Example: Heartbeat for Linux

http://www.linux-ha.org/wiki/Heartbeat

Heartbeat is a daemon that provides cluster infrastructure (communication and membership) services to its clients. This allows
clients to know about the presence (or disappearance!) of peer processes on other machines and to easily exchange messages with
them. In order to be useful to users, the Heartbeat daemon needs to be combined with a cluster resource manager (CRM) which
has the task of starting and stopping the services (IP addresses, web servers, etc.) that cluster will make highly available. Pacemaker
is the preferred cluster resource manager for clusters based on Heartbeat.

Failback: If failed nodes are operational again, they report their status
to the load balancer and get new jobs assigned in the future

From that point in time, the cluster again has the same performance
capability, it had before the failure of the nodes

Well written articles about Heartbeat and DRBD

Andreas Sebald. Linux-HA-Cluster mit Heartbeat und DRBD. Linux-Magazin 07/2004.
http://www.linux-magazin.de/Ausgaben/2004/07/Reservespieler

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 17/72

http://www.linux-ha.org/wiki/Heartbeat
http://www.linux-magazin.de/Ausgaben/2004/07/Reservespieler

Cluster Computing HA, HPC and HTC Libraries Gearman

Split Brain

Connection failure between nodes
The nodes still work without any trouble, only the connection between
them is disrupted
Tools like Heartbeat, which monitor the presence (or disappearance) of
nodes, assume that nodes are broken
Each node declares itself to be the primary node

In Active/Passive-Clusters =⇒ failure of the cluster (offered services)
If shared storage is used, each node tries to write on the storage

This can be avoided by using additional hardware and distinguishing the
MAC addresses

One possible solution to avoid further issues: If simultaneous access
attempts are detected from different MAC addresses, are nodes are
automatically shut down

If distributed storage is used, write requests cause inconsistent data
on the nodes

It is difficult to fix the broken consistency without loosing data

More information about the different storage architectures of High Availability Clusters present the next slides

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 18/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Architectures of High Availability Clustering

2 architectures of High Availability Clustering exist:
Shared Nothing =⇒ Distributed Storage
Shared Disk =⇒ Shared Storage

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 19/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Shared Nothing Architecture Image Source: technet.microsoft.com

In a Shared Nothing cluster, each node
has its own storage resource
Even, when a resource is physically
connected to multiple nodes, only a
single node is allowed to access it

Only if a node fails, the resource is
acquired by another node

Advantage: No lock management is required
No protocol overhead reduces the performance
In theory, the cluster can scale almost in a linear way

Drawback: Higher financial effort for storage resources, because the
data can not be distributed in an optimal way

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 20/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Shared Nothing with DRBD (1/3)

Distributed Replicated Block Device (DRBD)
Free software to build up a network storage for Shared Nothing clusters,
without an expensive Storage Area Network (SAN)

Shared storage is always a single point of failure, since only the cluster
nodes are designed in a redundant way

Redundant SAN solutions are expensive (> 100.000 e)

Image Source: M. Jones, https:
//www.ibm.com/developerworks/
library/l-drbd/index.html

Well written articles about DRBD

iX 3/2010. Florian Haas. Hochverfügbare Shared Nothing Cluster mit DRBD. P.120-123
M. Tim Jones. High availability with the Distributed Replicated Block Device. 2010.
https://www.ibm.com/developerworks/library/l-drbd/

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 21/72

https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/

Cluster Computing HA, HPC and HTC Libraries Gearman

Shared Nothing with DRBD (2/3)

Functioning:
A primary server and a secondary server exist

Write requests are carried out by the primary server and afterwards are
send to the secondary server
Only if the secondary server reports the successful write operation to the
primary server, the primary server reports the end of the successful write
operation

Practically, it implements RAID 1 via TCP
Primary server fails =⇒ secondary server becomes primary server

If a failed system is operational again, only the data blocks, which have
changed during the outage are resynchronized

Read access is always carried out locally (=⇒ better performance)

Image Source: M. Jones, https:
//www.ibm.com/developerworks/
library/l-drbd/index.html

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 22/72

https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/index.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Shared Nothing with DRBD (3/3)
Image Source: M. Jones, https://www.ibm.com/
developerworks/library/l-drbd/index.html

DRBD is a part of the
Linux kernel since version
2.6.33 (February 2010)
Because DRBD operates
inside the Linux kernel at
block level, the system is
transparent for the layers
above it

DRBD can be used as a basis for:
Conventional file systems, such as ext3/4 or ReiserFS
Shared-storage file systems, such as Oracle Cluster File System (OCFS2)
and Global File System (GFS2)

If shared-storage file systems are used, all nodes must have direct I/O
access to the device

Another logical block device, such as the Logical Volume Manager (LVM)
Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 23/72

https://www.ibm.com/developerworks/library/l-drbd/index.html
https://www.ibm.com/developerworks/library/l-drbd/index.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Shared Disk Architecture Image Source: technet.microsoft.com

In a Shared Disk cluster, all nodes have access to a shared storage
Several possible ways exist to connect the nodes to the storage:
SAN (Storage Area Network) via Fibre Channel

Expensive, but provides high performance
Provides block-level access to storage devices via the network.

