FRANKFURT UNIVERSITY OF APPLIED SCIENCES

SEMESTER PROJECT
(CLoub COMPUTING)
WS 2020/21

Edge-Computing Framework (EdgeX)

Referent: Prof. Dr. Christian Baun

Submitted by: Jan Wagner (1290974)

jan.wagner2@stud.fra-uas.de

Daniel Helmer (1101678)

helmer@stud.fra-uas.de

Dominic Gibietz (1100239)
gibietz@Qstud.fra-uas.de

Date of submission: 22" Jan, 2021

Contents

1__Introduction| 1
2__Foundationl 1
2.1 EdgeX and the Internet of Things 1
2.2 EdgeX Foundation Services| L. 2
[2.2.1 Core Services Layer{., 3

[2.2.2 Supporting Services Layer| 3

[2.2.3 Application Services Layer| 4

[2.2.4 Device Services Layer|. 4

2.2.5 Additional useful serviceslo 4

[3 Implementation| 5
[3.1 Use case and system architecture| 5
[3.2 Implementation on a Virtual Machine|. 7
[3.2.1 Installation of Docker and docker-composel 7

[3.2.2 Installation of EdgeX|, 7

[3.2.3 Running EdgeX| oo 8

[3.3 Implementation on Raspberry Pif 10
(3.3.1 Installing Raspberry Pi Operating System(OS)|. 10

[3.3.2 Implementation of Raspberry-Node] 12

[3.3.3 Implementation of Raspberry-EdgeX gateway| 14

[3.4 Creating of devices and variables) 16
[3.4.1 Creating the Device Profile|. 16

[3.4.2 Creating the variables| 16

[3.4.3 Look up stored devices and other data] 18

3.5 Export EdgeX Foundry datal, 19
[3.5.1 Creation of a Kuiper data source| 20

3.6 Amazon Web Services| Lo oo 22
[3.6.1 AWS DynamoDB| o000, 23

[3.6.2 AWS Lambda implementation| 24

[3.6.5 AWS Gateway APl implementation| 28
[References| 32
[A Appendix]| 36
[A.1 Code for Raspberry-Node] 36
[A.2 Code for Raspberry EdgeX Bash filef 38
[A.3 Code for Raspberry Profilel 40
[A.4 Code for AWS Lambda GetAllEdgeDeviceEntries| 41
[A.5 Code for AWS Lambda PutNew'TemperatureEntryl 42
[A.6 Code for AWS Gateway API resource policy [1I| 42
[A.7 Script for getting all DynamoDB entriesf 43
[A.8 Script for creating new DynamoDB entry|. 43
[A.9 Python 3 HTTP server 2] 43

IT

1 Introduction

EdgeX Foundry is an open source software framework at the edge of the network that
connects all kind of Internet of Things (IoT) devices and interacts with them. It is serving
between physical "things” and applications or clouds. With that, EdgeX makes it easy
to monitor IoT devices, collect data from devices or send instructions to them, move the
data to a cloud to store or analyze them and more. EdgeX provides multiple protocols
to connect IoT devices, like MQTT, REST or BLE. It allows to encrypt, transform, filter
or format the data before forwarding it to an external source over different protocols, like
MQTT. Data is usually not stored in the EFdgeX Gateway itself for a long time. EdgeX
consists of several microservices, some of which can be optionally switched on or off. For

example, rules can be created that automatically execute an action when the rule is ful-

filled (if-then). [3,]

P

EDGEJCFOUND RV e irsen

|-|'-|—h ing.'.' S —

Figure 1: The EdgeX gateway between the ”things” and the IT-System. Source: [3]

2 Foundation

2.1 EdgeX and the Internet of Things

The purpose of the so called Internet of Things (IoT) is to connect sensor (actor) networks
with the internet. Doing so makes them easily accessible from anywhere and anytime. The
"things” in the term Internet of things can be virtual or physical things. Many specialized
versions of the IoT exist, for instance the Industrial Internet of Things (I1oT), the Arti-
ficial Intelligence Internet of Things (AlloT) or the Internet of Robotic Things (IoRT).
In all variations, it remains a common concept to connect the local (sensor)network via a
gateway with the internet. The general structure of the IoT is shown in figure [2l Often
the edge devices are not more then smart sensors. Since these have limited resources,
remote resources need to be used. [5]

As mentioned, EdgeX Foundry is meant to connect a network of physical edge devices

Internet Protocols loT Protocols

10T Service .
Control Centers 3 _5 WSANs ®
Traditional sl
Smart Internet x T ® ® ®
Healthcare 5 “ X W/ ®
7 10T Application - '
Service lalformsﬂ i ™ ™
T & | e 4
Smart . Ef (] é
Security) & E @ '@
. & £ £ N
‘mergency v '] Cluster
Services E- E iree Network @ ®
[7] y®

Environment
Protection

WSANs
G Net-
work 1

'z

Services| {
' o ——nd al. @{ Net. Peer.
Bl , 4 g\ éi work 2 Pﬂl’
— LANSs an
e (T 4G/56G ' <3 Networks
') Mobile Networks =S 1
% _f.!, TR L0 @({xm]lnalor i
é el i
Mobile ToT Nodes (™) Node (Sensor/Actuator) |
loT | Application Support AGs/BRs WSANs: Wireless
| Application | Capabilities Sensor Actuator Networks
Arca in IP Network Area ToT Device Area

AG: Access Gateway BR: Border Router IP: Internet Protocol

Figure 2: ”General technical concept of the IoT” [5]

with the internet. Therefore it basically acts as the gateway in the [oT infrastructure. In
the EdgeX Foundry documentation the communication with the physical nodes is called
"south end” or "south side” communication and the communication with the web services

"north end” or "north side” communication. Furthermore this nomenclature will be used

in this document. [3]

2.2 EdgeX Foundation Services

EdgeX Foundry is a collection of open source micro services, which are organized into 4
layers: [3]

Core Services Layer

Supporting Services Layer

Application Services Layer

Device Services Layer

All layers are "passed through” from the south (device layer), through the core and
support layer, to the north (application layer). Also there are two underlying services
for Security and System Management. To start specific services with docker, the docker

compose service names are needed, which can be found in the official documentation. [6]

The most important services are described below.

EDGEXFOUNDRY

==
Platform Architecture H (=] =
“NORTHBOUND” INFRASTRUCTURE AND APPLICATIONS
LOOSELY-COUPLED MICROSERVICES FRAMEWORK CHOICE OF | CONTAINER DEPLOYMENT |[DEVELOPER/DEMO GUI

PROTOCOL

APPLICATION SERVICES
\ I e
PROXY CONFIGURABLE ! ADDITIONAL SERVICES 0
APPLICATION SERVICE APPLICATION SERVICES ‘ I‘ m@

SUPPORTING SERVICES
ADDITIONAL
ALERTS & NOTIFICATIONS ‘ SERVICES ‘

S3DIAY3S
TvNOILIaaY

‘ RULES ENGINE ‘ ‘ SCHEDULING ‘

SECURITY
1NIWIDYNYIN

CORE DATA METADATA E REGISTRY & CONFIG |

ADDITIONAL SECURITY SERVICES

LNIDY 3IAY3S LWOW

[.—" DEVICE SERVICES (ANY COMBINATION OF STANDARD OR PROPRIETARY PROTOCOLS VIA SDK)
SECRET ADD'L
STORE REST OPC-UA MODBUS BACNET ZIGBEE BLE MartT SNMP VIRTUAL DEVICE
SERVICES L
i
LW 2 S § i b 1 @ e
A & 3 dalfis)
denh [oM s B @Ac a
“SOUTHBOUND" DEVICES, SENSORS AND ACTUATORS m@

Figure 3: Visualisation of the EdgeX platform architecture. Source: [7]
2.2.1 Core Services Layer

These services are, as the name implies, the ”core” to the EdgeX functionality. Here
resides the EdgeX configuration, the collected sensor data and the knowledge of the

connected ”things”. [§]

e Data: Stores the sensor data on the edge system until data gets moved "north”.
The open source in-memory structure store ”"redis” (see section is used for
data storage. Other services (within and outside of EdgeX) access the sensor data
only through the core data service. [§]

e Command: Enables the communication of commands or actions to the devices.
Requests can be sent from north to south. Allows GET (request data) and PUT
(take action or actuate the device) commands. [§]

e Metadata: Has the knowledge of the devices and sensors and how to communicate

with them (used by services like Data and Command). Also uses "redis” (section
2.2.5)) to store its knowledge about the devices and values. [§]

2.2.2 Supporting Services Layer

These services perform tasks such as logging, scheduling or sending notifications/alarms.

The edge analysis also takes place here. These services can be considered optional and

are not required. [9]

e Scheduler: Provides a ”clock” that fires operations at specified times (interval).
For example to clean up old sensed events that have been successfully exported out
of EdgeX. [9]

e Notifications / Alarm: Send out an alert or notification (to another system or to
a person). For example, when sensor data is detected outside of certain parameters.
[9]

e Rules engine / Kuiper: Implementation of data analytics with if-then condi-
tional actuation at the edge based on collected sensor data. Kuiper allows fast data
processing on the edge and write rules in SQL. The rules engine is based on three
components: Source, SQL and Sink. [9] More detailed information about the Kuiper

rules engine can be found in the documentation [10] or under section [3.5

2.2.3 Application Services Layer

This layer and its service is used to filter or transform collected sensor data and then send
it to a recipient of your choice, e.g. cloud providers like Amazon IoT Hub, Google IoT
Core, Azure IoT Hub. Data can be prepared (transform, filter, ...) and groomed (format,

compress, encrypt, ...) before being sent to an endpoint. [11]

2.2.4 Device Services Layer

This layer interacts with the devices and sensors. Various protocols, such as REST,
MQTT or even SNMP, are available for the south-side connection. The services not
only collect data from the devices, but also get status updates, transform the data before
sending them to the next layer or discover devices. After installation and running of
EdgeX the REST and virtual services are starting by default. Other protocols must be
added additionally. Protocols like MQTT or SNMP are already implemented and just
need to be "re-enabled”. More information about the available protocols and which ones
are under development can be found in the EdgeX-Wiki ([12]). [13]

2.2.5 Additional useful services

e Redis: [s an open source in-memory data strucutre store, which is used as a
database, cache and message broker. EdgeX uses Redis (Geneva release) as the
default database for sensor data as well as for metadata about the devices or sen-

sors that are connected. [14]

e Consul: Is an open source project used as registry service in EdgeX. It provides na-
tive features for service registration, service discovery, and health checking. There-
fore it also provides a web user interface dashboard, which enables to see what
services are running or if there are any errors. All other services are expected to

register with Consul when they start. [15] [16]

3 Implementation

3.1 Use case and system architecture

Since there are multiple variations of IoT, the possible use cases are manifold. For instance
an IToT solution could be developed. For IIoT extensive monitoring of sensor values from
industrial machines is often required. In a simple threshold applications machines could be
shut down, if certain temperature values become critical for the system. The requirements
for this use case would be to collect temperature values from multiple devices and act on
a threshold. Storing of the collected data for future data analysis could also be of interest.
Therefore a cloud service is most likely to be used, since resources are limited on the edge.
Generally speaking such a system is required to get data from multiple nodes, reacts on a
threshold and have a connection to a cloud service. Such a system could also be the base
of a Al recognition system, that collects data on the edge and performs the classification
in the cloud. For security purposes often only the IoT gateway gets connected with the
internet, while the sensor nodes are connected via a local network. Therefore the gateway
should be located close to the edge devices, possibly be one by its own. For that reason,
this installation guide addresses the deployment of EdgeX on an edge device. It also
demonstrates the often needed infrastructure of multiple edge devices sending data to the
gateway which are the forwarded to a cloud service.

