Project Cloud Computing WS 2020/21

Infrastructure as Code (with Terraform)

ANSIBLE

OR

HashiCorp

“' Terraform

12.02.2021

Submitted by: Gokhan Yildirim, Samir Hamiani, Victoria Chaikovska

Frankfurt University of Applied Sciences
Faculty of Computer Science and Engineering

[goekhany@stud.fra-uas.de, samir.hamiani@stud.fra-uas.de, chaikovs@stud.fra-uas.de] [16]

Content

Infrastructure as a Code.........oovvmreiverereeceeeeeeee e 2

Konzept, Introduction of the Infrastructure..........cccevevenennnnne. 6

Creating AWS-Account / Set-Up.......coeverereeveereeceeerereeeceveve /

Terraform installation and configuration............c.cccceevvvnnee. 11
Development of Terraform Script.........ccoveveeeveereveecrereenne, 17
Ansible installation and configuration...........ccccoeeeeeveveeennneee, 25
Development of Ansible SCript.........ccevveveeveevcieeeeereens 29
Comparing Ansible and Terraform..........ccoeeeveeeecenerineerennnns 57

SUMIMAIY ...ttt re e s be e s b b e sas s e snnsesesas 4)

1.Infrastructure as Code

In the current times, more and more companies rely on Infrastructure as a Service
(laaS) solutions to implement and deploy automatically working environments,
entire IT systems or even Cloud infrastructures. Infrastructure as Code provides IT
infrastructure services such as computing power, storage and networking

programmed into machine-readable code, in a similar way to software [8] .

Infrastructure as Code is an approach to describe and manage resources. There

are 2 types of laC tools :

° configuration management tools (e.g Ansible, Chef, Puppet)

° orchestration (e.g Terraform, CloudFormation)

Configuration management tools are aimed at modifying the existing
infrastructure, which is close to procedural approach [9]. Some of the
configuration tools are also overlapped with orchestration. Orchestration tools

work declaratively. They describe the infrastructure and keep its state.

If a change is not applicable by an orchestration tool (e.g some settings of EC2
instances or DynamoDB indexes with existing data), it may require complete
recreation of the resource and it's possible, because it keeps the entire

configuration of the infrastructure.

Some of the advantages of lac are:

° simplicity: deploying entire infrastructure with script.
° efficiency and speed: easily for different environments.
° low risk: reduced risk of errors.

° Costs: automated processes reduce time.

Terraform

Terraform is laC engine which allows infrastructures to be developed, modified
and versioned securely and efficiently on various types of providers: On-premise,
AWS, Azure, Google, Kubernetes, etc [10]. At the same time some of the concrete
services from some providers might be not supported or verified by Terraform.

The figure 1 represents a functionality overview of Terraform.

One of the reasons Terraform is becoming more popular is because it has a
simple syntax that allows for simple modularity and works well with multi-cloud
systems. Another feature for using Terraform is managing
infrastructure-as-a-code, which is also a foundation for DevOps practices such as

version control, code review, continuous integration and continuous deployment.

5 -
terraform.state \
N aws

HashiCor

erraform vm

v 4
]

/7
-
>y
-
HB
[

terraform.tfvars

\

=~ -.** A/
y /
| [

O

terraform-provider.tf

/)

terraform- instances.tf

Figure 1: Terraform [12]

The main language of terraform is HCL (HashiCorp Configuration Language). The
files defining the infrastructure components or the necessary providers have the
file extension “.tf". To save the deployed state, a file called “terraform.tfstate” is

generated automatically after the first run of Terraform.

While execution terraform scans the current directory for configuration file. If there is
no configuration file Terraform produces a configuration file [11]. Terraform can
detect changes and create, modify, and destroy infrastructure resources to match

the desired state in the configuration file.

It is possible to manage many popular providers like AWS, Azure, Google and

Kubernetes with Terraform.
Ansible

Ansible is an Open-Source tool for providing infrastructure as code. Ansible allows
automatic provisioning configuration management and Infrastructure
orchestration [14]. Ansible configure slave nodes, which are connected via ssh to
the master. The slave nodes are managed in the inventory list (also named

hostfile). The figure 2 below shows the Ansible architecture.

