
Frankfurt University of Applied
Sciences

Cloud Computing

AZURE DevOps

Under the guidance of:

Prof. Christian Braun

Submitted by:

Obayomi Dolapo Anthony - 1294064

Gaurav Kapadiya -1319237

Julius Komla Duphey - 1327753

Divya Athyala - 1272659

1

TABLE OF CONTENTS

I. Introduction . iv

II. SERVICES OF AZURE DEVOPS v

2.1 Azure Repos . v
2.2 Azure Pipelines . vi
2.3 Create Build Pipelines . vi
2.4 Deploying Applications with Azure DevOps vii

III. DEPLOYING AZURE KUBERNETES WEB SERVICE . . viii

3.1 Requirements and Process . viii
3.2 Running the Web App locally on Windows ix
3.3 Dockerizing the Web App . x

3.3.1 Running the Web App on a Docker Container Locally x
3.4 Pushing the image to azure container registry xi

3.4.1 Requirements and Process xii
3.5 Creating and Deploying the Kubernetes Cluster xiv
3.6 Deploying the Web App to the AKS Cluster xv

IV. DEPLOYING APPLICATION TO AZURE APP SERVICE xvii

4.1 Prerequisites and Process . xvii
4.1.1 Testing the Deployed App xviii

V. DEPLOYING AN APPLICATION TO VM-DEPLOYMENT
GROUP . xix

5.1 Prerequisites and Process . xix
5.1.1 Test Deployment xx

VI. DEPLOYING AN APPLICATION TO VIRTUAL MACHINE
SCALE SET . xxi

i

6.1 Prerequisites to deploy on VMSS xxi
6.2 Process . xxi

6.2.1 Creation of Custom VM Image xxii
6.2.2 Test Deployment xxii

VII. DEPLOYING AZURE DOCKER WEB SERVICE xxiii

7.1 Requirements and Process . xxiv
7.2 Setting a service connection from the YAML files xxv

VIII. FUTURE WORKS . xxix

IX. CONCLUSION . xxx

REFERENCES . xxx

ii

List of Figures

3.1 Deployments on Local host . x

3.2 Dockerizing the Web App . xii

7.1 Mapped image detached to the local host xxv

7.2 The service connection wizard . xxvi

7.3 Deployment Token . xxvi

7.4 Container Image . xxvii

7.5 Deployment of Web Service . xxviii

7.6 Containerised Web Service . xxviii

iii

Chapter I

Introduction

The demand to operationalize IT infrastructure to scale up and deliver applications

and other related services at high velocity has been an essential drive in the Tech

industry. DevOps and cloud computing or other relevant Cloud services are much

more efficient in addressing complications that usually arise during one phase of the

Service Life Cycle to the other.

Our team focused on Azure DevOps as the cloud service of our choice. We utilized the

features of Virtual Machines prior for our services to run on different operating sys-

tems, We also used Azure DevOps Software As A Service (SAAS) and the deployment

component it offers such as repository which serve as an application directory.

We also made use of Github as our versioning control system, where we personalized

our application; and also using the command line, we were able to containerized

our application with Docker and Kubernetes then proceeded in pushing our various

application to Azure DevOps and loaded it into Azure DevOps Repository and Azure

Container Registry for further Pre-production.

Finally, before our application was deployed to the cloud was our release pipelines

performing various test to ensure if our application meets all requirements. After

a few steps to confirm these processes by pipeline a build report was generated to

confirm that our application is ready for deployment.

iv

Chapter II

SERVICES OF AZURE DEVOPS

2.1 Azure Repos

Azure Repos is a version control service that can be used to manage the code in

your project. This helps you for tracking changes and creating updated versions

in the project code. Every time the implementation is edited, this version control

takes snapshots of the files and saves them permanently. It helps to save your work

and maintain the consistency across the teams in code coordination. It keeps the

history of development while bugs are being fixed and new features are being added

and it also helps in the rollback option to get back to any previous version of your

implementation[1]. Azure Repos has support for two types of version control

• Team Foundation Version Control (TFVC): centralized version control

• Git: Distributed version control

Git Repository in Azure Repos is a standard one . You can use any clients and

tools of your choice, such as Git for Windows, Mac, Visual Studio and Visual Studio

Code. Connect to any of the development environments IntelliJ, Visual Studio or

even Command Line. Review the code with pull requests,Usage of forks for code

isolation etc can be performed.