NAS (Network Attached Storage)
Easy-to-use file server
Provides file system-level access to
storage devices via the network
Can also be implemented as a pure
software solution

Examples: FreeNAS and Openfiler
iSCSI (Internet Small Computer System
Interface)

SCSI protocol via TCP/IP
SAN-like access via the IP-network

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 24/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Performance Clustering (1/2)

Objective: High computing power
Also called: Clustering for Scalability

High Performance Clusters provide the performance of mainframe
computers for a much lower price
These clusters are usually made of commodity PCs or workstations
Typical application area:

Applications, which implement the Divide and Conquer principle
Such applications split big tasks into multiple sub-tasks, evaluates them
and puts together the sub-task results to the final result

Applications, used for analyzing large amounts of data

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 25/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Performance Clustering (2/2) Image Source: Reddit

Application examples: Crash test simulation,
weather forecast, optimization of components,
Monte Carlo simulation, flight path calculation,
data mining, flow simulation, strength analysis,
rendering of movies or clips, simulation of the
night sky, variant calculating for chess, prime
number computation,. . .

In 1995 Pixar rendered Toy Story on a 294 x 100MHz CPU Sun
SPARCstation 20 cluster

Each SPARCstation 20 (single processor) had SunOS 5.4 installed
and a HyperSPARC 100MHz with 27.5066 MFLOPS
=⇒ The theoretical maximum performance of the setup was 294
* 27.5066 = 8086.94MFLOPS

Advantages:
Low price and vendor independence
Defective components can be obtained in a quick and inexpensive way
It is easy to increase the performance in a short time via additional nodes

Drawback:
High administrative and maintenance costs, compared with mainframes

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 26/72

Cluster Computing HA, HPC and HTC Libraries Gearman

High Performance Clustering – Beowulf Cluster

If a free operating system is used =⇒ Beowulf cluster
If a Windows operating system is used =⇒ Wulfpack
A Beowulf cluster is never a cluster of workstations (COW)

Beowulf clusters consist of commodity PCs or workstations, but the
nodes of a Beowulf cluster are used only for the cluster

The cluster is controlled via a master node
The master distributes (schedules) jobs and monitors the worker nodes

Worker nodes are only accessible via the network connection
They are not equipped with I/O devices like screens or keyboards

Worker nodes contain commodity PC components and are not
redundant (=⇒ designed for high availability)

A potential issue is the failure of the cooling of the system components
Fans in nodes and power supplies have a limited lifetime and fail without
any warning
Modern CPUs cannot operate without adequate cooling

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 27/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Stone SouperComputer (1/2)

Image source: http://www.climatemodeling.org/~forrest/linux-magazine-1999/

Example for a Beowulf cluster, made of discarded office computers
http://www.extremelinux.info/stonesoup/

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 28/72

http://www.climatemodeling.org/~forrest/linux-magazine-1999/
http://www.extremelinux.info/stonesoup/

Cluster Computing HA, HPC and HTC Libraries Gearman

Stone SouperComputer (2/2)

Built in 1997
Mostly 486DX-2/66 Intel CPUs
Some Pentiums
10Mbit/s Ethernet
RedHat Linux, MPI and PVM
Extremely heterogeneous structure
No purchase costs
High setup and administration effort
Everything handmade

Image source: http://www.climatemodeling.org/~forrest/linux-magazine-1999/

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 29/72

http://www.climatemodeling.org/~forrest/linux-magazine-1999/

Cluster Computing HA, HPC and HTC Libraries Gearman

Later Generations of Beowulf Clusters (1/2)

Image source: http://archiv.tu-chemnitz.de/pub/2000/0089/data/clic.html

Vendors, such as Megware in Chemnitz, sell complete Beowulf clusters
Image: Chemnitzer LInux Cluster (CLIC) from 2000

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 30/72

http://archiv.tu-chemnitz.de/pub/2000/0089/data/clic.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Later Generations of Beowulf Clusters (2/2)

Image source: http://tina.nat.uni-magdeburg.de

Tina (Tina is no acronym) in Magdeburg from 2001
Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 31/72

http://tina.nat.uni-magdeburg.de

Cluster Computing HA, HPC and HTC Libraries Gearman

State of the Art of Cluster Computing

Image source (right image):
http://physics.bu.edu/~sandvik/clusters.html

A Cluster of Motherboards

The cluster in the right image has 48-nodes

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 32/72

http://physics.bu.edu/~sandvik/clusters.html

Cluster Computing HA, HPC and HTC Libraries Gearman

High Throughput Clustering

Objective: Maximize throughput
Such clusters consist of servers, which are used to process incoming
requests
Such clusters are not used for extensive calculations