The Configurations of the slaves are done with the Use of Ansible modules. The
ansible modules are written in the language YAML. Ansible Modules include a
routine of tasks, which have a special use. The modules can be executed in the
console or in Playbooks. Ansible Playbooks serve as a manual and describe the
commands (Plays) to achieve the desired state. This state can be basic settings,

but also a complete setup.

edurekal

System Admin

playbookg

/ Modules

Delivery Team

Figure 2: Ansible [13]

Pool of running servers

Instances

Configured Server

Approved Server

App-ready Server

<+

2.Konzept, Introduction of the Infrastructure

A User
VPC V
Internet Gateway
172.16.0.0
———fzon &
Main Rolite Table ALB
eu-central-1a eu-central-1b H eu-central-1c
Y ' Y
Public subnet Public subnet | Public subnet
| -]
1 1
] Target Group X
X i
1 1
i lj lj -{— 'j 1
]
| i .
1
X EC2 EC2 EC2 '

- R R M R B M B R R R e R D B B BN B M BN B BN B BN B B B B Bm e R B R B e e W o om W

Figure 3: Architecture

The project is being realised using the AWS Cloud. The infrastructure consists of

several services that are described here (see the figure 3 above). First of all, it is

necessary to have a VPC where we can deploy our web servers. Amazon VPC is the
network layer of Amazon EC2. To enable communication between the internet
and the EC2 machines we use an internet gateway. An Internet Gateway is a
horizontally scaled, redundant and highly available VPC component. The Internet
gateway translates the network addresses of the EC2 machines. It also routes
Internet traffic to the EC2 machines using a routing table. An Internet gateway
supports both IPv4 and IPv6 traffic. Three public subnets are provided in the VPC.
Each of these subnets is located in a different availability zone. Since we are from
Frankfurt, we have chosen the Frankfurt region (eu-central-1). Accordingly, our
subnetworks are located in the availability zones eu-central-1a, eu-central-1b and
eu-central-1c. The use of different availability zones ensures that our web service
is highly available. If an availability zone fails, the data traffic is forwarded to
another machine. We achieve this behaviour by providing a so-called application
load balancer in front of the web server. The application load balancer distributes
the incoming data traffic to one of the web servers. On the EC2 machines, a user
data script is executed during start-up, which installs the web server on the

machines.

3. Creating AWS-Account / Set-up

We created an AWS account at http://aws.amazon.com to use the web service AWS
offers that we need. For log in we need only root credentials: e-mail, password
and account ID (see the figure 4 below). These credentials allow unrestricted
access to all resources in the account. With AWS Identity and Access Management

(IAM - feature of the AWS account) we can manage access to AWS services and

resources. With IAM we can create and manage AWS users and groups and also

define permissions, for example to deny the access to AWS resources.

aws

Als |IAM-Benutzer anmelden

Kontonummer (12 Ziffern) oder Konto-Alias

613228441255

Benutzername:

victoria

Kennwort:

Melden Sie sich an

Melden Sie sich mit der E-Mail-Adresse des
Stammbenutzers an

Passwort vergessen?

Figure 4: Anmeldung

Create IAM-User

Because it is not possible to restrict the permissions for root users, we deleted
root access keys contained in the account after creating the account and that the
so-called IAM users be created in AWS lIdentity and Access Management (IAM)
instead. Logging in as an IAM user is always done with an account ID, the
corresponding IAM username and a password. The root account is needed only

for a few tasks such as:

e Change the root user details

e Changing payment options

e Changing the support plan
e Retrieval of billing information

e Transfer one Route 53 domain to another AWS.

For log in IAM user as a root user on the login screen, click on the corresponding

link below the login button.

The root account can also be protected by multi-factor authentication (hardware
or software token) if desired. In our case it is not necessary. AWS also supports
different types of federation with other authentication solutions (OpenID, SAML,
AD-Federation, etc.). The corresponding settings can be found by clicking on the
account name in the upper right corner of the AWS management console (see the

figure 5 below).

2!1“1'5 Services ~ Resource Groups - % i dnlling @ 204 1381 = Fronkfurt ~

AWS services

our costs

2 Eng ateris based on your cosl
widgets. Start now

« Recently visited senvices
My Accounl

filly

Config w VPC

o} EC e v My Organization
= EF5 = RDS My Billing Diashbaard organization
EF = DS 5

Wy Security Credenfials

> All services
Switch Role
Sign Out

Build a solution

Get staried with simple wzards and automated workfiows

af stared v imple wizands and automate foflo Exmﬂfe AWS
Launch a viriual machins ﬁ Build a web app Build using virtual servers Amazon Relational Database Service (RDS)
) g
1 Vilh EC2 =" WithE Aalk With Lightsail ou RDS
~2-3 minutes -6 minues ~1-2 minutes DB, Drace
£<T; Start a development project Register a domain
*e? With CodeSia ha -
~5 Friifiides Real-Time Analytics with Amazon Kinesis
Straam an eal-time data, so you can get fimely
ns ickly. Leamn more. &
Soemore o TI
ol

Figure 5: AWS Management Console

If you are logged in as an IAM user, the login name <iam-user@account-id>

appears in the upper right hand corner. In the case of a root user, the written

10
_

username with first and last name is written out. As a root user you can then edit

various account settings with a click on my account.