TFVC is a centralized version control system. Team members have one version of

each code file on the development machines And all the previous data is maintained

v

on the server. Path based branches are created on the server. Creating a project,

Workspace configuration, Code reviews etc are the services offered by this feature.

Any of the client IDE’s can be used for this.

2.2 Azure Pipelines

This service builds, tests and deploy the projects and shares them across different

ecosystems. This has a feature of continuous integration (CI) and continuous delivery

(CD) which helps to constantly build and deploy code to any target [2]. Azure

pipelines support the following scenarios:

• It can work with any platform or language.

• Deployment is possible to any kind of target parallel.

• Azure Deployment Integration is possible.

• Build possible on windows, Linux, MAC

• Integration with GitHub and possible to work with open projects.

2.3 Create Build Pipelines

In creating a build component the following are a perquisite to follow:

• Git or any other repository where your code stands

• An Azure DevOps organization

Process:

• Open a Project in Azure DevOps organization

• Select New Pipeline and follow steps on wizard to find the code from Github.

vi

• Select the repository and continue.

• Approve and Install on your selected repository.

.

We have used a .NET Apps for our project so the below process is performed ac-

cordingly. Select Configure and ASP.Net Core or any other according to the type

of application. In the new pipeline, add the task in the YAML file that appears ,

according to your jobs in the pipeline. Select Save and run to run your file. Once you

add jobs to your YAML configuration, It creates a pipeline with your project code.

Build Pipeline is successfully completed when you see all the jobs are complete in

your project code.

2.4 Deploying Applications with Azure DevOps

Azure DevOps enables you to deploy any application to any other cloud services or

on any platform. In our project we were able to deploy applications to different ser-

vices like Azure App service, Virtual Machine , Azure Web Apps. Azure Kubernetes

Service, Stand alone Kubernetes service, Docker Container service.

vii

Chapter III

DEPLOYING AZURE KUBERNETES WEB

SERVICE

In research into how kubernetes as formed an integral part in web development and

majorly containerizing most app by running small micro-service and make software

development easy, we have research into how well this can be deployed to various

applications and also given detailed step-by-step ways to deploy Azure kubernetes to

an application of any written language[7].

3.1 Requirements and Process

For the purpose of this demonstration, we would be using an already created ASP.net

project on Github https://github.com/DolapoOba/dotnet-docker.git [6]To run this

project, few things needs to be installed on the local machine

• Netcore 5.0 SDK

• Netcore 5.0 CLI

• .Net Framework

• Powershell or any administrative command line tool

viii

3.2 Running the Web App locally on Windows

1. First, We clone or download the app from github. Using the Powershell [6]

• git clone https://github.com/DolapoOba/dotnet-docker.git

2. Navigate to the cloned or downloaded folder at on Powershell

• /dotnet-docker/samples/aspnetapp/aspnetapp

3. To finally run the app locally on the localhost run

• dotnet run

4. To view the web app go to your browser and type the url

• http://localhost:5000

5. To cancel navigate back to the Powershell and type CTRL+C to stop the Web

services

In the picture above, the web app essentially carries out 3 major task

• It shows if the current app has been containerized i.e on Docker or Kubernetes

• Its show the amount of CPU cores running on the local machine

• And memories used and also available to run other processes

In the above demonstration, we can annotate that the app is currently stating that

the present application is not running on any container for other users to access it

externally. To do this we need to dockerised the application and build an image where

we would use the docker commands to run the ASP.net services in a container.

ix

Figure 3.1: Deployments on Local host

3.3 Dockerizing the Web App

The following process needs some requirements to successfully achieve these tasks.