Tasks must not be split into sub-tasks
The individual tasks (requests) are small and a single PC could handle
them

Typical fields of application of High Throughput Clustering:
Web servers
Internet search engines

Large compute jobs =⇒ High Performance Cluster
Multiple small compute jobs (in a short time) =⇒ High Throughput
Cluster

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 33/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Today: Clusters at Universities

http://cs.boisestate.edu/~amit/research/beowulf/ http://physics.bu.edu/~sandvik/clusters.html

Beowulf clusters, built up from commodity hardware
=⇒ low acquisition cost
High effort for administration (handmade)
=⇒ irrelevant, because students do the administration

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 34/72

http://cs.boisestate.edu/~amit/research/beowulf/
http://physics.bu.edu/~sandvik/clusters.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Today: Research and Industry (Example: HP C7000)

Image source: http://imagehost.vendio.com/bin/imageserver.x/00000000/pdneiman/DSC04040.JPG

Compact blade servers or so-called pizza boxes
Professional management tools (like HPE iLO) and redundant
components simplify the administration

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 35/72

http://imagehost.vendio.com/bin/imageserver.x/00000000/pdneiman/DSC04040.JPG

Cluster Computing HA, HPC and HTC Libraries Gearman

Calculation Example about the Possible Packing Density

A 19 inch rack contains up to 4 blade enclosures (BladeCenters)
A HP C7000 BladeCenter provides 16 blade slots
Blades exist, which conain 2 independent servers

e.g. HP Blade ProLiantBL2x220c G5
2 servers per blade. Completely independent computers
Each server contains: 2x Intel Quad Core Xeon (2,33 GHz) and 16 GB
RAM

=⇒ 8 cores per server
=⇒ 16 cores per blade
=⇒ 256 cores per blade enclosure (BladeCenter)
=⇒ 1024 cores per 19 inch rack
The packing density increases

Intel Xeon processors with 6 cores (Dunnington), with 8 cores (Nehalem-EX), with 18 cores (Haswell-EX) and with 22 cores
(Broadwell) are already available. AMD offers the Opteron (Magny-Cours) with 12 cores and the Ryzen (Threadripper) with 32 cores

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 36/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Classification of Clusters

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 37/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Advantages and Drawbacks of Clusters

Advantages:
Flexibility and extensibility

The number of nodes of a cluster can be dynamically increased or
decreased according to the needed resources

Lower purchase price campared with supercomputers
Simple replacement of commodity hardware components

Drawbacks:
Errors occur more often compared with a single supercomputer
Clusters consist of many independent systems
=⇒ higher administrative costs and personnel expenses compared with
a single or few supercomputers
High effort for distributing and controlling applications

If the number of nodes is increased, the effort increases too

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 38/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Libraries for Cluster Applications

For the development of cluster applications, several libraries exist, which
provide message passing functionality, independent of the cluster
structure and the specific hardware
Popular message passing systems:

Parallel Virtual Machine (PVM)
Message Passing Interface (MPI)

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 39/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Libraries for Cluster Applications (PVM)

Parallel Virtual Machine (PVM)
Developed from 1989 onwards
Provides a uniform programming interface for the creation of a parallel
computing unit with distributed memory
Supports C/C++ and Fortran 77/90
Consists of a daemon, libraries and tools

PVM is not a programming language!
Especially suited for heterogeneous environments

Converts e.g. automatically between little endian and big endian
Focus is not performance, but portability

Good PVM book (freely available in PostScript and HTML)

Janusz Kowalik (1994). PVM: Parallel Virtual Machine.
A Users’ Guide and Tutorial for Networked Parallel Computing.
http://www.netlib.org/pvm3/book/pvm-book.html

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 40/72

http://www.netlib.org/pvm3/book/pvm-book.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Libraries for Cluster Applications (MPI)

Message Passing Interface (MPI)
Development started in 1993-94
Collection of functions (e.g. for process communication) to simplify the
development of applications for parallel computers
The library can be used with C/C++ and Fortran 77/90

MPI is not a programming language!
Contains no daemon
Implements message-based communication (message passing)
Especially suited for homogeneous environments
Focus: Performance and security
MPI implements > 100 functions and several constants
Implementations: LAM/MPI (obsolete), OpenMPI, MPICH2,. . .