AWS- Account set-up

For the correct execution of the Terraform script, it is necessary that the
administrator responsible for the infrastructure has programmatic access to the
AWS console. Assuming that the administrator has the necessary access, the
profile must be stored on the machine executing the script. The following steps

help to set up an AWS profile:
1. A credentials file must be created on the computer:

a. For Linux and Macg, this file must be located under the path ~/. aws/config. b.
For Windows this file must be located under the path %USERPROFILE%\.

aws\config .

2. Here is an example of the content of credentials-file:

[default]

aws_access_key id=AW

aws_secret access key=

3. A config file must be created on the computer:

a. The config file is located under the same path as the credentials file for both

operating systems.

4. Each profile can specify different credentials, possibly from different IAM users

and can also specify different AWS regions and output formats.

Here is an example of the contents of a config file:

[default]

region=IAM-Benutzer-Region

output=json oder text

11

4. Terraform installation and configuration

Terraform installation for Windows

After Terraform has been downloaded and installed, the successful installation
can be verified by entering terraform in the terminal. If the terraform command is
not detected, it is very likely that the Terraform binary file was not stored on the
PATH. The path is the system variable with which your operating system
(Windows) searches the required executable files via the command line or the
terminal window. To add the file to the system path, you must first go to the
system menu and then open the Advanced System Settings window (see the

figure 6 below).

@syter 1

O X
1 2 > Systemsteuerung » System und Sicherheit > v U Systemsteuerung durchsuc... @
[
Startseite der Systemsteuerun — . e .
¥ 9 Basisinformationen iiber den Computer anzeigen
% Gerate-Manager Windows-Edition

L= Remoteeinstellungen

o ER Windows10

G rweiterte Systemeinstellungen™ 2

System

Sicherheit und Wartung ASUSTek Computer Inc.-Support

Website: Onlinesupport v

Figure 6: System Settings

Subsequently click on the environment variables (see the figure 7 below).

Systemeigenschaften X

Computername Hardware Computerschutz Remote

Sie missen als Administrator angemeldst sein, um diese Anderungen
durchfihren zu kénnen.
Leistung

Visuelle Effekte, Prozessorzeitplanung, Speichernutzung und virtueller

Speicher
Einstellungen...

Benutzerprofile

Desktopeinstellungen beziglich der Anmeldung

Einstellungen...

Starten und Wiederherstellen

Systemstart, Systemfehler und Debuginformationen

Einstellungen...

3 Umgebungsvariablen...

OK Abbrechen Ubernehmen

Figure 7: Environment Variables

Now in the lower window System Variables Path can be clicked

(see the figure 8 below).

12

Systemvariablen

Variable
asllog
ComSpec

DriverData
NUMBER_OF PROCESSORS
0s

C\ProgramData\Oracle\Java\javapath;C:\Program Files (x86)\Inte...
PATHEXT

PROCESSOR ARCHITECTLIRE

4. Path auswahlen

4.1 Bearbeiten... Neu... ' Léschen
OK Abbrechen

Figure 8: System Variables

Now a new environment variable must be added. There should be the Terraform

path, for example C:\Users\PfadZuTerraform (see the figure 9 below).

14

Umgebungsvariable bearbeiten X

5. Neuen Path (Pfad)
hinzufiigen.

Bearbeiten

* Hier muss der Pfad
hinzugefiigt werden, in
welcher die Terraform
Datei gespeichert wurde.
(Bei der Installation)

Durchsuchen...

L&schen

Nach oben

Nach unten

Text bearbeiten...

C\Users\{" /¢ (Benutzername)

Erst OK, dann schlieBen! |:> Abbrechen

Figure 9: Terraform Path

After that click on OK and you can try again to confirm the installation with

terraform in the terminal. It should work from any path.
For Linux

Download Terraform for the respective operating system and run the installation.
After that, it is necessary to confirm installation with the terraform command in

the terminal.