As physical nodes multiple Raspberry pi 34+ were used, since they were available. Any
other edge device could also be used as long as it supports one of the communication
protocols that EdgeX works with. Initially the Raspberry pi 3+ was considered as gateway

as well. EdgeX Foundry states the following minimal requirements: [17]

e Minimum 1GB Memory

e 64bit CPU

e Minimum 3GB of storage (at least 32GB recommended)
e Operating systems:

— Windows 7-10

— Ubuntu Desktop (14-20)
— Ubuntu Server (14-20)
— Ubuntu Core (16-18)

— Mac OS X 10

The Raspberry pi 3+ just fulfills the minimum requirement of memory. In trials mul-
tiple services of EdgeX started only partially or not at all. Therefore the Raspberry pi 4
with 4 GB memory was chosen for the EdgeX implementation.

For then cloud service Amazon Web Services (AWS) was picked due to its good docu-
mentation and free trials.

The final system architecture is visualized in figure [4]

dWsS

Gateway ‘

R DGECFOUNDRY
| Ay
South side |‘ \

Figure 4: Deployed system architecture

3.2 Implementation on a Virtual Machine

EdgeX can run on any platform supporting Docker and docker-compose. See section
for the official platform requirements. For this implementation example Ubuntu 20.04

was used.

Note: To assign the virtual machine an IP address in the local network, the VM network
should be bridged. So it is possible to communicate directly with the VM. In Virtual-
Box this can be set under the VM settings — "Network” — ”Attached to:” — ”Bridged
Adapter”. Otherwise ports must be forwarded. [4]

3.2.1 Imnstallation of Docker and docker-compose

To install Docker and Docker Compose the following steps need to be performed: [4]

1. Get the newest system updates

e sudo apt update

e sudo apt upgrade
2. Install Docker-CE [4]

e sudo apt install apt-transport-https ca-certificates curl software-properties-common

e curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
3. Install docker-compose

e sudo apt install docker-compose

3.2.2 Installation of EdgeX

The EdgeX microservices are controlled by a docker-compose file (YAML format). Ports
and dependencies can be edited in this file. Also microservices can be activated and
deactivated here. To start the EdgeX microservices the ”docker-compose” command has

to be executed in the same folder as the file. [4]

1. Create a directory for the docker-compose file [optional]

o mkdir edgex

e cd edgex
2. Download the docker-compose.yml file (last checked on 06.12.2020)

e wget https://raw.githubusercontent.com/edgexfoundry/developer-scripts/
master /releases/geneva/compose-files /docker-compose-geneva-redis-no-secty

.yml -O docker-compose.yml [4]
Older releases can be found in the official Github repository [18§].

3. Pull the newest docker container and list them

e sudo docker-compose pull

e sudo docker image ls

3.2.3 Running EdgeX

The following commands can be used to start EdgeX, as well as check that all services

are running.

1. Start EdgeX with docker-compose
docker-compose commands must be executed in the same folder as the docker-

compose.yml file.
e sudo docker-compose up -d

”-d” lets EdgeX run in the background and thus prevents the console output of the

services.
2. View running mincroservices
e sudo docker-compose ps

With the 'docker-compose ps’ command the used ports of each microservice are
listed. The ports are defined in the docker-compose.yml. Alternatively, the URL
"http://localhost:8500/ui/dcl /services’ can be called in the browser (replace local-
host with EdgeX gateway ip address for external use). This is available when the
service ’consul’ has been started. All running services and possible errors can be

viewed there. [4]

$ sudo docker-compose ps

onfigurable-rules /app-servi configurable
-cp=consul.h ... 0.0.0.0
-entrypoint.sh ... 8300/tcp,
8302 /tcp,

48080 /tcp,

>5563/tcp

SU ...
entrypoint ...

0.0.0.0

Figure 5: View of all running microservices in the console

Important: To be able to communicate with EdgeX from another device, the IP ad-
dresses in the docker-compose.yml file must be changed from ”7127.0.0.1” to 70.0.0.0” (to
allow all IP addresses) or a specific ip address that should have access, otherwise it is only

possible to communicate with EdgeX locally, on the VM itself.

To stop EdgeX, the following commands has to be executed in the same folder as the

docker-compose.yml file: [4]

1. Stop the services:
e sudo docker-compose stop
2. Stop and remove the services:
e sudo docker-compose down
3. To stop services, which were removed from the docker-compose.yml file:

e sudo docker-compose down --remove-orphans

3.3 Implementation on Raspberry Pi

The following shows the implementation on the Raspberry Pi. First the node is set up
on which the data is generated. To generate a real use case, system data are gathered
and send to the EdgeX device. Then the implementation of the EdgeX environment on
a Raspberry is described. For the use case that two Raspberry devices are to be used to

transfer the data, one will act as Node and one as EdgeX device.

Note: The script to read out the data is attached in appendix A.1. It can be used
for multiple nodes, but small changes are necessary. The script can be used on any
Raspberry Pi with a Linux operating system installed. The EdgeX environment is only

executable on a Raspberry Pi 4 as mentioned in section 3.1.

3.3.1 Installing Raspberry Pi Operating System(OS)

The following section describes the installation of the Raspberry Pi operating system. If

a basic understanding with the procedure of a Raspberry Pi is available, this chapter can

be skipped. It can be continued with the chapter [mplementaion of Raspberry-Node]

Note: Installing EdgeX on a Raspberry Pi is similar to installing it on a virtual ma-
chine. However, EdgeX requires a 64 bit operating system. It must be downloaded from

the following URL:
https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-

2020-05-28/2020-05-27-raspios—-buster-armé64.zip

The 64 bit operating system is only executable on the Raspberry Pi 4 and the Rasp-
berry Pi 34. If an older Raspberry Pi is used to send and generate data, the 32 bit
operating system must be installed. You can choose between an operating system with
and without a graphical user interface. In general, an operating system without graphical

user interface is sufficient for the implementation of the existing script.

The operating system with user interface can be downloaded from the following URL:
https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-

2020-12-04/2020-12-02-raspios-buster-armhf.zip
The operating system without user interface can be downloaded from the following URL:

https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-
2020-12-04/2020-12-02-raspios-buster-armhf-lite.zip

10

https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-05-28/2020-05-27-raspios-buster-arm64.zip
https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2020-05-28/2020-05-27-raspios-buster-arm64.zip
https://downloads.raspberrypi.org/raspios_armhf/images/ raspios_ armhf-2020-12-04/2020-12-02-raspios-buster-armhf.zip
https://downloads.raspberrypi.org/raspios_armhf/images/ raspios_ armhf-2020-12-04/2020-12-02-raspios-buster-armhf.zip
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2020-12-04/2020-12-02-raspios-buster-armhf-lite.zip
https://downloads.raspberrypi.org/raspios_lite_armhf/images/raspios_lite_armhf-2020-12-04/2020-12-02-raspios-buster-armhf-lite.zip

The following steps are identical for both operating systems. Only points 8 and 9 are
omitted for the operating system without user interface.
1. Download of Raspberry Pi image.

2. Flash Operating System on Raspberry Pi card with balenaEtcher or Win32DiskImager.
Win32DiskImager can be downloaded from following URL:
https://www.chip.de/downloads/Win32-Disk-Imager_46121030.html

3. Open flashed card and insert into the boot partition a textfile named:
e ssh.txt
this file must be empty.
4. Plug the card into your Raspberry Pi.

5. Now the Raspberry must be connected to the power and the internet. Then Putty
must be downloaded on a computer in the network. With this you can access the
Raspberry Pi via SSH on port 22 without mouse and keyboard. Putty can be
downloaded from following URL:
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

6. In Putty the IP address of the Raspberry Pi must be entered. This can be found

via the graphical user interface of the router.

7. After the connection via Putty is established, you can log in with Username and

Password.

Login informations:

e Username: pi

e Password: raspberry
Now the system updates can be installed first.

e sudo apt update

e sudo apt upgrade

8. Now the graphical user interface can be activated via the Software Configuration

Tool. The following command takes you to the mentioned menu:

11

https://www.chip.de/downloads/Win32-Disk-Imager_46121030.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

e sudo raspi-config

9. Under the point 5 Interfacing Options the graphical remote access to the Raspberry
Pi can be enabled in the menu under point P3 VNC. After that, access via VNC
viewer is possible. This allows unrestricted access to the Raspberry via graphical
user interface. VNC Viewer is available for Windows, macOS and Linux. It can be
downloaded from the following URI:

https://www.realvnc.com/de/connect/download/viewer/linux/

3.3.2 Implementation of Raspberry-Node

Numerous protocols are available for communication. Two well-known ones are REST
and Bluetotth Low Energy (BLE). However, BLE is still in the development phase. For
this reason, REST communication was chosen.

1. Get the newest system updates

e sudo apt update

e sudo apt upgrade

2. Choose a location for the script. Write your own script to send the data (Or random

data) or use the predefined [script in appendix A.1] Open a text file with any editor.

In the following as an example the editor Nano.
e sudo nano Rpi_send.py
Then copy the predefined script into the textfile.

3. Now you need to change the ip adress in line 16. Write into this variable the ip
address of the EdgeX device.

e ip_adress_edge_device = 7* * * *7

4. If multiple nodes are to be used, the program code in the additional devices must
be adapted. The following graphic shows the section that must be changed. The

section starts at line 72 and ends at line 82.

In the addresses of the additional nodes their specific names must be entered. The

following nomenclature is recommended:

e Raspi_Device.l — Raspi_Device 2 — Raspi_Device.3 — Etc....

12

https://www.realvnc.com/de/connect/download/viewer/linux/

Figure 6: Addresses of the variables

This must also be changed in the EdgeX device. But more about that later in
chapter 3.4.2.

After the script has been modified it can be exited and started with the following

command. The script is only executable after the EdgeX Gateway has been started.

e sudo python Rpi_send.py

After the script is started, the following values are output to the console. The

e
=
=

Figure 7: The sent data of the Raspberry Node
continuous loop causes the system data to be sent to the EdgeX device again every
5 seconds.

The CPU temperature is sent in degrees Celsius. The total RAM of the Raspberry
Pi and its available RAM are transmitted. In addition, the previous Internet traffic
via the LAN interface.

13

Note: If the Raspberry Pi is connected via wifi, the program code must be modified

accordingly.

The load of the Raspberry Pi is formed by means of an average value. The load
is determined over the last 1, 5 and 15 minutes. The load average is given as a

percentage. The uptime shows the operating time in minutes.

7. To change the system values of the Raspberry Pi, a continuous loop can be executed
in the background which increases the system load and the processor temperature.