MPI tutorial from Stefan Schaefer and Holger Blaar

http://www2.informatik.uni-halle.de/lehre/mpi-tutorial/index.htm

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 41/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Selection of important Functions (1/5)

MPI_Init(&argc,&argv)
Initialization routine =⇒ starts the MPI environment
Defines the communicator MPI_COMM_WORLD

A communicator contains a group of processes and a communication
context
MPI_COMM_WORLD contains all processes

The arguments argc and argv are pointers to the parameters of the
main function main

The main function always receives 2 parameters from the operating
system
argc (argument count) contains the number of parameters passed
argv[] (argument values) contains the parameters itself
The names of the variables can be freely selected, but they are usually
named argc and argv
Not command-line parameters passed =⇒ argc = 1

Source: http://www2.informatik.uni-jena.de/cmc/racluster/mpi-leitfaden

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 42/72

http://www2.informatik.uni-jena.de/cmc/racluster/mpi-leitfaden

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Selection of important Functions (2/5)

MPI_Comm_Size(MPI_Comm comm, int size)
Determines the number of processes in a communicator
size is the output

1 # include "mpi.h"
2
3 int size;
4 MPI_Comm comm;
5 ...
6 MPI_Comm_size (comm , &size);
7 ...

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 43/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Selection of important Functions (3/5)

MPI_Comm_Rank(MPI_Comm comm, int rank)
Determines the rank (identification number) of the calling process in the
communicator
rank is the output
The rank is used by MPI for process identification
The rank number is unique within a communicator
Processes are numbered sequentially, starting from zero

1 # include "mpi.h"
2
3 int rank;
4 MPI_Comm comm;
5
6 ...
7 MPI_Comm_rank (comm , &rank);
8 if (rank ==0) {
9 ... code for process 0 ...

10 }
11 else {
12 ... code for the other processes ...
13 }

Source: http://www2.informatik.uni-jena.de/cmc/racluster/mpi-leitfaden

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 44/72

http://www2.informatik.uni-jena.de/cmc/racluster/mpi-leitfaden

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Selection of important Functions (4/5)

MPI_Get_processor_name(char *name, int *resultlen)
Determines the name of the processor
name is the output
The length (number of characters) of the name is returned in resultlen
The name identifies the hardware, where MPI runs

The exact output format is implementation-dependent and may by equal
with the output of gethostname

1 # include "mpi.h"
2 int MPI_Get_processor_name (
3 char *name ,
4 int * resultlen)

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 45/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Selection of important Functions (5/5)

MPI_Finalize()
Stops the MPI environment
All processes need to call MPI_Finalize(), before they kill themselves

MPI_Abort(MPI_Comm comm, int errorcode)
Terminates the MPI environment
comm = Communicator (handle), whose processes are terminated
errorcode = Error code, which is returned to the calling environment

1 # include "mpi.h"
2
3 int main(int argc , char *argv []) {
4
5 int errorcode ;
6 MPI_Comm comm;
7
8 ...
9 MPI_Abort (comm , errorcode);

10 ...
11 }

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 46/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Simple MPI Example (1/3)

Start a MPI cluster with 3 nodes (1 master, 2 slaves) in EC2
Start 3 instances (ami-06ad526f) with Ubuntu 11:04 in US-East

Install the required packages in all instances:
$ sudo apt -get -y install make gcc g++ openmpi -bin openmpi - common libopenmpi -dev

Generate public key on the master:
$ ssh - keygen -t rsa

Append the contend of .ssh/id_rsa.pub (master) to
.ssh/authorized_keys (slaves)
Insert into /etc/hosts on the master:
10.252.186.133 domU -12 -31 -38 -00 -B5 -77. compute -1. internal master
10.223.49.141 domU -12 -31 -38 -07 -32 -63. compute -1. internal node1
10.253.191.213 domU -12 -31 -38 -01 -B8 -27. compute -1. internal node2

Create file hosts.mpi on the master with this content:
master
node1
node2

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 47/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Simple MPI Example (2/3) – Say Hello to the Processors
1 # include <mpi.h>
2 # include <stdio .h>
3 # include <unistd .h>
4
5 int main(int argc , char *argv []) {
6 // variable definitions
7 int size , rank , namelen ;
8 char processor_name [MPI_MAX_PROCESSOR_NAME];
9

10 // Start MPI environment
11 MPI_Init (& argc , &argv);
12
13 // How many processes contains the MPI environment ?
14 MPI_Comm_size (MPI_COMM_WORLD , &size);
15
16 // What is out number we in the MPI environment ?
17 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
18
19 // What is the name of the processor ?
20 MPI_Get_processor_name (processor_name , & namelen);
21
22 // Output of each process
23 printf ("Ich bin Prozess Nr. %d von %d auf %s\n", rank , size , processor_name);
24
25 // Stop MPI environment
26 MPI_Finalize ();
27
28 // Kill application with exit code 0 (EXIT_SUCCESS)
29 return 0;
30 }

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 48/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Simple MPI Example (3/3)

Compile program:
$ mpicc hello_world .c -o hello_world

Distribute the program in the cluster:
The program must be stored on each node in the same directory!