• Docker Desktop: This has to be installed on the computer and also would be

needed for later purpose. Docker Desktop provides also a standalone Kubernetes

Single node which after generating the image of the Web app would also deploy

Kubernetes to it and finally Azure Kubernetes Service also

• Powershell

3.3.1 Running the Web App on a Docker Container Locally

1. First we need run Powershell and navigate to the cloned or downloaded folder at

on

• /dotnet-docker/samples/aspnetapp/

2. Inside this folder, we can see the dockerfile which contains the information and

instructions on how our application should be running in the container from which

x

we would generate the image of the web app from. To know if we have this type in

the directory on the Powershell

• LS Dockerfile

3. Thereafter, inside the same directory we can build the image of the dockerfile.

The below command means we are building the image asp netapp01 in our locally

installed docker desktop which has to be running to build the image

• Docker build . -t aspnetapp01:local

4. To verify the build process the docker hub should the view that the local image

aspnetapp01 has been built.

5. Finally, to view the web app that was built and we need to expose it to a local

port thereafter tagging it to the aspnetapp running on docker. In this process we are

going to create a container for the image to run locally.

• Docker run -d -p aspnetap01:local

The image created in the local is now containerized in an auto generated name while

building and it’s exposed to the port 80.

6. To confirm if we have successfully deployed docker, to our web app Navigate to

any browser installed on the systems and type

• http://localhost:5000

The web app automatically detects a deployed container on the application which in

the case is the docker running on a WSL Linux OS on the local host.

3.4 Pushing the image to azure container registry

For the web application to be shared to other people and also accessed on other

devices an external load balancing container has to be created [7].

xi

Figure 3.2: Dockerizing the Web App

3.4.1 Requirements and Process

• Installed Azure CLI

• Azure subscription account

• Powershell

1. First, Access login to an azure account from the CLI is required to authenticate

details from the built image of the application. To carry this task out a redirection

to the Azure service account is required from the Powershell

• az login

A subscribed account details is shown with Name, tenant Id, state of which the

account is and also tagged Id to the account.

2. All azure resources reside in an azure resource group. Groups are create to form

an alliance with other components in the services to be created. Creating groups

• az group create -n aspnetapp01 -l () australiaeast

xii

For this project the name aspnetapp01 was create and then given a location Australia

east.

3. To containerise the web app, We need to create Azure Container Registry (ACR).

ACR allows the storage and managment of images for all types of container deploy-

ments. In order to achieve this we need the name of the registry, the resource group

we have created and the SKU. The SKU is containing the storage area of the registry,

the maximum layer size, read and write operation and bandwidth. Also we have 4

types of SKU: Basic, Standard and Premium and the difference is majorly the storage

capacity of the container varying from 10Gb, 100Gb, 500Gb respectively [8].

• az acr create -n aspnetapp01acr -g aspnetapp01 australiaeast - -sku standard

To verify the ACR creation for our application aspnetapp01,

• az acr list -o table

4. Now to push the image built to the ACR, Access is needed to login into the Azure

Container registry and to do this we use command below. Also prequisite to give

access is, a docker deamon running on the system and this case the docker hub we

installed

• az acr login -n aspnetapp01acr

5. Before implementing the pushing of the image to the registry, there is a need to tag

our local image on our local host to the login server name of the container registry.

To view the login server name we create for the ACR, we use the command below

then and copy the login server which would use later to tag the image and also to

view the docker image list on our local machine we use the ¡docker image list¿ [9]

• az acr list -o table

xiii

6.Thereafter, the tagging of the local image with the login server created with com-

mand below with aspnetapp01acr.azurecr.io/aspnetapp01:v1

• docker tag aspnetapp:local aspnetapp01acr.azurecr.io/aspnetapp01:v1

and then view the docker images on the system

• docker image list

Successfully tagging the local image to the login server gives both same image ID