To execute it, the following command must be entered into the console.
e foriin1 2 3 4; do while : ; do : ; done & done
8. The following command can be used to monitor the system load.
e top

The following graphic appears.

Figure 8: Utilization of the Raspberry

To terminate the processes they must be terminated by the following command.
After the kill command the respective process must be named. As an example, here

is the command to kill the first process.

e sudo kill 4470

3.3.3 Implementation of Raspberry-EdgeX gateway

This section describes the installation of Docker. This is similar to the installation of

Docker on the virtual machine. [19]

Note: The Raspberry Pi 4 has a quad-core Cortex-A72 processor from ARM with 64
bit and 1.5 GHz. The installed operating system is based on Debian. This has to be

taken care of during the installation.

14

1. You have to uninstall the possibly old versions. [19]
e sudo apt-get remove docker docker-engine docker.io containerd runc

Note: For installing on Raspberry Pi using the repository is not yet supported. We

need to use convenience scripts.
2. Install Docker using the convenience script: [19]
e curl -fsSL https://get.docker.com -o get-docker.sh
e sudo sh get-docker.sh

After Docker has been successfully installed, the function can be tested with a hello
world image. If everything works, Docker should show a welcome message. With

the following command the check can take place: [19]

e sudo docker run hello-world

Installing Docker-Compose

After installing Docker it is necessary to install Docker Compose. Because this is done

on the Raspberry Pi in a different way than to the virtual machine.

1. Installing the required components to make Docker Compose runnable. Execute

these three commands one after the other. [20]

e sudo apt-get install -y libffi-dev libssl-dev
e sudo apt-get install -y python3 python3-pip

e sudo apt-get remove python-configparser
2. Docker Compose can then be installed. [20]
e sudo pip3 -v install docker-compose

3. Now the installation of Docker and Docker Compose is complete. Skip to [3.2.2]

[[nstallation of EdgeX|. From this point on, the procedure is again the same as for

the virtual machine. The procedure described there can be used with the Raspberry
Pi.
Note: Before data can be received, the variables must be created. This is done in

the next chapter 3.4 Creating of devices and variables.

15

3.4 Creating of devices and variables

To be able to send data to the created EdgeX gateway, a digital representation of devices
and variables must first be created. Devices are described with a device profile, which
can then be used to create device instances. A real device then sends data to its digital
counterpart, using the ID or name of the digital device. The following descriptions and

commands were applied on a Raspberry Pi 4.

3.4.1 Creating the Device Profile

To use devices with EdgeX, a profile must be created. This must be in the same directory
as everything else before. Again, an empty document must be created to create the profile.

For this purpose there is again a predefined script in the appendix.

1. If the correct directory is not specified, you must navigate to it.
e cd edgex
2. Create an empty file with the name Raspi_Device_Profile.yaml.

e sudo nano Raspi_Device_Profile.yaml

3. Copy the [content of the attached script in the appendix A.3|into the file.

4. Save and close the file.

3.4.2 Creating the variables

When all services are started and running, abstract descriptions of the variables, which
are sent in the data from the devices, can be created. This can only be done after the

services have been started.

Bash file

Attached in appendix A.2 is a bash file. The Bash file automatically creates the variables
implemented in this report. It also starts Docker and creates the devices. Multiple
devices can be created by modifying the file. The modification is done in analogy to
the modification in chapter 3.3.2 Implementation of Raspberry-Node. The content of the
bash file can be inserted into a text file of the Raspberry. The bash file must be in the

same directory as the docker-compose file. The procedure is as follows:

16

. If the correct directory is not specified, you must navigate to it.

. Create an empty file with the name start.sh.

. Copy the [content of the attached script in appendix A.2| into the file.

. Save and close the file.

. To execute the file, the bash file must now be called.

. After the bash file has been successfully executed, you should see a prompt to start
the work.

Enter manually

If the individual variables are to be entered manually, the following procedure should be

followed:

1. Each information that is transferred from the Raspberry Node must be defined at

the EdgeX gateway. As an example the declaration of the CPU temperature is

shown here. The variable must be created according to the following scheme. [4]

2. For each information the variable must be adapted accordingly. Therefore also the

file of the node and the file Raspberry_Device_Profile must be adapted.

17

3. The following command loads the device profile for the Raspberry: [4]

4. The last step missing is the creation of the devices. With this command the Rasp-
berries are configured. For each node that is used, a configuration must be made.
With the following command the devices can be created. For the use of multi-
ple nodes, the devices must be adapted accordingly. As described in the
ichapter 3.3.2 Implementation of Raspberry-Node] [4]

Now the Raspberry Pi is configured and can be used as a gateway.

3.4.3 Look up stored devices and other data

All created devices, variables, as well as received data can be viewed. For this purpose,
the console or alternatively the program ”Postman” can be used. However, Postman
is not available for Raspberry devices. But the commands can also be sent from other
devices, if the ip addresses in the docker-compose.yml are not set to local (127.0.0.1).
The following commands are only a few available commands. The following commands
can be executed locally. Alternatively, the URLs can be entered into the browser. For an
external call, the "localhost” must be replaced with the IP address of the EdgeX gateway.

Helpful commands are:

List of created devices: [4]
curl -X GET ’http://localhost:48082/api/v1/device’ | jq

List of created variables: [4]
curl -X GET ’http://localhost:48080/api/v1/valuedescriptor’ | jq

List of all received data: [4]
curl -X GET ’http://localhost:48080/api/v1/reading’ | jq

List of the last 10 received data of a specific device: [2]]

curl -X GET ’http://localhost:48080/api/v1/event/device/{DEVICE_ZNAME}/10’ | jq

Display number of received data: [4]
curl -X GET ’http://http://localhost:48080/api/v1/event /count’

Remove device with ID or name
curl -X DELETE ’http://localhost:48081/api/v1/device/id /{(device_id_here)}’ or

curl -X DELETE ’http://localhost:48081/api/v1/device/name/{(device_name_here)}’

3.5 Export EdgeX Foundry data

For exporting data to the north side, one can choose between using the Application service
and the rules engine. By using the latter, data can be filtered before they are exported.
Since the Geneva release, EdgeX Foundry uses EMQ’s Kuiper as rules engine. The service
consists of the three components: Source, SQL and Sink.[22]

For debugging purposes it might become necessary to alter the default settings of EdgeX
services. Their configuration files are located within their corresponding docker containers.
For navigating through the directory within a container, a shell can be opened in the
running container. This can be achieved by using this command:

sudo docker exec -it < containername > /bin/sh

Kuipers configuration for instance can be changed in the file /etc/kuiper.yaml. This way
the logging level of EdgeX services can be changed as well. The log files can be shown by
the command: [4]

sudo docker logs < servicename >

Rules, streams and also devices can be managed in a visual way as well. For that purpose
the Golang Ul interface needs to be included in the docker-compose file by adding these
lines: [4]

ui :

19

container_name: edgex—ui—go

hostname: edgex—ui—go

image: nexus3.edgexfoundry.org:10004/docker—edgex—ui—go: master
networks:

edgex—metwork: null

ports:

— 70.0.0.0:4000:4000/ tcp”

read_only: true

It is vital to keep the indentation schema, when making these entries. Best practice is to

compare the entries with the once below and above.

3.5.1 Creation of a Kuiper data source

The Source is the data stream, from where the data are fed into the rules engine. In the
EdgeX implementation, Kuiper listens per default to the message bus at port 5566, which
is used by the Application service for publishing its messages. This default setting can be
altered in the configuration file located at etc/sources/edgex.yaml. [23]

A stream can be created by sending the following POST message body to Kuiper’s REST-
API at < EdgeX_IP >: 48075/streams: [23]

{
7sql”: 7create stream raspberries () WITH (FORMAT="JSON”

TYPE="edgex”)”

The id of this stream is "raspberries” and it contains data in json format with types
that are specified by EdgeX value descriptors, which is specified by the FORMAT and
TYPE parameter. Custom value types are translated in types that can be interpreted by
Kuiper either during runtime or compilation. All created streams can be listed by sending

a GET request to the same resource.[24][23]

3.5.2 Creation of Kuiper rules

The two remaining components of Kuiper (SQL and Sink) are defined in the rules them-
selves. Same as for the stream, Kuiper’s REST-API can be used for handling the rules.
In case of rules, the target resource for the POST request is < EdgeX 1P >: 48075/rules.

20

The following rule has the ID ”critical Temperature”: [25]

{

7id”: 7criticalTemperature”,
7sql”: "SELECT temperature, meta(Device) AS device FROM
raspberries WHERE (meta(device)=\"RaspiDevicel\”
OR meta(device)=\"RaspiDevice2\”) AND temperature > 80",
7actions”: |
{
"rest”: {
"dataTemplate”: "{\” content\”:\” json .\”,
\” Temperature\”:{{.temperature }},
\”Device\”:\"{{.device} }\"}”,
"method”: " post”,
"sendSingle”: true,
“url”: ”http://<IP>:8000",

"retryInterval”: 0

771Og77: {}

I

“options”: null

}

Apart from the data that are transported through the message bus, additional meta data
can be extracted [26]. The presented rule will select an entry of the type ”temperature”
from the stream along with its meta data ”device”, which is the device id. The rule
filters for the device ids ”RaspiDevicel” and ”RaspiDevice2” when either of them has
been receiving a temperature value above 80 °C. In either case the rule executes what is
listed in the ”actions” section. So far it is not possible to filter for the data type of the
device. This field is not included in the meta data.[25] [26]

The keyword "rest” determines that Kuiper shall use the REST-Sink. The action creates a
POST request that contains the data defined in ”dataTemplate”. The option "sendSingle”
specifies that all data are send in a single message. The "retrylnterval” is set to 0 and

therefore this POST request will only be executed once, even if it fails. For debugging

21

purposes it proved useful to use an http server as target of the rules. The presented rule
targets an http server that listens to port 8000. The source code for the used server is
attached in appendix The URL needs to be exchanged with the address of the AWS
Gateway API for the final deployment.[25]

When created, the rule directly runs. To stop the rule, a POST request has to be send
to < FEdgeXIP >: 48075/rules/ < ruleID > /stop and for making it run again: <
EdgeXIP >: 48075/rules/ < ruleID > /start. To delete either a stream or a rule a
DELETE request has to be send to the resource of the rule/stream. [27].

3.6 Amazon Web Services

For the north end implementation, AWS was chosen. This service from Amazon contains
a collection of web services, each for a specific task. The four services that were used
are called Gateway API, Lambda, IAM and DynamoDB. For this project they interact
as visualized in figure [0} The IAM service is used to control access to service resources
and was used for the implementation of the lambda rules. Therefore it is explained in

subsection and is not displayed in the overall service topology.

=
GES < ee® | Ih‘ ’"’E'ads
AWS Lambda
HTTP request 1
Amazon API PO Trequesg O Amazon DynamoDB

Gateway "l “ \N{.RB%

AWS Lambda

Figure 9: AWS service topology [28][29]

With the Gateway API service, one can create an Gateway, such that the implementa-
tion on AWS can be accessed by a program on another machine. Since EdgeX supports a
REST-API for north side communication, a REST-API is created with Gateway APL[30]
The Lambda service provides an environment in which custom code can be executed.
Its role in this architecture is to extract the entries of messages that came through the
Gateway API and to store them in a NoSQL data bank which is implemented via the

DynamoDB service. [31][32][33]

AWS has several physical server locations to choose from. In this project all services are

22

using the location eu-central-1, since this is the nearest. Regardless which location is
chosen it is important to keep it consistent over all used services. Otherwise additional
settings might be necessary.