$ scp hello_world node1 :~
$ scp hello_world node2 :~

Program execution (6 processes) in the cluster:
$ mpirun -np 6 --hostfile hosts .mpi hello_world
Ich bin Prozess Nr. 0 von 6 auf domU -12 -31 -38 -00 -20 -38
Ich bin Prozess Nr. 1 von 6 auf ip -10 -126 -43 -6
Ich bin Prozess Nr. 2 von 6 auf domU -12 -31 -38 -00 -AD -95
Ich bin Prozess Nr. 4 von 6 auf ip -10 -126 -43 -6
Ich bin Prozess Nr. 3 von 6 auf domU -12 -31 -38 -00 -20 -38
Ich bin Prozess Nr. 5 von 6 auf domU -12 -31 -38 -00 -AD -95

The CPUs respond in random order
What is the reason?

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 49/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Send-/Receive (1/3)

MPI_Send(int buffer, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Sends a message (blocking) to another process in the communicator
buffer = first address of the transmit buffer
count = number of elements in the transmit buffer (not negative)
datatype = MPI data type of the elements in the transmit buffer
dest = rank of the receiver process in the communicator
tag = ID for distinguishing the messages
comm = communicator

All parameters are input parameters
The function sends count data objects of type datatype from address
buffer (=⇒ transmit buffer) with the ID tag to the process with rank
dest in communicator comm

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 50/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Data Types

MPI data type C data type Used for. . . Size Value range
MPI_CHAR signed char Chars 1Byte -127 . . . +127
MPI_UNSIGNED_CHAR unsigned char Chars 1Byte 0 . . . 255
MPI_SHORT signed short int Integers 2Bytes -32.768 . . . 32,767
MPI_UNSIGNED_SHORT unsigned short int Integers 2Bytes 0 . . . 65.535
MPI_INT signed int Integers 2-8Bytes Depends on the architecture
MPI_UNSIGNED unsigned int Integers 2-8Bytes Depends on the architecture
MPI_LONG signed long int Integers 4Bytes -2.147.483.648 . . . 2.147.483.647
MPI_UNSIGNED_LONG unsigned long int Integers 4Bytes 0 . . . 4.294.967.295
MPI_FLOAT float Floating point numbers 4Bytes Single precision
MPI_DOUBLE double Floating point numbers 8Bytes Double precision
MPI_LONG_DOUBLE long double Floating point numbers 16Bytes Quadruple precision
MPI_BYTE — Floating point numbers 1Byte 0 . . . 255

The integer value range depends on the used C compiler used and
architecture (2, 4 or 8Bytes)

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 51/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Send-/Receive (2/3)

MPI_Recv(int buffer, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm,
MPI_Status status)

Receive a message (blocking)
buffer = first address of the receive buffer ⇐= output parameter
count = number of elements in the receive buffer (not negative)
datatype = MPI data type of the elements in the receive buffer
source = rank of the sender process in the communicator or
MPI_ANY_SOURCE
tag = ID for distinguishing the messages. For receiving messages with
any identifier, the constant MPI_ANY_TAG is used
comm = communicator
status = contains the rank of the sender process source and the
message identifier tag ⇐= output parameter

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 52/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Send-/Receive (3/3)

MPI_Get_count(status, datatype, count)
Determines the number of received elements

count = number of received elements (not negative) ⇐= output
parameter
status = status upon the return of the receive operation
datatype = MPI data type of the elements in the receive buffer

1 # include "mpi.h"
2 # define MAXBUF 1024
3
4 int i, count ;
5 void * recvbuf ;
6 MPI_Status status ;
7 MPI_Comm comm;
8 MPI_Datatype datatype ;
9

10 ...
11 MPI_Recv (recvbuf , MAXBUF , datatype , 0, 0, comm , & status);
12 MPI_Get_count (& status , datatype , & count);
13 for (i=0; i& ltcount ; i++) {
14 ...
15 }
16 ...

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 53/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Simple MPI Example (1/2) – Send and Receive
1 # include "mpi.h"
2 # include <stdio .h>
3
4 int main(int argc , char *argv []) {
5 int size , rank , dest , source , rc , count , tag =1;
6 char inmsg , outmsg =’x’;
7 MPI_Status Stat;
8 MPI_Init (& argc ,& argv);
9 MPI_Comm_size (MPI_COMM_WORLD , &size); // Get number of processes in the MPI environment