The following output should be shown:

Usage: terraform [-version] [-help] <command> [args] ...

15

Configuration

If Terraform is used for an AWS deployment, it has to be configured. Therefore a

main.tf file is created

1. provider "aws"

2. version = "~> 2.27"
3

region = var.region

4.

Now Terraform will apply all operations on behalf of the AWS named account.

Sometimes it's worth it to create a separate user for Terraform only.

Terraform uses its own scripting language called HashiCorp Configuration
Language (HCL), which allows to apply some additional programming logic like
variables, mapping and conditions inside your template. It's possible to pass

variables to the template and get certain outputs.

For better granulation it is possible to split big templates into several parts. It's

possible with Terraform modules.

There is a way to integrate Terraform with configuration management tools, using
Provisioners, for example to run some commands on newly created EC2

instances.

By default Terraform stores the state and the history of all the state changes
locally. It's possible and recommended to organize a remote state storage for

better teamwork, e.g via S3 or file hosting service.

Resources are described in the “resource” section. That's how an resource will

look for creating a VPC:

provider "aws"

version = "~> 2.27"

region = var.region

}

resource "

cidr block = var.vpc cidre block

enable dns hostnames = true
enable dns support = true
tags = {

Name = var.vpc name

Where aws_vpc is a resource type, vpc - resource name and everything inside of

curly braces are arguments or resource properties.

Terraform execution

To run the Terraform script, you must navigate to the . /terraform/ directory in
the terminal. Then the terraform init command must be entered and executed
with an enter. This command is used to initialize the working directory including
the configuration files. Once the working directory has been initialized, it is no
longer necessary to execute this command again. The terraform validate

command is then executed to check the written code for syntax errors.

The optional terraform refresh command is used to coordinate the actual state.
In the next step, the terraform plan command is executed. The terraform plan
command is for creating an execution plan. Terraform performs a refresh and
then specifies the actions that will achieve the desired state determined in the

configuration file.

Next, terraform apply provides the creation of our infrastructure. If everything
worked good, the output should be: Apply complete! Resources created. can be
read in the terminal. Another output indicates an error in the script. In this case,
the output in the terminal must identify and fix the error by the script execute

(debugging).

The infrastructure is destroyed by executing the command terraform destroy in

the terminal in the project directory.

17

5. Development of Terraform Script

In this block the provider is specified.

1. provider "aws" ({

version = "~> 2.27"

2
3

region = var.region

4.

resource "aws vpc" "vpc" {
cidr block = var.vpc cidre block
enable dns hostnames = true

enable dns support = true

= Vvar.vpc name

Deploying in every availability zone in the region one public subnet. Additionally to
that we are tagging the subnets. The cidr blocks for the subnets are coming from

a list which is stored in variables.tf. The subnets are added to our vpc.

resource aws_subnet "vpc public subnet"{

count = length (var.public subnets)
vpc_id = aws_vpc.vpc.id

cidr block = element (var.public subnets, count.index)

availability zone = element (var.availability zone, count.index)

map public ip on launch = true

tags = {

Name = "S${var.vpc name}-public-subnet-${element (var.availability zone,

count.index) }"

For the communication with the internet we are deploying an internet gateway.
The gateway is added to our vpc. Since the creation of the internet gateway
depends on that the vpc already exists we have added here a depends_on
argument to be sure that the internet gateway is created after the vpc and we are
not running in any dependency issues.

resource "aws_internet gateway" "vpc gateway" {

aws_vpc.vpc.id
= var.vpc gateway

depends on = [aws vpc.vpc]

We add the route to the Internet to the Main Route table of the VPC. The Main

Route table is created by default. This is in turn assigned to the Internet Gateway.

" "interne

resource "aws_ route
route table id = aws_vpc.vpc.main route table id
destination cidr block = "0.0.0.0/0"

gateway id = aws internet gateway.vpc gateway.id

resource "aws route table association" "public" {

count = length(var.public subnets)
subnet id = element (aws subnet.vpc public subnet.*.id, count.index)

route table id = aws vpc.vpc.main route table id

19

The logic for creating the AWS Key Pair for the ec2 machines now follows. This key
is encrypted with the RSA algorithm. For this, the 4096 bits variant is used to
ensure more security. The private key is stored locally. To enable a connection
with the ec2 machines, the permissions on the private key are adjusted. This
adjustment is necessary because otherwise AWS complains that the private key is
too open. Therefore, only the owner of the key is allowed to have read access. The
key is not essential for the infrastructure. It is only created to enable an SSH
connection from the developers' machines to try out configurations without
having to tear down the entire infrastructure.