7. Finally, the push command can be initiated with tagged docker image to the ACR

with

• docker push aspnetapp01acr.azurecr.io/aspnetapp01:v1

3.5 Creating and Deploying the Kubernetes Cluster

We can do this by creating a kubernetes cluster and then use the locally built image

on the created registry and create an identity of the app which is called the azure

service principal containing all the login details and call functions of the container

after registrations. To create a service principal

• az ad sp create-for-rbac - -skip-assignment

Save the appId, password and tenant Id and assign roles to the service

• az role assignment create –assignee the appid - -role Reader

• az role assignment delete –assignee the appid - -role Contributor

To view the role

xiv

• az role assignment list

Then create the cluster with the AppId and password connected to the service prin-

cipal

• az aks create –name aspnetapp01cluster - -resource-group aspnetapp01 - -node-

count 1 –generate-ssh-keys service-principal the appid –client-secret password

This takes some time to create and then we grab our Azure kubernetes cluster cre-

dentials to verify we are connected to our AKS cluster

• az role get-credentials - - name aspnetappcluster - -resource-group aspnetapp01

To view the cluster

• kubectl get nodes

3.6 Deploying the Web App to the AKS Cluster

For us to push our application to the AKS cluster we need to make some changes

in the YAML file that we used to build the image of the web app before we deploy.

Same also applies to this process of deploying the application to the cluster created.

In attempting to do this we navigate to the dotnet-docker file and open the aspne-

tappdeploy.yml file. In edit this file we formerly was using the local image to deploy

the app but because we are trying to connect to the external cluster we revert to the

image of the single node azure kubernetes service cluster service which is the asp-

netapp01acr.azurecr.io/aspnetapp01:v1 In this command we make sure we give the

current image name and tag which is aspnetapp01 and with tag v1. Also changes in

the service type have to be made from nodeport port to load balancer in the case of

external requests to hit our app.

Finally, we can finally deploy the application to the cluster using

xv

• kubectl apply -f (the name of the YAML file)

use

• kubectl get service - - watch

view the service that is currently running on kubernetes.

Finally, we can see the application running on the container under kubernetes service

and then we can see the external IP to which to connect and view our app once again

anywhere.

• http://20.53.11.6

xvi

Chapter IV

DEPLOYING APPLICATION TO AZURE APP

SERVICE

A basic continuous pipeline has to process a stage or a deployment phase. A stage is

made up of jobs. A job is a series of steps that defines how to build, test, or deploy

your software.

4.1 Prerequisites and Process

• Microsoft Azure Subscription

• Azure DevOps pipeline

You need to select a production environment where the users access your application.

In this case its Azure App service. Your CI build pipeline created above handover

the artifacts to the release pipeline and then deploy the application to Azure.

• Go to Release in pipeline – Create new Pipeline

• Select Azure App Deployment Template and Apply.

• Select Add to attach your build artifacts.

• Choose Continuous deployment icon in the Artifacts section, check that the

continuous deployment trigger is enabled, and add a filter to include the master

branch.

xvii

• Open the tasks and add stage of your deployment and enter the Azure subscrip-

tion and App Service name and create release.

• Open the YAML file and add the jobs for the deployment along with the Azure

App service connection and subscription with selected environment.

• Make sure the agent output is successful to see if the deployment is completed.

• You can automate the trigger by selecting time and schedule for your deploy-

ment for next versions.

• If the option is to automated release trigger for different versions, Schedule

the release and check for the Agent Job to be successful and release triggers

accordingly. Below are the release pipelines for our deployment.

4.1.1 Testing the Deployed App

• Login to Azure portal - Select the Azure App service

• Open the Resource App list and check for the deployed service if it’s successfully

added.

• Test Link: http://svstestapp.azurewebsites.net

xviii

Chapter V

DEPLOYING AN APPLICATION TO

VM-DEPLOYMENT GROUP

Azure DevOps provides service to deploy an application to any Virtual machine of

Windows or Linux

5.1 Prerequisites and Process

• Virtual Machine (Linux, windows)

• Powershell or Azure CLI interface for registration token with administrative

rights on machine.

• Azure DevOps organization

1. Go to Environment Add new Environment Select VM OS and Provide Environment

name and basic details.

2. Go to Deployment Group and click on Create new deployment group with envi-

ronment created

3. Create Service connection to the Virtual Machine by registering it with Azure

DevOps in administration mode by using the personal token in the deployment pool.