10 MPI_Comm_rank (MPI_COMM_WORLD , &rank); // Get nrocess number in the MPI environment
11
12 if (rank == 0) {
13 dest = 1;
14 source = 1;
15 MPI_Send (& outmsg , 1, MPI_CHAR , dest , tag , MPI_COMM_WORLD);
16 MPI_Recv (& inmsg , 1, MPI_CHAR , source , tag , MPI_COMM_WORLD , &Stat);
17 }
18 else if (rank == 1) {
19 dest = 0;
20 source = 0;
21 MPI_Recv (& inmsg , 1, MPI_CHAR , source , tag , MPI_COMM_WORLD , &Stat);
22 MPI_Send (& outmsg , 1, MPI_CHAR , dest , tag , MPI_COMM_WORLD);
23 }
24
25 MPI_Get_count (& Stat , MPI_CHAR , & count);
26 printf ("Task %d: Received %d char(s) from task %d with tag %d \n",
27 rank , count , Stat. MPI_SOURCE , Stat. MPI_TAG);
28 MPI_Finalize (); // Stop MPI environment
29 return 0; // Kill application with exit code 0 (EXIT_SUCCESS)
30 }

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 54/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Simple MPI Example (2/2) – Send and Receive

Source of the example

http://coewww.rutgers.edu/www1/linuxclass2005/lessons/lesson13/sec_8.html

Compile program:
$ mpicc sendrecv .c -o sendrecv

Distribute the program in the cluster:
The program must be stored on each node in the same directory!

$ scp sendrecv node1 :~
$ scp sendrecv node2 :~

Program execution (2 processes) in the cluster:
$ mpirun -np 2 --hostfile hosts .mpi sendrecv
Task 0: Received 1 char(s) from task 1 with tag 1
Task 1: Received 1 char(s) from task 0 with tag 1

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 55/72

http://coewww.rutgers.edu/www1/linuxclass2005/lessons/lesson13/sec_8.html

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Broadcast Sending (1/2)

MPI_Bcast(int buffer, int count,
MPI_Datatype datatype,
int root, MPI_Comm comm)

Send a message of process root to all other
processes in the communicator

buffer = first address of the transmit buffer
count = number of elements in the transmit
buffer (not negative)
datatype = MPI data type of the elements in the
transmit buffer
root = rank of the sender process in the
communicator
comm = communicator

All processes in the communicator must call the
function

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 56/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Broadcast Sending (2/2)

1 # include "mpi.h"
2 # define ROOT 0
3
4 int myid , *buffer , bufsize ;
5
6 ...
7 MPI_Comm_rank (MPI_COMM_WORLD , &myid);
8 if (myid == ROOT) {
9 ... get or create data ...

10 MPI_Bcast (buffer , bufsize , MPI_INT , ROOT , MPI_COMM_WORLD);
11 ...
12 }
13 else {
14 ...
15 buffer = malloc (bufsize * sizeof (int));
16 MPI_Bcast (buffer , bufsize , MPI_INT , ROOT , MPI_COMM_WORLD);
17 ...
18 }
19 ...

Source: http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/mpi_fkt_liste.html

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 57/72

http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/mpi_fkt_liste.html

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Scatter

MPI_Scatter(int sendbuf, int sendcount,
MPI_Datatype sendtype,
int recvbuf, int recvcount,
MPI_Datatype recvtype,
int root, MPI_Comm comm)

While MPI_Bcast sends the same piece of data to all processes,
MPI_Scatter sends chunks of an array to different processes

sendbuf + recvbuf = first address of the transmit/receive buffer
sendcount + recvcount = number of elements in the transmit/receive
buffer (not negative and typically equal size)
sendtype + recvtype = MPI data type of the elements in the
transmit/reiceive buffer
root = rank of the sender process in the communicator
comm = communicator

All processes in the communicator must call the function
Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 58/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Gather

MPI_Gather(int sendbuf, int sendcount,
MPI_Datatype sendtype,
int recvbuf, int recvcount,
MPI_Datatype recvtype,
int root, MPI_Comm comm)

MPI_Gather is the inverse of MPI_Scatter

Instead of distributing elements from one process to many processes,
MPI_Gather takes elements from many processes and gathers them to
one single process.
All parameters are equal to MPI_Scatter

All processes in the communicator must call the function

Source: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 59/72

http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Allgather

MPI_Allgather(int sendbuf, int sendcount,
MPI_Datatype sendtype,
int recvbuf, int recvcount,
MPI_Datatype recvtype,
MPI_Comm comm)

Given a set of elements distributed across all processes,
MPI_Allgather will gather all of the elements to all the processes.
MPI_Allgather is basically an MPI_Gather followed by an MPI_Bcast

All parameters are equal to MPI_Scatter and MPI_Gather with the
difference that there is no root process in MPI_Allgather

All processes in the communicator must call the function

Source: http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 60/72

http://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather/

Cluster Computing HA, HPC and HTC Libraries Gearman

Summary on Send and Receive Operations

MPI_Send and MPI_Recv implement one-to-one communication
MPI_Bcast and MPI_Scatter implement one-to-many communication
MPI_Gather implements many-to-one communication
MPI_Allgather implements many-to-many communication

The functions MPI_Bcast, MPI_Scatter, MPI_Gather and MPI_Allgather must be called by all processes in the communicator!