When this document was created, all used services were covered by the free trier of ama-
zon. The API Gateway service had 1 million API calls per month free for the first 12
month after the registration. The Lambda service had 1 million executions free per month
and DynamoDB had 25 GB of free storage. The latter two had no time limitations. Gen-
erated costs and usage of the services were monitored through the cost explorer service
[34). [35]

This project focused on a proof of concept for the presented use case in section and
AWS was chosen exclusively due to its numerous documentations and tutorials. Therefore
it cannot be said that AWS is a good choice in general for storing IoT data. It highly

depends on the specific use case and its scope.

3.6.1 AWS DynamoDB

Firstly the database needs to be created. Type "DynamoDB” In the AWS Managment
console and select the very first option of the service: ”Create table”. Choose "IoTDe-
viceTemperatures” as name of the table and ”DevicelD” as primary key as shown in figure
[10] Next activate the option ” Autoscaling” such that the read-write capacity is managed
dynamically. Select the ”Use default settings” option, so that DynamoDB creates a role
for that purpose automatically. At the very bottom of the page the ”create” button can
be found.[31]

So far the created table has only the property "DevicelD”. Further columns are created

automatically when an entry is generated.

23

aws

Services ¥ Nach Services, Funktionen, Marketplace-Produkten und Dokumenten su [Alt+S] X ¥ Frankiurt ¥ Support ¥

DynamoDB-Tabelle erstellen Praktische Anleitung | @

DynamoDB ist eine schemafreie Datenbank, die nur einen Tabellennamen und priméren Schiissel erfordert. Der Primarschliissel der Tabelle setzt sich aus.
einem oder zwei Attributen zusammen, die jedes Element eindeutig identifizieren, Daten partitionieren sowie Daten innerhalb einer Partition sortieren.

Tabellenname* |gTDeviceTemperature (i}
Primérschliissel Partitionsschliissel
DevicelD Zeichen v | @
Sortierschliissel hinzufiigen
Tabelleneinstellungen

Standardeinstellungen bieten die schnellste Méglichkeit, um Ihre Tabelle zu starten. Sie kénnen diese Standardeinstellungen jetzt oder nach dem Erstellen
Ihrer Tabelle &ndemn

Standardeinstellungen verwenden

® Keine sekundaren Indizes.

» Auto Scaling der Kapazitét ist mit einer Zielauslastung von 70 % bei einer Mindestkapazitat von 5 Lese- und 5
Schreibvorgéngen festgelegt

= Encryption at Rest mit STANDARD-Verschlisselungstyp.

+ Tags hinzufiigen CE0

Feedback Deutsch ¥ 200 ices, Inc. oder s orbenalten aten: chiinie Nutzungs

Figure 10: Set values for new AWS DynamoDB table

3.6.2 AWS Lambda implementation

For accessing the created DynamoDB table, lambda functions are needed. However
lambda functions cannot access the created table initially. For that purpose a corre-
sponding lambda execution role has to be created. Access the IAM service over the
management console, select "Roles” on the left hand menu (as marked in figure and
click the button ”create role”. [31]

Keep ” AWS service” selected and choose Lambda (see figure as the service this role
is designated for. Then click on ”Next: Permissions” and enter " AWSLambdaBasicExe-
cutionRole” in the search bar as seen in figure [I3] Select the listed role with that name
and go on "Next”. [31]

For this use case, Tags are not used. Therefore the next side does not need any entries.
Now give the role the name "IoTDeviceTemperatureAccess” and click ” Create role”.
For giving this role more specific rights, select the newly created role and click on ” Add

inline policy” as marked in figure |14}

In the upcoming view enter DynamoDB in the service search bar and add ” Getltem”
and "Putltem” in the Action search bar as seen in figure [31]

Then go to the resource section and click on add ARN (Amazon Resource Name). This

ARN is a unique identifier of the DynamoDB table we want to give access to. It can be

24

Identity and Access
Management (IAM)

Dashboard
~ Access management
Groups

Users

Policies

Identity providers
Account settings
+ Access reports

Access analyzer
Archive rules
Analyzers
Settings

Credential report

Organization activity

Service control policies (SCPs)

Q

AWS account ID:

* Roles

What are IAM roles?

1AM roles are a secure way fo grant permissions o ent

« IAM user in another account

that you trust. Examples of entities include the following

« Application code running on an EC2 instance that needs to perform actions on AWS resources

« An AWS service that needs to act on resources in your account to provide its features

+ Users from a corporate directory who use identity federation with SAML

1AM roles issu keys that are valid for short durations, making them a more secure way to grant access.

Additional resources:

+ IAM Roles FAQ

+ IAM Roles Documentation

« Tutorial: Setting Up Cross Account Access
+ Common Scenarios for Roles

Dett ol
Q

Role name ~

leForAppl _DynamoDBTable
AWSServiceRoleForSupport
AWSServiceRoleForTrustedAdvisor
DatabaseConnection-role-igocwfor
GetAllEdgeDeviceEntries-role-s9x026g1

GetStartedLambdaBasicExecutionRole

Trusted entities

AWS service:

AWS service:
AWS service:
AWS service:
AWS service:

AWS service:

: dynamadb application-atoscal.

support (Service-Linked role)
trustedadvisor (Service-Linked
lambda

lambda

lambda

c & 0

Showing 13 results

Last activity +
Today

None

None

41 days

40 days

47 days

Figure 11:

Create a

new IAM role

Create role

Select type of trusted entity

AWS service
ECZ, Lambda and other

=
w 2

Belongi

Another AWS account

@

Allows AWS services to perform actions on your behalf. Learn more

Choose a use case

Common use cases
EC2
Allows EC2 instances to call AWS services on your behalf.

Lambda
Allows Lambda functions to call AWS services on your behalf.

Or select a service to view its use cases

Web identity

r any OpeniD
0

API Gateway
AWS Backup

AWS Chatbot

AWS Marketplace

AWS Support

Amplity

AppStream 2.0
AppSync

Application Auto Scaling

Application Discovery

* Required

CloudWatch Events
CodeBuild
CodeDeploy
CodeGuru

CodeStar Notifications
Comprehend

Config

Connect

DMS

Data Lifecycle Manager

EKS

EMR

ElastiCache

Elastic Beanstalk

Elastic Container Registry
Elastic Gontainer Service
Elastic Transcoder
ElasticLoadBalancing
Forecast

Gamelift

10T Things Graph
KMS

Kinesis

Lake Formation
Lambda

Lex

License Manager
mMa

Machine Learning

Macie

Q SAML 2.0 federation
r corporate

Redshift
Rekognition
RoboMaker
s3

sMs

SNs

SWF
SageMaker

Security Hub

Service Catalog

Figure 12:

create new Lambda service role

found in the overview tab in the description of the IoTDeviceTemperatures table (see

figure

Once added click on "Review policy”, give it the name ”DynamoReadWriteAccess”
and click on ”Create policy”.[31]

25

Create role 1 o 3 a

~ Attach permissions policies

Choose one or more policies to attach to your new role.

Create policy Z
Filter policies Q WsLambdaBasicExecutionRole| Showing 9 results
Policy name « Used as

» AWSLambdaBasicExecutionRole Permissions policy (2)

» AWSLambdaBasicExecutionRole-48b35a52-74c4-4447-9ddf-6b6e0192d06c Permissions policy (1)

» AWSLambdaBasicExecutionRole-640c5e 1e-3241-4834-91a0-f4c523fb4 11d Permissions policy (1)

» AWSLambdaBasicExecutionRole-912d 18e8-9989-49a8-8e56-f7e7c4e705a9 Permissions policy (1)

» AWSLambdaBasicExecutionRole-a8665c84-bf34-49b0-8779-d51dcf5246ea Permissions policy (1)

» AWSLambdaBasicExecutionRole-c4b0d203-a125-410b-beed-3d2c607adbcf Permissions policy (1)

» AWSLambdaBasicExecutionRole-décc179d-41fe-48a0-839-24010577e009 Permissions policy (1)

» AWSLambdaBasicExecutionRole-d6d8abc6-126d-40d3-85ca-b2f92c4a 1940 Permissions policy (1)

» Set permissions boundary

* Required Cancel Previous Next: Tags

Figure 13: Create new Lambda basic execution role

Identity and Access Roles > loTDeviceTemperatureAccess
Management (IAM) N Summary Delete role
Dashboard Role ARN am:aws:iam::310226353119:role/loTDevice TemperatureAccess (2]
v Access management Role description Gives Access to the loTDevicsTemperature table. | Edit
Groups Instance Profile ARNs 7]
Users Path !
Roles Creation time 2020-12-10 14:13 UTC+0100
Policies Last activity 2021-01-15 09:47 UTC+0100 (5 days ago)
Identity providers Maximum session duration 1 hour Edit

Account settings — o X .
Permissions Trustrelationships = Tags Access Advisor Revoke sessions

v Access reports

~ Permissions policies (2 policies applied

Access analyzer p @p pplied)

Archive rules Attach pol

Analyzers
Policy name ~ Polic; -
Settings v e
» AWSLambdaBasicExecutionRole AWS managed policy x
Credential report
» DynamoReadWiiteAccess Inline policy %

Organization activity

Service control policies (SCPs)
» Permissions boundary (not set)

Figure 14: Add inline policies to the IoTDeviceTemperatureAccess role

Now the actual lambda functions can be created. Enter "Lambda” in the management

console and select the AWS Lambda service. Now click on the ”Create function” button

26

Documentation

Create policy

0 -

A policy defines the AWS permissions that you can assign to a user, group, or role. You can create and edit policy in the visual editor and using JSON. Leam more

Visual editor JSON
Expand all | Collapse all

~ DynamoDB (2 actions)

» Service DynamoDB

» Actions Read
Getltem
Write
Putitem

~ Resources @ Specific
close Al resources

table arn:aws:dynamodb:eu-central-1:310226353119:tablefloTDeviceTen EDIT | ©

Add ARN to restrict access

» Request conditions Specify request conditions (optional)

Import managed policy

Clone = Remove

Any in this account

© Add additional permissions

Cancel

Figure 15: Add read and write access to a defined DynamoDB table

DynamoDB

Dashboard
Tabellen
Sicherungen
Reservierte Kapazitat

Préferenzen

DAX

Dashboard
Cluster
Subnetzgruppen
Parametergruppen
Ereignisse

Probieren der neuen
Konsole

Users.