4. Run in Powershell CLI to register the access token.

5. A directory is created on the main drive of a virtual machine as an agent once you

are successful in registering the environment.

xix

6. Answer the security setting for extracting zip files and System administration

authority.

7. It shows successful registration and that the service is started once it’s successful.

8. Go to Azure DevOps – Go to Release Pipeline – Add Tasks - - Remove the default

agent job.

9. Add Deployment group job by filtering it in the search and add related tasks for

installation. In this project .zip files need to be extracted and transformed and an

installation command has to be given in the command prompt after extraction and

save all the jobs.

6. It shows successful registration and that the service is started once it’s successful.

9. Go to Release pipeline and create it based on the deployment group created above

in the previous deployment process.

5.1.1 Test Deployment

1. Go to the virtual machine and check the folder of azure agent created. Deployed

app should be successfully installed. Call the service using the domain name of the

virtual machine

• Example: http://LPA-H-NB-118/SvsTestAppService

2. If a virtual machine is registered in Azure portal, trigger the service from the

resource list.

xx

Chapter VI

DEPLOYING AN APPLICATION TO VIRTUAL

MACHINE SCALE SET

A Virtual Machine scale set is used to deploy applications and auto-scale Virtual

Machines.For this VM’s are in a scale set. You can manage the scale set on Azure

Portal [9].

6.1 Prerequisites to deploy on VMSS

• Azure Subscription account

• Azure Devops organization with ‘Azure VM Image Builder DevOps task’ in-

stalled in the organization. This is useful to convert all the build artifacts of

the application into a VM image, that can be installed and able to configure

the application

• Powershell ISE or CLI

6.2 Process

• Create a build pipeline for the application from Git or TFVC repository.

• Customize the pipeline YAML file according to the project and add the artifacts

and publish them to inject them into a VM image.

xxi

6.2.1 Creation of Custom VM Image

For this you need to create a resource group, storage account and an image gallery.

You can use Powershell command line or Azure CLI for this purpose. In our project,

we have opted for Powershell ISE. Below is the link to the PS1 script with all the

required commands for creating resource group storage accounts and load balancing

etc.

• https://github.com/DivyaAthyala/PowershellVMSS

1 Create a resource group

2. Create a storage account and image gallery to create the machine image definition

and create load-balancer. You can create it on azure portal as well.Below are the

Powershell commands that we used to create them.

3. After creation of resource groups and storage accounts, create a custom Machine

image by adding an Image builder task to the configuration YAML files.

4. Run the pipeline to create the image. Go to azure portal where VMSS is created

and check the overview of the image.

4. Add deploy task to the virtual machine scale set to your YAML configuration.

5. Set up release deployment schedule and trigger the deployment in Azure DevOps,

as we have done for other app services.

6.2.2 Test Deployment

The Powershell command gives the public IP address after the run is successful and

application is deployed.With the address, you can access the Application on the web.

Here ‘demo-vmss’ is the resource group name. Use the public IP address to access

the website

xxii

Chapter VII

DEPLOYING AZURE DOCKER WEB SERVICE

Docker is container management software container, images, volumes. Docker image

contains blueprints, instructions of maintaining and building a container (It has mul-

tiple stages). A container is a running stance of docker image, in short when your

blueprint is run it is a container. The benefits are simplicity, collaboration, flexibility,

totality. The aim to the part of this project was deploying a web service and hosting

on Azure Cloud, the steps below shows the step-by-step process taken to achieve this

objective.

First of all, Install docker, For Windows OS the use/install a virtual machine respected

by your local machine and install Linux subsystem. Thereafter, to install docker on

Linux and can run all the commands through the terminal. Furthermore, Using the

CLI to clone and pull the web service. If the OS is MAC, then installation of Docker

Xdesktop is sufficient and can run all the commands through the terminal, on the

command line to also pull the resources of the web service.