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 61/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Functions – Barrier

MPI_Barrier(MPI_Comm comm)
Blocks the execution of the calling process, until all processes in the
communicator comm have called the barrier function

comm = communicator
1 # include "mpi.h"
2
3 MPI_Comm comm;
4
5 ...
6 MPI_Barrier (comm);
7 ...

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 62/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Time Measurements in MPI

double MPI_Wtime(void)
Provides a number of seconds as a double-precision floating-point number
Time measurements require multiple calls of this routine

comm = communicator
1 # include "mpi.h"
2
3 double starttime , endtime , time_used ;
4
5 ...
6 starttime = MPI_Wtime ();
7 ... program part , whose time will be measured ...
8 endtime = MPI_Wtime ();
9 time_used =endtime - starttime ;

10 ...
11 }

Source: http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/mpi_fkt_liste.html

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 63/72

http://www.tu-chemnitz.de/informatik/RA/projects/mpihelp/mpi_fkt_liste.html

Cluster Computing HA, HPC and HTC Libraries Gearman

Reduces Values on all Processes to a single Value

MPI_Reduce(const void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Reduces values on all processes to a single value on process root
sendbuf = address of send buffer (input parameter)
recvbuf = address of receive buffer on root (output parameter)
count = number of elements in the transmit buffer (not negative)
datatype = MPI data type of the elements in the transmit buffer
op = reduce operation
root = rank of the root process in the communicator
comm = communicator (all processes in the communicator must call the
function)

The reduction operations defined by MPI include:

MPI_MAX (Returns the maximum element)
MPI_MIN (Returns the minimum element)
MPI_SUM (Sums the elements)
MPI_PROD (Multiplies all elements)
MPI_MAXLOC (Returns the maximum value and the rank of the process that owns it)
MPI_MINLOC (Returns the minimum value and the rank of the process that owns it)

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 64/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Example: Calculation of π via Monte Carlo Simulation

r = Radius
A = Surface ratio
C = Circle
S = Square

Inscribe a circle of radius r inside a square with side
length 2r
Generate random dots in the square

The number of dots in AC in relation to the number of
dots in AS is equal to the surface ratio

AC
AS

= π · r2
(2 · r)2 = π · r2

4 · r2 = π

4
The dots can be generated (X/Y axis values via
random) in parallel by the workers
The master receives from each worker the number of
calculated dots in AC and calculates:

4 · dots in AC
dots in AS

= π

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 65/72

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Example – Calculate π (1/3)
1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <math.h>
4 # include "mpi.h"
5
6 int main(int argc , char *argv []) {
7
8 int myid , numprocs ;
9

10 double PI25DT = 3.141592653589793238462643;
11 double t1 , t2;
12
13 long long npts = 1e11;
14 long long i, mynpts ;
15
16 long double f,sum , mysum ;
17 long double xmin ,xmax ,x;
18
19 // Initialization routine => starts the MPI environment
20 // Defines the communicator MPI_COMM_WORLD
21 MPI_Init (& argc ,& argv);
22 // Determines the number of processes in a communicator
23 MPI_Comm_size (MPI_COMM_WORLD ,& numprocs);
24 // Determines the rank (id) of the calling process in the communicator
25 MPI_Comm_rank (MPI_COMM_WORLD ,& myid);

This Source Code is influenced a lot by this Source. . .

https://web.archive.org/web/20160812014841/http://chpc.wustl.edu/mpi-c.html

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 66/72

https://web.archive.org/web/20160812014841/http://chpc.wustl.edu/mpi-c.html

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Example – Calculate π (2/3)
1 // Data decomposition . Each process gets a part of the work
2 mynpts = npts/ numprocs ;
3
4 if (myid == 0) {
5 // Returns the time in seconds since an arbitrary time in the past
6 t1 = MPI_Wtime ();
7 }
8
9 mysum = 0.0;

10 xmin = 0.0;
11 xmax = 1.0;
12
13 // Seed the pseudo random number generator
14 srand (time (0));
15
16 for (i=0; i< mynpts ; i++) {
17 // (long double)rand () /(long double) RAND_MAX
18 // returns a random number between 0 and 1.
19 // (long double)rand () /(long double) RAND_MAX *(xmax -xmin)
20 // returns a random number between 0 and max - min.
21 // the whole expression will return a random number between 0+ min and min +(max -min)
22 // => between min and max.
23 x = (long double)rand () /(long double) RAND_MAX *(xmax -xmin) + xmin;
24 // Each process does a partial sum over its own points .
25 mysum += 4.0/(1.0 + x*x);
26 }

How to generate a random number between 0 and 1?

https://stackoverflow.com/questions/6218399/how-to-generate-a-random-number-between-0-and-1/6219525

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 67/72

https://stackoverflow.com/questions/6218399/how-to-generate-a-random-number-between-0-and-1/6219525