Tabellenname
Primarer Partitionsschliissel
Primérer Sortierschliissel

Verschliisselungstyp
KMS-Masterschliissel-ARN
Verschliisselungsstatus
CloudWatch Contributor Insights
Time-To-Live-Attribut
Tabellenstatus

Erstellungsdatum
L i itits-Mod

loTDeviceTemperatures Schliefen
« Tabelle erstellen [l SANCYCEFIR) 4 0= ® e
Ubersicht = Elemente = Metriken = Alarme Kapazitit Indizes Globale Tabellen = Sicherungen | Contributor Insights =~ Mehr v
QNach Tabellennamen filtern X
- i Ansichtstyp -
o Aktueller Stream-ARN -
DynamoDB-Stream verwalten
Name =
@ [oTDeviceTemperatures Tabellendetails Qo

loTDeviceTemperatures
DevicelD (Zeichenfolge)

DEAKTIVIERT Aktivieren

STANDARD Verschlilsselung verwalten
Nicht zutreffend

DEAKTIVIERT Contributor Insights verwalten [T}
DEAKTIVIERT TTL verwalten

Aktiv

10. Dezember 2020 13:51:32 UTG+1

Letzte Anderung zu On-Demand-Modus
" L e

Letzte Zeitreduzierung
Letzte Zeiterhdhung
Speichergréhe (in Bytes)
Anzahl der Elemente
Region

5 (Auto Scaling Aktiviert)
5 (Auto Scaling Aktiviert)

51,00 Bytes
1 Live-Anzahl verwalten
EU (Frankfurt)

Amazon Resource Name (ARN)

am:aws:dynamodb:eu-central-1:310226353119:table/loTDevice Temperatures

Speichergrifie und Anzahl der Elemente werden nicht in Echtzeit aktualisiert. Sie werden regelméRig aktualisiert, ungefahr alle sechs Stunden

Figure 16: ” Amazon Resource Name of the loTDeviceTemperatures table”

and enter ”PutNewTemperatureEntry” as name. Lambda functions support multiple
different programming languages. In this case JavaScript was used, therefore the selected
runtime must be Node .js. In the role-dropdown, select ”Choose an existing role” and

select the newly created "IoTDeviceTemperatureAccess” role (as seen in figure .

27

Choose the language to use to write your functio

Nodejs 12.x v

Permissions info

By default, Lambda will

¥ Change default ex

» Advanced settings

Figure 17: Create a lambda function using the DynamoReadWriteAccess policy

Paste the code from the appendix into the index.js file. When the script is triggered,
it will receive an event object that contains a json body with the entries ” DevicelD” and
"Temperature”. After these two values are extracted, they are inserted in the DynamoDB
table "IoTDeviceTemperatures”. It also gives back a response object, that contains the
http response status.[31]

Perform the same steps for creating the lambda function ” Get AllEdgeDeviceEntries” but
use the script in appendix [A.4] The only difference in this script is, that it scans the

"IoTDeviceTemperatures” table and returns all entries in the response body.

3.6.3 AWS Gateway API implementation

The Gateway API service supports RESTful-APIs as well as Websocket APIs. A RESTful
API can be created by following these steps: [30]

In the AWS-Managment console select the API Gateway service.

Select the button ”Create API” and select REST API (see figure [18]).

Choose the API-Name as "EdgeXSensorData” and keep the endpoint setting on

regional. Select create API.

Create the wanted resources and add all methods that shall be supported by them.

Implement some kind of access protection.

28

e Deploy the APIL.

aws

Services ¥ Se f vices, featt uct: Alt £ CCedgex ¥ Frankfurt ¥ Support ¥

x
API Gateway WebSocket API

APls Build a WebSocket API using persistent connections for real-time use cases such as chat
applications or dashboards.

Custom domain names

VPC links Works with the following:
Lambda, HTTP, AWS Services

REST API

Develop a REST APl where you gain complete control over the request and response along with
APl management capabilities.

Works with the following
Lambda, HTTP, AWS Services

REST API frivate
Create a REST API that is only accessible from within a VPC.

Works with the following
Lambda, HTTP, AWS Services

English (US) ¥

Privacy Policy Terms of Use

Figure 18: Create a RESTfull API with Gateway API

In this tutorial the root-resource ”sensordata” which supports the methods "GET”

and "POST” needs to be created. For creating the resource select the ”Action” button
and choose the option ”Create resource” (see figure . Keep the "configure as proxy
resource” as well as the ”Enable API Gateway CORS” unchecked and select the button

”Create resource”. [30]

showallhints @)

APIs . Resources Actions- | @/ Methods &

.‘15 Amazon APl Gateway ~ APIs > EdgeXSensorData (52qumOnj53) > Resources > /(dzjzr19fle)

RESOURCE ACTIONS

Create Method

Custom Domain Names

Create Resource

VPC Links

Enable CORS

S Edit Resource Documentation

API: EdgeXSensorData

apiacrions
Deploy API

| Resources
Import AP

Stages Edit API Documentation
Delete API

Authorizers clete

Gateway Responses
Models
Resource Policy
Documentation
Dashboard
Settings

Usage Plans

API Keys

Client Certificates

Settings

Feedback English (US) ¥

Figure 19: Create a Resource, a Method or Deploy API

29

Subsequently each of the possible HT'TP methods can be defined. First select the
resource "sensordata”, then press the ” Action” button and choose ”create method”. A
dropdown selection will appear below the resource, where the HT'TP method can be se-
lected. For this use case the GET and POST methods needs to be implemented. Select
either of the methods and define it in the upcoming view. Keep the integrationstype on
”Lambda-function” and select ”eu-central-1” as location as shown in figure When any
character is typed in the Lambda-function field, the lambda functions from that region are
listed. For the GET method choose the ”GetAllEdgeDeviceEntries” and for the POST
method the ”"PutNewTemperatureEntry” lambda function.[30]

APIs o Resources | Actions~ @ /sensordata - HEAD - Setup

Custom Domain Names

Choose the integration point for your new method.

VPC Links
Integration type © Lambda Function @

HTTP @

API: EdgeXSensorData Mock @
AWS Service @
VPC Link @
Stages

Use Lambda Proxy integration (| @
Authorizers

Gateway Responses Lambda Region eu-central-1

Models Lambda Function |GetAllEdgeDeviceEntries| |e

Use Default Timeout @ @

Settings

Usage Plans
API Keys

Client Certificates

Settings

Figure 20: Create the HTTP Method HEAD

Once deployed, anyone could access the resource provided by the API Gateway service.
Since only a certain amount of accesses is free it is highly advisable to use some kind of
access regulation. Amazon recommends to use the TAM service for this purpose. For this
project however, resource policies were used. They are more straight forward, since the
access can be limited to one or multiple IP addresses. The negative aspect is that IP ad-
dresses of a personal router changes from time to time and therefore these guidelines have
to be updated frequently. To implement a policy, select the ”Resource policy” option on
the left hand side (as marked in figure 7 among the options from the EdgeXSensorData
API. Paste the code form appendix[A.6]in there and enter the ip addresses that shall have
access through this gateway.[I]

Finally select the button ”Action” and choose "Deploy API” (figure . As a stage

30

.‘1: Amazon APl Gateway ~ APls > EdgeXSensorData (5zqumOnj53) > Resource Policy showallhints @)

APls Resource Policy
«
) Configure access control to this private AP! using a Resource Policy. Access can be controlled by IAM condition elements, including conditions on AWS account, Source VPC, VPC Endpoints (Private API), and/or IP range. If the Principal in the
Custom Domain Names policy is set to *, other authorization types can be used alongside the resource policy. If the Principal is set to AWS, then authorization will fail for all resources not secured with AWS_IAM auth, including unsecured resources. Learn more.
VPC Links =N

: "2012-10-17",
[

3v
o
s
s
API: EdgeXSensorData 7
8 tral-1 Jor
o
Resources Do
n
2
Stages 2
1 eu-central-1:3102263531 oo,
Authorizers 157
1
Y
Gateway Responses b
1
Models = 1
2 3
. 2 3
| Resource Policy 5)
2a]
Documentation L
Dashboard
Settings
Usage Plans

APl Keys
[SELEIEER AWS Account Allowlist IP Range Denylist Source VPC Allowlist

Client Certificates

Settings

Feedback English (US) ¥

Figure 21: Set Gateway API resource policy

name choose "EdgeXCollectedData”. After "create stage” was selected a description of
the stage is presented, including a URL for accessing this API.

For testing purposes, the python scripts located in appendix [A.8 and appendix[A.7] can be
used for either creating a new entry or getting all existing. Before they are executed, the
url in the script has to be set to the Gateway API URL with the ”"sensordata” resource
at the end.

31

References

1]

[10]

Amazon Web Services, Inc. How do i use a resource policy to allow certain ip
addresses to access my api gateway rest api?, . URL https://aws.amazon.com/de/
premiumsupport/knowledge-center/api-gateway-resource-policy-access/.

[Accessed on 2021-01-15].

Miel Donkers. Simple python 3 http server for logging all get and post requests. URL
https://gist.github.com/mdonkers/63e115cc0c79b4f6b8b3abb797e485c7. [Ac-
cessed on 2021-01-19].

EdgeX Foundry. Edgex foundry documentation - introduction, . URL https://
docs.edgexfoundry.org/1.2/. [Accessed on 2021-01-18].

EdgeX Foundry. FEdgex foundry - hands on tutorial, . URL https://docs.
edgexfoundry.org/1.2/examples/LinuxTutorial/LinuxTutorial/. [Accessed on

2021-01-18].
Anatol Badach. Internet of things — iot. 2014. doi: 10.13140/RG.2.1.5157.5527.

EdgeX Foundry. Edgex foundry documentation - container names, . URL https:
//docs.edgexfoundry.org/1.2/general/ContainerNames/. [Accessed on 2021-01-
19].

EdgeX Foundry. Edgex foundry documentation - service layers, . URL https:
//docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers. [Accessed on
2021-01-18].

EdgeX Foundry. Edgex foundry documentation - core services, . URL https:
//docs.edgexfoundry.org/1l.2/microservices/core/Ch-CoreServices/. [Ac-
cessed on 2021-01-19].

EdgeX Foundry. Edgex foundry documentation - supporting services,
URL https://docs.edgexfoundry.org/1.2/microservices/support/Ch-
SupportingServices/. [Accessed on 2021-01-18].

EdgeX Foundry. Edgex foundry documentation - kuiper rules engine,
URL https://docs.edgexfoundry.org/1.2/microservices/support/Kuiper/
Ch-Kuiper/. [Accessed on 2021-01-18].

32

https://aws.amazon.com/de/premiumsupport/knowledge-center/api-gateway-resource-policy-access/
https://aws.amazon.com/de/premiumsupport/knowledge-center/api-gateway-resource-policy-access/
https://gist.github.com/mdonkers/63e115cc0c79b4f6b8b3a6b797e485c7
https://docs.edgexfoundry.org/1.2/
https://docs.edgexfoundry.org/1.2/
https://docs.edgexfoundry.org/1.2/examples/LinuxTutorial/LinuxTutorial/
https://docs.edgexfoundry.org/1.2/examples/LinuxTutorial/LinuxTutorial/
https://docs.edgexfoundry.org/1.2/general/ContainerNames/
https://docs.edgexfoundry.org/1.2/general/ContainerNames/
https://docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers
https://docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers
https://docs.edgexfoundry.org/1.2/microservices/core/Ch-CoreServices/
https://docs.edgexfoundry.org/1.2/microservices/core/Ch-CoreServices/
https://docs.edgexfoundry.org/1.2/microservices/support/Ch-SupportingServices/
https://docs.edgexfoundry.org/1.2/microservices/support/Ch-SupportingServices/
https://docs.edgexfoundry.org/1.2/microservices/support/Kuiper/Ch-Kuiper/
https://docs.edgexfoundry.org/1.2/microservices/support/Kuiper/Ch-Kuiper/

[11]

[12]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

EdgeX Foundry. Edgex foundry documentation - application service,
URL https://docs.edgexfoundry.org/1.2/microservices/application/
ApplicationServices/. [Accessed on 2021-01-19].