In this task, A web app was personalized to suit requirements. Also, Docker Container

was built using Ubuntu CLI and the container was mapped with a port on our local

machines for DNS compliance. The Webservice was then migrated to Azure DevOps

Repos for which a YAML file was created to set the service connection from Azure

DevOps to Azure Portal. An Azure subscription was added to the connection for

the app to be hosted. On the Azure portal a Resource group was created, in the

resource group consisting of four components necessary for the web service hosting,

xxiii

which include, Application insights, App service plan Container Registry and App

service

7.1 Requirements and Process

• Installed Docker Desktop Application

• For Windows OS, Installed Virtual Machine with respect to your local machine

and Installed Linux subsystem

• For MAC, Install docker desktop directly

• Account with cloud Service (portal.azure.com)

1. Considering the ASP.Net Web application, CLI of Ubuntu with Docker installed

for containerizing the images on local machine. the below command shows the current

version installed to run Docker services

• docker - -version

2. To clone a repository, the following command shows a github ASP.net web service

cloned on to the local machine. Using the command git clone [3]

• git clone https://github.com/Jduphey/aspnet-core-docker-demo.git

3. Thereafter, a container was built with the help of a created docker file which was

initiated. Web service of the applications will be placed in the container to help in

continuous integration and continuous delivery. To access the docker file, navigate to

the dockerfile in the cloned or downloaded project

• docker build -t mikepf.azurecr.io/node-docker-demo

4. Displaying current running containers on the local machines requires and the built

images

xxiv

• docker images

The image of the container built and has a tags it to an ID, this ID helps us to

perform certain operations on the container such as renaming the container, stopping

or starting or removing the container

5. Mapping the image built to the local host docker container

Figure 7.1: Mapped image detached to the local host

• docker run -d -p 8080:300/ (container path)

The above image is been mapped to port 8080 attached to run on a local host to

enhance DNS communication with our local platform.

7.2 Setting a service connection from the YAML files

YAML (a recursive acronym for ”YAML Ain’t Markup Language”) is a human-

readable data-serialization language. It is commonly used for configuration files and

in applications where data is being stored or transmitted. YAML targets many of the

same communications applications as Extensible Markup Language (XML) but has a

minimal syntax which intentionally differs from SGML.To set a service connection in

Azure DevOps, a subscription key is required to enable our pipeline to communicate

externally to our web service on the Azure Client Server. The subscription key was

named ‘AzureSC’ in the YAML file above. Navigate to the project folder and source

for ’azure-piplines.yml’ and edit with any compiler

• In the Cloud Console, go to the Create service account key page.

• From the Service account list, select new service account.

xxv

• The Service account list, select new service account.

• Click Create. A note appears, warning that this service account has no role.

• Click Create without role. A JSON file that contains your key downloads to

your computer.

Figure 7.2: The service connection wizard

A deployment token was auto generated from a Powershell CLI. This token is needed

for the application to be on the cloud as an ID.

Figure 7.3: Deployment Token

The pipeline session created was responsible for continuous integration and delivery

of the application.

xxvi

Figure 7.4: Container Image

After verifying the accuracy of the service connection, values being able to communi-

cate with the service key set in the YAML file a connection was well established and

our web service.

The web service Container image is created and all build stages was initiated and

deployed externally on Azure cloud portal. Deployment of web service was completed

on DevOps.

The figure above is created a container registry created with details which include

resource group name ,subscription type, login server and creation date [4].These com-

ponents are unique identities that make monitoring of the container and creating new

versions of the web service easier.

To access the Web service hosted in the cloud of Azure

• https://cswebappdocker009.azurewebsites.net

xxvii

Figure 7.5: Deployment of Web Service

Figure 7.6: Containerised Web Service

xxviii

Chapter VIII

FUTURE WORKS

In deployment of the web app, few challenges were faced and mostly in scaling the

pods from a single node which is a worker node to a 3 node kubernetes cluster. All

focusing on how we can update our application and re-push the image to the container.

Generally, more research has to go into the monitoring and retesting of the deployment

and in constant resolution to kill all files and configuration up and running while also

letting kubernetes contain a service connection to which more of our deployment is

secured.