Cluster Computing HA, HPC and HTC Libraries Gearman

MPI Example – Calculate π (3/3)
1 // Take all the processes values of mysum and add them up into sum on process 0.
2 MPI_Reduce (& mysum ,&sum ,1, MPI_LONG_DOUBLE ,MPI_SUM ,0, MPI_COMM_WORLD);
3
4 if (myid == 0) {
5 // Returns the time in seconds since an arbitrary time in the past
6 t2 = MPI_Wtime ();
7
8 f = sum/npts;
9

10 printf ("Pi calculated with %lld points . \n",npts);
11 printf ("Pi calculated : %.16f \n",f);
12 printf (" Correct value of Pi: %.16f \n",PI25DT);
13 printf (" Error is: %.16f \n",fabs(f- PI25DT));
14 printf (" Elapsed time [s] for the relevant part of the program : %f\n", t2 - t1);
15 }
16
17 // Stop the MPI environment
18 MPI_Finalize ();
19 }

1 $ time mpirun -np 512 --hostfile hosts_4cores_128 .mpi /mnt/ cluster_128 /pi
2 Pi calculated with 100000000000 points .
3 Pi calculated : 3.1415785751520118
4 Correct value of Pi: 3.1415926535897931
5 Error is: 0.0000140784377813
6 Elapsed time [s] for the relevant part of the program : 37.651207
7
8 real 0m46 .394s
9 user 0m18 .860s
10 sys 0m3 .020s

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 68/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Gearman http://www.gearman.org

Framework for developing distributed applications
Free Software (BSD License)
Supports C, Pearl, PHP, Python, C#, Java, .NET and UNIX shell

Assigns one of 3 roles to every computer involved
Clients transfer jobs to the Job Servers
Job Server assign jobs of the clients to the Workers
Worker register themselves at Job Servers and execute jobs

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 69/72

http://www.gearman.org

Cluster Computing HA, HPC and HTC Libraries Gearman

Gearman

The name Gearman is an anagram for manager
Garman only distributes jobs

Gearman should only be used in secure private networks
The communication is not encrypted and uses port 4730
No mechanism for the authentication of the systems is implemented

Clients and workers access shared data
Cluster file systems like GlusterFS or protocols such as NFS or Samba
can be used

Helpful article about Gearman (in German language)

Garman verteilt Arbeit auf Rechner im LAN, Reiko Kaps, c’t 24/2010, P.192

The next slides contain an application example from the article

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 70/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Gearman – Example of a Worker Script

Client and worker both, access via /src/media a shared file system
The shared file system contains images that need to be resized

The workers scale via ImageMagick convert

Shell script resizer-worker.sh

#/bin/bash
INFILE="$1"

echo "Converting ${INFILE} on $HOSTNAME" >> /src/media/g.log

convert "${INFILE}" -resize 1024 "${INFILE}"-small.jpg

Register the worker script (-w) at the Job Server „gman-jserver“ (-h)
with the function name „Resizer“ (-f):

gearman -h gman-jserver -w -f Resizer xargs resizer-worker.sh

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 71/72

Cluster Computing HA, HPC and HTC Libraries Gearman

Gearman – Example of a Client Job

This command starts the image processing

find /srv/media/images -name "*.jpg" \
-exec gearman -b -h gman-jserver -f Resizer {} \;

find searchs for JPG images in the path /srv/media/images

Via -exec, the file path is submitted to the Gearman client
The client submits the file path to the Job Server, who passes it with
the function Resizer to the worker
Because of the argument -b, the jobs are executed in background and
the client is released immediately

Prof. Dr. Christian Baun – 2nd Slide Set Cloud Computing – Frankfurt University of Applied Sciences – SS2018 72/72

	Cluster Computing
	History of Cluster computing
	VAXcluster
	Definition
	Distinguishing Criteria
	Homogeneous and Heterogeneous Clusters
	Installation concepts
	Fields of Application of Clusters

	HA, HPC and HTC
	Availability
	Active/Passive and Active/Active
	Failover and Failback
	Split Brain
	Architectures of High Availability Clustering
	Shared Nothing Architecture
	Shared Nothing with DRBD
	Shared Disk Architecture
	High Performance Clustering
	Beowulf Cluster
	Stone SouperComputer
	Later Generations of Beowulf Clusters
	High Throughput Clustering
	Today: Clusters at Universities
	Today: Research and Industry
	Calculation Example about the Possible Packing Density
	Classification of Clusters
	Advantages and Drawbacks of Clusters

	Libraries
	PVM
	MPI
	MPI Functions – Selection of important Functions
	Simple MPI Example
	MPI Data Types
	MPI Example – Send and Receive
	MPI Functions – Broadcast Sending
	MPI Functions – Scatter
	MPI Functions – Gather
	MPI Functions – Allgather
	MPI Functions – Barrier
	Time Measurements in MPI
	MPI Example – Calculate Pi

	Gearman
	Gearman – Basic Information