EdgeX Foundry. Edgex foundry wiki: Device services - existing and work under-
way, . URL https://wiki.edgexfoundry.org/display/FA/Devicet+Services+-

+existing+and+work+underway. [Accessed on 2021-01-19].

EdgeX Foundry. Edgex foundry documentation - device services, . URL https://
docs.edgexfoundry.org/1.2/microservices/device/Ch-DeviceServices/. [Ac-
cessed on 2021-01-19].

Redis Labs. Redis.io homepage. URL https://redis.io/. [Accessed on 2021-01-19].

EdgeX Foundry. Edgex foundry documentation - web user interface,
URL https://docs.edgexfoundry.org/1.2/microservices/configuration/Ch-

Configuration/#web-user-interface. [Accessed on 2021-01-21].

HashiCorp. Consul - explore the consul ui. URL https://learn.hashicorp.com/
tutorials/consul/get-started-explore-the-ui. [Accessed on 2021-01-21].

EdgeX Foundry. Edgex foundry documentation: Platform requirements, . URL
https://docs.edgexfoundry.org/1.2/general/PlatformRequirements/. [Ac-
cessed on 2021-01-19].

EdgeX Foundry. Edgex github repository, . URL https://github.com/
edgexfoundry/developer-scripts/tree/master/releases. [Accessed on 2021-
01-19].

Docker Docs. Install docker engine. URL https://docs.docker.com/engine/
install/ubuntu/. [Accessed on 2020-12-12].

Rohan Sawant. Installing docker and docker compose on the raspberry pi in 5 sim-
ple steps. URL https://dev.to/rohansawant/installing-docker-and-docker-
compose-on-the-raspberry-pi-in-5-simple-steps-3mgl. [Accessed on 2020-12-
12].

EdgeX Foundry. Edgex foundry walkthrough - query events / read-

ings, . URL https://docs.edgexfoundry.org/1.2/walk-through/Ch-
WalkthroughReading/#walkthrough-query-eventsreadings. [Accessed on
2021-01-20].

33

https://docs.edgexfoundry.org/1.2/microservices/application/ApplicationServices/
https://docs.edgexfoundry.org/1.2/microservices/application/ApplicationServices/
https://wiki.edgexfoundry.org/display/FA/Device+Services+-+existing+and+work+underway
https://wiki.edgexfoundry.org/display/FA/Device+Services+-+existing+and+work+underway
https://docs.edgexfoundry.org/1.2/microservices/device/Ch-DeviceServices/
https://docs.edgexfoundry.org/1.2/microservices/device/Ch-DeviceServices/
https://redis.io/
https://docs.edgexfoundry.org/1.2/microservices/configuration/Ch-Configuration/#web-user-interface
https://docs.edgexfoundry.org/1.2/microservices/configuration/Ch-Configuration/#web-user-interface
https://learn.hashicorp.com/tutorials/consul/get-started-explore-the-ui
https://learn.hashicorp.com/tutorials/consul/get-started-explore-the-ui
https://docs.edgexfoundry.org/1.2/general/PlatformRequirements/
https://github.com/edgexfoundry/developer-scripts/tree/master/releases
https://github.com/edgexfoundry/developer-scripts/tree/master/releases
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://dev.to/rohansawant/installing-docker-and-docker-compose-on-the-raspberry-pi-in-5-simple-steps-3mgl
https://dev.to/rohansawant/installing-docker-and-docker-compose-on-the-raspberry-pi-in-5-simple-steps-3mgl
https://docs.edgexfoundry.org/1.2/walk-through/Ch-WalkthroughReading/#walkthrough-query-eventsreadings
https://docs.edgexfoundry.org/1.2/walk-through/Ch-WalkthroughReading/#walkthrough-query-eventsreadings

[22]

23]

[24]

[26]

[27]

28]

[29]

[30]

[31]

EdgeX Foundry. Edgex foundry documentation kuiper rules engine, . URL https://
docs.edgexfoundry.org/1.2/microservices/support/Kuiper/Ch-Kuiper/. [Ac-
cessed on 2021-01-19].

EMQ Technologies Co. Stream specs. URL https://docs.emgx.io/en/kuiper/
latest/sqls/streams.html#data-types. [Accessed on 2021-01-19].

EdgeX Foundry. Edgex source, . URL https://github.com/emqx/kuiper/blob/
master/docs/en_US/rules/sources/edgex.md. [Accessed on 2021-01-19].

EMQ Technologies Co. Kuiper has officially become the edgex rule engine, . URL
https://www.emgx.io/blog/kuiper-becomes-edgex-rule-engine. [Accessed on
2021-01-19].

EdgeX Foundry. How to use meta function to extract addtional data from edgex
message bus?, . URL https://github.com/emqx/kuiper/blob/master/docs/en_
US/edgex/edgex_meta.md. [Accessed on 2021-01-19].

EMQ Technologies Co. Rules management, . URL https://docs.emgx.io/en/
kuiper/latest/restapi/rules.html#create-a-rule. [Accessed on 2021-01-19].

Amazon Web Services, Inc. How to use the new amazon dynamodb key di-
agnostics library to visualize and understand your application’s traffic patterns,
. URL https://aws.amazon.com/de/blogs/compute/introducing-amazon-api-

gateway-private-endpoints/. [Accessed on 2021-01-19].

Chan Ryan, Elhemali Mostafa, Malligarjuna Padma. How to use the new amazon dy-
namodb key diagnostics library to visualize and understand your application’s traffic
patterns. URL https://aws.amazon.com/de/blogs/database/how-to-use-
the-new-amazon-dynamodb-key-diagnostics—-library-to-visualize-and-

understand-your-applications-traffic-patterns/. [Accessed on 2021-01-19].

Amazon Web Services, Inc. Tutorial: Hello world rest-api mit lambda-proxy-
integration erstellen, . URL https://docs.aws.amazon.com/de_de/apigateway/
latest/developerguide/api-gateway-create-api-as-simple-proxy-for-
lambda.html. [Accessed on 2021-01-15].

Amazon Web Services, Inc. Aws lambda und dynamodb — aws serverless tuto-
rial — part i, . URL https://www.youtube.com/watch?v=VGerk8hrP9U&1list=PLD_
RqipW0-9uDz_KkexA5eGwd3cm3maq7. [Accessed on 2021-01-19].

34

https://docs.edgexfoundry.org/1.2/microservices/support/Kuiper/Ch-Kuiper/
https://docs.edgexfoundry.org/1.2/microservices/support/Kuiper/Ch-Kuiper/
https://docs.emqx.io/en/kuiper/latest/sqls/streams.html#data-types
https://docs.emqx.io/en/kuiper/latest/sqls/streams.html#data-types
https://github.com/emqx/kuiper/blob/master/docs/en_US/rules/sources/edgex.md
https://github.com/emqx/kuiper/blob/master/docs/en_US/rules/sources/edgex.md
https://www.emqx.io/blog/kuiper-becomes-edgex-rule-engine
https://github.com/emqx/kuiper/blob/master/docs/en_US/edgex/edgex_meta.md
https://github.com/emqx/kuiper/blob/master/docs/en_US/edgex/edgex_meta.md
https://docs.emqx.io/en/kuiper/latest/restapi/rules.html#create-a-rule
https://docs.emqx.io/en/kuiper/latest/restapi/rules.html#create-a-rule
https://aws.amazon.com/de/blogs/compute/introducing-amazon-api-gateway-private-endpoints/
https://aws.amazon.com/de/blogs/compute/introducing-amazon-api-gateway-private-endpoints/
https://aws.amazon.com/de/blogs/database/how-to-use-the-new-amazon-dynamodb-key-diagnostics-library-to-visualize-and-understand-your-applications-traffic-patterns/
https://aws.amazon.com/de/blogs/database/how-to-use-the-new-amazon-dynamodb-key-diagnostics-library-to-visualize-and-understand-your-applications-traffic-patterns/
https://aws.amazon.com/de/blogs/database/how-to-use-the-new-amazon-dynamodb-key-diagnostics-library-to-visualize-and-understand-your-applications-traffic-patterns/
https://docs.aws.amazon.com/de_de/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/de_de/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/de_de/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://www.youtube.com/watch?v=VGerk8hrP9U&list=PLD_RqipW0-9uDz_KkexA5eGwd3cm3maq7
https://www.youtube.com/watch?v=VGerk8hrP9U&list=PLD_RqipW0-9uDz_KkexA5eGwd3cm3maq7

[32]

[33]

Amazon Web Services, Inc. Amazon dynamodb, . URL https://aws.amazon.com/
de/dynamodb/. [Accessed on 2021-01-19].

Amazon Web Services, Inc. Using aws lambda with amazon api gateway,
URL https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.
html. [Accessed on 2021-01-19].

Amazon Web Services, Inc. Fakturierungs- und kostenverwaltungs-dashboard, . URL

https://console.aws.amazon.com/billing/home?#/. [Accessed on 2021-01-15].

Amazon Web Services, Inc. Kostenloses kontingent fiir aws, . URL https://
aws.amazon.com/de/free/7all-free-tier.sort-by=item.additionalFields.

SortRank&all-free-tier.sort-order=asc. [Accessed on 2021-01-15].

35

https://aws.amazon.com/de/dynamodb/
https://aws.amazon.com/de/dynamodb/
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://docs.aws.amazon.com/lambda/latest/dg/services-apigateway.html
https://console.aws.amazon.com/billing/home?#/
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc
https://aws.amazon.com/de/free/?all-free-tier.sort-by=item.additionalFields.SortRank&all-free-tier.sort-order=asc

= o=
= O © 0N O O WwN -

DO OOt Ot gt Ut OOt OOt U e R E R R R R R R WW W W W W W W W WNNNDNDNDNDNNNNE R e e
0 N O ULk WO O©OW-NOOUEAE WNRO®©OWNOUERER WNROOOWNOU R WNROO©OWWNOOUWRE WNROO©OOWNO U B WN

A Appendix

Al

Code for Raspberry-Node

of the

import s

from gpi
ip-adres

print (7

Student research project

Department of Computer Science

ys, time, requests, json,

#

R

N

_ | | | |-FRANKFURT
((--| | | | UNIVERSITY
OF APPLIED SCIENCES
#

Version: 1.1

Awuthors: Dominic Gibietz , Jan Wagner, Daniel
#

#

subprocess,

ozero import CPUTemperature

s_edge_device = " k.*k.x.%”

print (7
print (”
print (”
print (”
print (”

=

- | | | |-FRANKFURT
((-=] | | | UNIVERSITY
OF APPLIED SCIENCES

print (”

while True:

CPU temperature

”)
”)
”)
")
")
")
")

Helmer

in the master’s program in Allgemeine

and Engineering

re, oOs

cpu = int (CPUTemperature().temperature)
74+ str(cpu)+ 7 Grad Celsius”)

print ("CPU temperature is

Memory use

s = subprocess.check_output ([” free”

lines = s.split(’\n’)

RAMav = lines [2].split () [3]
RAMto = lines [1].split () [1]

print (” Available ram "+
print (” Total ram 7”4 str(

Network traffic

str(lines [2].