In light of this, Azure DevOps also plays a formidable role in our continuous inte-

gration and deployment into an external container and more research as to which we

can deploy has to be looked into.

xxix

Chapter IX

CONCLUSION

In this project we have worked on services provided by Azure Devops . Our main

focus is to utilize this SaaS platform to deploy applications in different environments.

For this we have chosen environments including App Services, Docker, Kubernetes

cluster, Virtual Machines to demonstrate the deployment.We have used a free version

to perform these tasks.

This Report starts with a brief understanding of features of Azure Devops following

with a complete set of instructions to perform deployment of applications on different

cloud services and environments. We found Azure Devops to be very efficient in terms

of source control integration, CI/CD, YAML backend, tracking of various tasks. One

major issue that we experienced during this project is its limited documentation, as it

has an existing paid version with more extended services. For small and open source

projects, there are some limitations with the free subscription. Although, if this is

opted for an organization with fully paid resources and support, then this would be

really helpful for DevOps tasks.

xxx

REFERENCES

[1] Microsoft Services ”Azure devOps documentations by Microsoft services”
“https://docs.microsoft.com/en-us/azure/devops/?view=azure-devops” , [Ac-
cessed on November, 2020].

[2] Microsoft Services ”Deployment of web app by Microsoft services”,
https://docs.microsoft.com/en-us/azure/devops/pipelines/apps/cd/deploy-
linuxvm-deploygroups?view=azure-devopsviewFallbackFrom=vststabs=java
[Accessed on December, 2020]

[3] Github Repository ”Azure Webapp”, https://github.com/Jduphey/AzureWebApp
[Created in December, 2020]

[4] Azure Portal ”Azure DevOps Project on Docker”,
https://dev.azure.com/jkdupheyApp [Created in November, 2020]

[5] Github Repository ”Deploying Applications on Virtual Machines scale set”,
https://github.com/DivyaAthyala/PowershellVMSS [Created in January, 2021]

[6] Github Repository ”Deploying Azure Kubernetes Services”,
https://github.com/DolapoOba/dotnet-docker.git [Created in January, 2021]

[7] M. Nair ”Azure Kubernetes Service: The Big Picture”, Pluralsight
https://app.pluralsight.com/library/courses/azure-container-service-big-
picture/table-of-contents [Accessed in January, 2021]

[8] M. D. Vries ”Deploying ASP.NET Core Microservices Using Kubernetes
and AKS”, Pluralsight https://app.pluralsight.com/library/courses/deploying-
asp-dot-net-core-microservices-kubernetes-aks/table-of-contents [Accessed in Jan-
uary, 2021]

[9] A. Nocentino ”Provisioning Microsoft Azure Virtual Machines”, Pluralsight
https://app.pluralsight.com/library/courses/microsoft-azure-virtual-machines-
provisioning/table-of-contents [Accessed in January, 2021]

xxxi

	Introduction
	SERVICES OF AZURE DEVOPS
	Azure Repos
	Azure Pipelines
	Create Build Pipelines
	Deploying Applications with Azure DevOps

	DEPLOYING AZURE KUBERNETES WEB SERVICE
	Requirements and Process
	Running the Web App locally on Windows
	Dockerizing the Web App
	Running the Web App on a Docker Container Locally

	Pushing the image to azure container registry
	Requirements and Process

	Creating and Deploying the Kubernetes Cluster
	Deploying the Web App to the AKS Cluster

	DEPLOYING APPLICATION TO AZURE APP SERVICE
	Prerequisites and Process
	Testing the Deployed App

	DEPLOYING AN APPLICATION TO VM-DEPLOYMENT GROUP
	Prerequisites and Process
	Test Deployment

	DEPLOYING AN APPLICATION TO VIRTUAL MACHINE SCALE SET
	Prerequisites to deploy on VMSS
	 Process
	Creation of Custom VM Image
	Test Deployment

	DEPLOYING AZURE DOCKER WEB SERVICE
	Requirements and Process
	Setting a service connection from the YAML files

	FUTURE WORKS
	CONCLUSION
	REFERENCES