,7—m”)

split () [3])+ "Mb”)

lines [1].split () [1])+ "Mb”)

output = subprocess.Popen([’ifconfig’,

rx-bytes = re.findall (’RX packets
tx_-bytes = re.findall ('TX packets

’eth0’], stdout=subprocess.PIPE).communicate() [0]
([0—-9]%) * bytes ([0—9]x)",
([0—-9]%) * bytes ([0—9]x)",

print ("RX packets "4+ str(rx_bytes[0])+ "Mb”)
print ("RX bytes 7+ str(rx_bytes[1])+ "Mb”)
print ("TX packets "4 str(tx_bytes[0])+ "Mb”)
print ("TX bytes 7+ str(tx_bytes[1])+ "Mb”)

Raspi load

load=o0s . getloadavg ()
print (”Load average over
print (”Load average over
print (”Load average over

Raspi uptime

Informatik

the last 1 minute:” + str(load[0]*100))
the last 5 minute:” + str(load[1]%*100))
the last 15 minute:”+ str(load[2]%*100))

s = subprocess.check_output ([”uptime”])

load_split = s.split(’load average: ’)
load-five = float (load_split[1].split(’,’)[1])

up = load_split [0]

up-pos = up.rfind(’,’,0,len(up)—4)
up = up|[:up-pos].split(’up ’)[1]

print (" uptime "+str (up))

CPU info

f = os.popen(’cat /proc/cpuinfo ’)

cpu = f.read()

36

output) [0]
output) [0]

69
70
71
72

73
74
75

76

v

78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99

100

101
102

print (7 7))

Adresses for wariables

urlCPUTemp = 'http://%s:49986/api/vl/resource/Raspi_-Device_.1/CPU_Temperature’ %
ip-adress_edge_-device

urlRAM = ’http://%s:49986/api/vl/resource/Raspi-Device_.1/RAM’ % ip_-adress_edge_device

urlRAMto = ’http://%s:49986/api/vl/resource/Raspi-Device_.1/RAM_Total’ % ip-adress_edge_device

urlRX _packets = ’http://%s:49986/api/vl/resource/Raspi_Device_-1/RX_packets’ %
ip-adress_edge_device

urlRX_bytes = ’http://%s:49986/api/vl/resource/Raspi-Device_1/RX_bytes’ %
ip-adress_edge_device

urlTX _packets = ’http://%s:49986/api/vl/resource/Raspi_-Device_-1/TX_packets’ %
ip-adress_edge_device

urlTX_bytes = ’http://%s:49986/api/vl/resource/Raspi-Device_1/TX_bytes’ %
ip-adress_edge_device

urlLoadl = ’'http://%s:49986/api/vl/resource/Raspi_-Device_1/Loadl’ % ip-adress_edge_device

urlLoad2 = ’'http://%s:49986/api/vl/resource/Raspi_-Device_1/Load2’ % ip-adress_edge_device

urlLoad3 = ’http://%s:49986/api/vl/resource/Raspi_Device_1/Load3’ % ip-adress_edge_device

urlup = ’http://%s:49986/api/vl/resource/Raspi-Device_1/UpTime’ % ip-adress_edge_device

FEdge headers
headers = {’content—type

’: ’application/json '}

Send data

response = requests.post (urlCPUTemp, data=json.dumps(cpu), headers=headers, verify=False)

Commented out for presentation

response = requests.post(urlRAM, data=RAMav, headers=headers ,verify=False)

response = requests.post(urlRAMto, data=RAMto, headers=headers ,verify=False)

response = requests.post(urlRX_packets, data=rz_bytes [0], headers=headers,verify=False)

response = requests.post(urlRX_bytes, data=rz_bytes[1], headers=headers ,verify=False)

response = requests.post(urlTX_packets, data=tz_bytes [0], headers=headers,verify=False)

response = requests.post(urlTX_bytes, data=txz_bytes [1], headers=headers,verify=False)

response = requests.post(urlloadl , data=json.dumps(int(load[0]*100)), headers=headers,verify=
False)

response = requests.post(urlload?2, data=json.dumps(int(load[1]*100)), headers=headers,verify=
False)

response = requests.post(urlload3, data=json.dumps(int(load[2]*100)), headers=headers,verify=
False)

response = requests.post(urlup, data=json.dumps(up)*100, headers=headers ,verify=False)

time.sleep (5)

37

= o
= O © 00N OO e WwN -

= o= e
=W N

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

A.2 Code for Raspberry EdgeX Bash file

#!/bin/bash
docker—compose up —d
docker—compose ps
docker—compose up —d

echo ”Docker—Compose running”

sleep 1s
curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:
application/json’ \ data—raw ’{ "name”: ”"CPU_Temperature” , 7”description”: "CPU Temperature
in Celsius?”, min”: 77, "max”: 77, Ptype”: 7Int647, 7uomLabel”: ?”CPU_Temperature” ,
7”defaultValue”: 707, ”formatting”: "%s”, ?labels”: [”environment” , ”
CPU_Temperature” 1}
curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:
application/json’ \——data—raw ’{ ?name”: "RAM” , "description”: "RAM in GB”, ”min” :
"max”: 77, "type”: ”Int64”, ”uomLabel”: "RAM” , ”defaultValue”: 707, ”formatting”:
?%s 7, ?labels”: [”environment” , ?RAM” 1}

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:

application/json’ \——data—raw ’{ "name”: "RAM_Total” , ”description”: "RAM total in GB”,
?min”: 77, "max”: 77, 7type”: 7Int64”, ”uomLabel”: "RAM_Total” , ”defaultValue”: 707,
?formatting”: "%s”, ?labels”: | ”?environment” , ?”RAM_Total” 1}
curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \—header ’Content—Type:
application/json’ \——data—raw ’{ "name”: ”"RX_packets”, ”description”: ”RX_packets in MB”,
min”: 77, "max”: "7, Ptype”: 7Int647, 7uomLabel”: ”"RX_packets”, ?defaultValue”:
70", ”formatting”: "%s”, ?labels”: [”environment” ”RX_packets” 1}
curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:
application/json’ \——data—raw ’{ "name”: "RX_bytes”, ”description”: "RX_bytes in MB”, ”
min”: 77 ?max”: 77, Ptype”: "Int647, ”uomLabel”: ?RX_bytes”, ”defaultValue”: 707,
?formatting”: "%s”, ?labels”: | ?environment” , ?»RX_bytes” 1}

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:

application/json’ \——data—raw ’{ "name”: ”TX_packets”, ”description”: ”TX_packets in MB”,
?min”: 7”7, "max”: 77 "type”: 7Int64”, ”uomLabel”: ”TX_packets”, ”defaultValue”:
707", ?formatting”: "%s”, ?labels”: | ”?environment” , » TX_packets” 1}

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \—header ’Content—Type:

application/json’ \——data—raw ’{ "name”: ”"TX_bytes”, 7description”: ?"TX_bytes in MB”,
min”: 77, ?max”: "7 Ptype”: 7Int647, 7uomLabel”: ”"TX_bytes”, 7defaultValue”: 707,
”formatting”: "%s”, ”?labels”: | ”environment” ?»TX_bytes” 1}

»

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’'Content—Type:

application/json’ \——data—raw ’{ "name”: ”Loadl”, ”description”: ”Raspi Load 1 min”,
min”: 77, "max”: "7, Ptype”: 7Int647, ”"uomLabel”: ”Loadl”, ”defaultValue”: 707,
formatting”: "%s”, ?labels”: | ”environment” , ”Loadl” 1}

»

»

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’Content—Type:

application/json’ \——data—raw ’{ "name”: ”Load2”, ”description”: ”Raspi Load 5 min”,
min”: 77 "max”: "7, Ptype”: 7Int64”, ”uomLabel”: ”Load2”, ”defaultValue”: 707,
formatting”: "%s”, ?labels”: | ”?environment” , ” Load2” 1}

»

»

curl —location —request POST ’http://localhost:48080/api/vl/valuedescriptor’ \—header ’'Content—Type:

application/json’ \——data—raw ’{ ?name”: ”Load3”, ”description”: ”Raspi Load 15 min”,
min”: 77, ?max”: "7, Ptype”: 7Int647, 7uomLabel”: ”Load3”, ”defaultValue”: 707,
formatting”: "%s”, ?labels”: | ”environment” , ”Load3” 1}

»

»

curl location request POST ’http://localhost:48080/api/vl/valuedescriptor’ \——header ’Content—Type:

application/json’ \——data—raw ’{ "name”: ”UpTime” , ”description”: ”Raspi UpTime” , "min”:
e ?max”: 77, Ptype”: 7Int647, ”uomLabel”: ”UpTime” , ?defaultValue”: 707, ?
formatting”: "%s”, ?labels”: | ”?environment” , ”UpTime” 1}

curl —location —request POST ’http://localhost:48081/api/vl/deviceprofile/uploadfile’ —form ’file=@

”./Raspi-Device_Profile.yaml”’

echo ”Create devices”

38

39
40
41
42

43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

sleep 2s

curl

echo

curl

echo

echo

echo

echo

echo

echo

echo

echo

echo

echo

echo

echo

—location —request POST ’http://localhost:48081/api/vl/device’ \——header ’Content—Type

application/json’ \——data—raw ’{”name”: ”Raspi-Device_1”, ”description”: ”Raspberry Pi 17, ”
adminState”: ”unlocked”, “operatingState”: ”"enabled”, ”protocols”: {”example”: {”host”: ”"dummy”, ’
port”: ”1234”, ”unitID”: ”1”}}, ”labels”: [?UpTime”, ”"Loadl”, ”Load2”, ”Load3”, "RX_packets”, ”
RX_bytes”, "TX_packets”, "TX_bytes”, "RAM_Total”, "RAM”, ”CPU_Temperature sensor”, "DHT11”], ”
location”: ”Berlin”, ”"service”: "name”: ”"edgex—device—rest”}, ”"profile”: ”"name”: ”Raspi_-Device
"}y

”Created device 17

—Ilocation —request POST ’http://localhost:48081/api/vl/device’ \——header ’Content—Type
application/json’ \——data—raw ’{”name”: ”Raspi_-Device_2”, ”description”: ”Raspberry Pi 27, 7
adminState”: ”“unlocked”, ”operatingState”: ”"enabled”, ”"protocols”: {”example”: {”host”: ”"dummy”, ”
port”: 71234”, 7unitID”: 717}}, 7labels”: [?UpTime”, ”"Loadl”, ”Load2”, ”Load3”, "RX_packets”, ”
RX_bytes”, "TX_packets”, "TX_bytes”, "RAM_Total”, "RAM” , ”CPU_Temperature sensor”, "DHT11”], ”
location”: ”Berlin”, ”"service”: {"name”: ”"edgex—device—rest”}, "profile”: {?name”: ”Raspi-Device
"1}

”Created device 27

» »

» . 5

» _ | | | |-FRANKFURT ~

” ((--] | | | UNIVERSITY ”

” OF APPLIED SCIENCES 7

» »

» »

”Start your work and have fun! :) ”

39

= o
= O © 00N O 0e WwN -

e s
U W N

16
17
18
19
20
21

22
23
24
25
26
27
28

29
30
31
32
33
34
35

36
37
38
39
40
41
42

43
44
45
46
47
48
49

50
51
52
53
54
55
56

57
58
59
60
61
62
63

64
65

A.3 Code for Raspberry Profile

name: " Raspi_-Device”
manufacturer: ”"FRA-UAS”
model: ”Raspberry Pi 47
labels:

— 7rpi”

description: ”Raspberry Pi Profile”

deviceResources:
name: CPU_Temperature
description: ”"CPU temperature values”
properties:
value:
{ type: "Int64”, readWrite: "RW’, minimum: ””, maximum:
defaultValue: 797}

name: RAM

description: "RAM available values”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ”” , maximum:

defaultValue: 797}

name: RAM_Total

description: "RAM total values”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ”” , maximum:
defaultValue: 797}

name: RX_packets

description: "RX packets”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ””, maximum: ””
defaultValue: 797}

name: RX_bytes

description: ”"RX bytes”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ””, maximum: ””
defaultValue: 797}

name: TX_packets

description: ”TX packets”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ”” , maximum:
defaultValue: 797}

name: TX_bytes

description: ”TX bytes”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ””, maximum:
defaultValue: 797}

name: Loadl

description: ”TX bytes”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ”” , maximum:
defaultValue: 797}

40

»n
’

»n
s

»n
’

»n
s

»n
’

»n
s

size:

size:

size:

size:

size:

size:

size:

size:

ngqn
s

ngqn
s

ngqn
>

ngn
s

ngn
’

g
s

ngn
’

ngn
s

LSB:

LSB:

LSB:

LSB:

LSB:

LSB:

LSB:

LSB:

Ytrue”

Ytrue”

Ytrue”

Ytrue”

Ytrue”

Ytrue”

Ytrue”

Ytrue”

66
67
68
69
70

71
72
73
74
75
76
7

78
79
80
81
82
83
84

17
18
19
20
21
22
23
24
25
26
27
28
29
30

32
33
34
35
36
37
38
39
40

name: Load2

description: ”TX bytes”

properties:

value:

» 9

{ type: 7Int64”, readWrite: "RW’, minimum: ”” , maximum:
defaultValue: 797}

name: Load3

description: ”TX bytes”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ””, maximum: ””
defaultValue: 797}

name: UpTime

description: ”Raspi UpTime”

properties:

value:

{ type: 7Int64”, readWrite: "RW’, minimum: ””, maximum: 77,

defaultValue: 797}

A.4 Code for AWS Lambda GetAllEdgeDeviceEntries

‘use strict ’;
const AWS = require (’aws—sdk’) ;

AWS. config .update({region: ”“eu—central —17});
exports.handler = async (event, context) => {

console.log (’PutNewTemperatureEntry invoked’) ;

const documentClient = new AWS.DynamoDB.DocumentClient ({region:

let responseBody =7"7;

let statusCode = 0;
const params = {
TableName: ”IoTDeviceTemperatures”
b
try
{
const data = await documentClient.scan (params).promise () ;

responseBody = JSON.stringify (data.Items);
console.log(” Entry successfully created: ”
statusCode = 200;

} catch (e)

+ responseBody);

{
responseBody = ’Unable to get entries:’ + e;
statusCode = 403;
console.log (” Execution failed ” + e);
}
const response =
{
statusCode: statusCode,
headers: {
”Content—Type”: ”"application/json”,
”access—control—allow—origin”: 7x”
Ix
body: responseBody

}s

return response;

}s

41

size: 74”7 | LSB: ”true”

size: 74” , LSB: ”true’

5

size: 74”7 | LSB: ”true”

”eu—central —17});

= o
= O © 00N O U WwWN -

B R R R R W W W W W W W W W W NNNDNDNDNDNDNDNDNE =
Gk WIN RO ©OWWNOU e WNRO©OWNODUER WNROO©OOWNOD WU AWN

= o
H O © 000 Uk W

I e~
S © N U A WN

A.5 Code for AWS Lambda PutNewTemperatureEntry

‘use strict ’;
const AWS = require (’aws—sdk’) ;

AWS. config .update ({region: ”“eu—central —17});
exports.handler = async (event, context) => {
console.log (’PutNewTemperatureEntry invoked’) ;
const ddb = new AWS.DynamoDB({apiVersion: ”2012—10—-08"});

const documentClient = new AWS.DynamoDB.DocumentClient({region: ”"eu—central —1”});

let responseBody
let statusCode = 0;

—nn.
= 3

const {DevicelD, Temperature} = JSON. parse(event.body) ;

const params = {
TableName: ”IoTDeviceTemperatures”,
Item: {
DevicelD: DevicelD ,
Temperature: Temperature

}
s
try
{
const data = await documentClient.put(params).promise();

responseBody = JSON.stringify (data);
console.log(” Entry successfully created: ”
statusCode = 201;

} catch (e)

+ responseBody) ;

{
responseBody = ’Unable to create entry: ${e}’
statusCode = 403;
console.log (” Execution failed ” + e);

}

const response =

{

statusCode: statusCode,

headers: {

”Content—Type”: ”application/json”
Ix

body: responseBody

}s

return response;

}s

A.6 Code for AWS Gateway API resource policy [1]

{
”Version”: 72012—10—177,
”Statement”: |
{
"Effect”: ”Allow”,
”Principal”: 7x”
”Action”: ”execute—api:Invoke”,
”Resource”: ”arn:aws:execute—api:eu—central —1:310226353119:5zqumOnj53 /x*/x /%"
Ix
{
”Effect”: ”Deny”,
”Principal”: 7x7,
”? Action”: "execute—api:Invoke”,
”Resource”: ”arn:aws:execute—api:eu—central —1:310226353119:52qumOnj53 /% /% /%7,

? Condition”: {
?”NotIpAddress”: {
”aws: Sourcelp”: |
7 XXX . XXX . XXX . XXX,

7 XXX . XXX . XXX . XXX

42

21
22
23
24
25

= o=
O © 00N Oe WwN - A U W N

WU W N

W WNNNNNININNNLNFE 2 H = e e e e e
H O © 00 O Uk WN=O©WOow=NNOOU & W= O ©

A.7 Script for getting all DynamoDB entries

#!/usr/bin/env python3
import requests, json

awsIP =”"<AmazonGWAPI_.URL>/EdgeXCollectedData/sensordata”
response = requests.get(awsIP)
print (response.text)

A.8 Script for creating new DynamoDB entry

#!/usr/bin/env python3
import requests, json, sys

awsIP =”"<AmazonGWAPI_.URL>/EdgeXCollectedData/sensordata”
if len(sys.argv) != 4:

print (”The function needs 3 parameter”)
else:

s

headers = {’content—type’ application/json’}
body = {”DevicelD”: sys.argv[l], ”Temperature”: sys.argv|[2]}
response = requests.post(awsIP, data=json.dumps(body), headers=headers)

print(response.text)

A.9 Python 3 HTTP server [2]

#!/usr/bin/env python
Very simple HTTP server in python (Updated for Python 3.7)
Usage :
./ dummy—web—server.py —h
. /dummy—web—server . py !l localhost —p 8000
Send a GET request:
curl http://localhost:8000
Send a HEAD request:
curl —I http://localhost:8000
Send a POST request:
curl —d 7foo=bar&bin=baz” http://localhost:8000
EEr)
import argparse
from http.server import HTTPServer, BaseHTTPRequestHandler

class S(BaseHTTPRequestHandler) :
def _set_headers(self):
self.send_response (200)
self.send_header (” Content—type”, ”text/html”)
self.end_headers ()

def _html(self, message):
777 This just generates an HTML document that includes ‘message ¢
in the body. Owverride, or re—write this do do more interesting stuff.
ey
content = "<html><body><h1>%s</h1></body></html>" % message
return content.encode(”utf8”) # NOTE: must return a bytes object!

def do_.GET(self):

43

32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

self._set_headers ()
self . wfile.write(self._html(”hi!”))

def do.HEAD(self):
self._set_headers ()

def do_ POST(self):
Doesn’t do anything with posted data
content_length = int(self.headers|[’Content—Length’]) # <—— Gets the size of data
post_data = self.rfile.read(content_length) # <—— Gets the data itself
print ("POST request ,\nPath: {0}\nHeaders:\n{1}\n\nBody: \n{2}\n” .format(str(self.path),
self.headers), post_data.decode(’utf—8’)))
self._set_headers ()
self . wfile.write(self._html(”POST!”))

def run(server_class=HTTPServer, handler_class=S, addr="localhost”, port=8000):

server_address = (addr, port)
httpd = server_class (server_address , handler_class)

print (” Starting httpd server on %s:%s” % (addr,port))
httpd.serve_forever ()

--name__. == " __main__":

parser = argparse.ArgumentParser(description="Run a simple HTTP server”)
parser .add_argument (

n_yr

7"—listen” ,

default="0.0.0.07,

help="Specify the IP address on which the server listens”,

)
parser .add_argument (
»_p»
”—port”,
type=int ,
default =8000,
help="Specify the port on which the server listens”,
)
args = parser.parse_args ()
run (addr=args . listen , port=args.port)

44

str(

Eigenstandigkeitserklarung

Ich versichere, dass die vorstehende Arbeit von mir selbststandig ohne
unerlaubte fremde Hilfe und ohne Benutzung anderer als der angegebe-
nen Hilfsmittel angefertigt wurde, und dass ich alle Stellen, die wortlich
oder sinngemafl aus veroffentlichten oder unveroffentlichten Schriften ent-

nommen sind, als solche gekennzeichnet habe.

Frankfurt, den 22" January, 2021

	Introduction
	Foundation
	EdgeX and the Internet of Things
	EdgeX Foundation Services
	Core Services Layer
	Supporting Services Layer
	Application Services Layer
	Device Services Layer
	Additional useful services

	Implementation
	Use case and system architecture
	Implementation on a Virtual Machine
	Installation of Docker and docker-compose
	Installation of EdgeX
	Running EdgeX

	Implementation on Raspberry Pi
	Installing Raspberry Pi Operating System(OS)
	Implementation of Raspberry-Node
	Implementation of Raspberry-EdgeX gateway

	Creating of devices and variables
	Creating the Device Profile
	Creating the variables
	Look up stored devices and other data

	Export EdgeX Foundry data
	Creation of a Kuiper data source
	Creation of Kuiper rules

	Amazon Web Services
	AWS DynamoDB
	AWS Lambda implementation
	AWS Gateway API implementation

	References
	Appendix
	Code for Raspberry-Node
	Code for Raspberry EdgeX Bash file
	Code for Raspberry Profile
	Code for AWS Lambda GetAllEdgeDeviceEntries
	Code for AWS Lambda PutNewTemperatureEntry
	Code for AWS Gateway API resource policy ResourcePolicyTut
	Script for getting all DynamoDB entries
	Script for creating new DynamoDB entry
	Python 3 HTTP server HTTPServer