resource "tls private key" "key pair" {

algorithm = "RSA"

resource "aws key pair" "generated key" {

key name = var.key name

public key = tls private key.key pair.public key openssh

resource "local file" "private key" {
content tls private key.key pair.private key pem

filename "./test.pem"

resource "null resource" "private key permissions" {

depends on = [local file.private key]

provisioner "local-exec" ({
command = "chmod 400 ./test.pem"
interpreter = ["bash", "-c"]

on failure = continue

20

A web service is to be hosted on the ec2 machines. This web service is to be
accessible via the internet and provided on different machines for the purpose of
high availability. For this purpose, the use of an application load balancer makes
sense. why the decision was made in favour of the application load balancer
instead of the network balancer is quite clear. we want to balance the data traffic
on the http port. the network balancer balances the data traffic on the network
layer. The load balancer is assigned a security group, which is defined later in the
code.
resource "aws_lb" "webserver alb" {

name = var.webserver alb name

internal = false

load balancer type = "application"

security groups = [aws_security group.security group alb.id]

subnets = aws_subnet.vpc public subnet.*.id
tags = {

Name = var.webserver alb name

A target group is created for the load balancer. In our case, we want to target the ec?

machines on the subnets.

resource "aws lb target group" "webserver alb tg" {
name = var.webserver tg name
target type = "instance"
port = 80
protocol = "HTTP"

vpc _id = aws vpc.vpc.id

tags = {

Name = var.webserver tg name

21

a forward rule is created for the alb. This tells the load balancer which machines it

should forward to when it is addressed.

resource "aws lb listener" "webserver alb listener" {

load balancer arn = aws_lb.webserver alb.arn
port = "80"
protocol = "HTTP"
default action ({
type = "forward"

target group arn = aws lb target group.webserver alb tg.arn

resource "aws lb target group attachment" "webserver alb attachment" ({
count = 3
target group arn = aws lb target group.webserver alb tg.arn
target id = element (aws instance.webserver.*.id, count.index)
port= 80
}

This code snippet is used to create the web server. Three ec2 machines are
created on each subnet in our vpc. the machines receive the operating system
from a data block. Data blocks are used to search resources for information. We
use the data block defined in data.tf to search aws for the new ubuntu version
and assign it to our ec2 machine. For cost reasons, we have chosen t2.nano as the
instance type. By providing a user data script, we bootstrap the ec2 machines with
the desired ec2 machines. In other words, we tell them which steps have to be
carried out when booting up. In addition, we assign the previously created key to
the ec2 machine so that we can use this key to establish an ssh connection to the
machines. the ec2 machines are assigned a public ip address. This means that
they can be reached from the internet. We also assign the size of the hard disk to

the machine.

1. resource "aws instance webserver" {

2 count = var.server count

= data.aws ami.ami.image id

instance type = var.instance type

user data = templatefile("./installWebServer.sh.tpl", {})

= var.key name
subnet id = element (aws_subnet.vpc public subnet.*.id, count.index)
associate public ip address = true

availability zone = element (var.availability zone, count.index)

vpc security group ids = [aws security group.security group webserver.id]

depends on = [aws_subnet.vpc public subnet]

root block device {

volume size = var.volume size

tags = {
Name = var.server name

}

The various security groups for the web servers and the application load balancer
now follow. We have created a separate security group for each service. The
security group for the web server allows access from outside (ingress) to ports 80
(http) and 22 (ssh) while the security group for the load balancer only allows
access to port 80. In both security groups, however, all communication is allowed

from the outside (egress).

resource "aws_security group security group webserver" {
name = var.vpc_security group webserver

vpc _id = aws vpc.vpc.id

tags {

Name = var.vpc_security group webserver

}

resource "aws_ security group" "security group alb" {
name = var.vpc_security group alb

vpc_id = aws_vpc.vpc.id

tags {

Name var.vpc security group alb
}
}

resource "aws_security group rule" "allow httpl"
type = "ingress"

description = "HTTP Rule for WebServer"

from port = 80

to port = 80

protocol = "tcp"

cidr blocks = ["0.0.0.0/0"]

security group id = aws security group.security group alb.id

}

resource "aws_ security group rule" "allow outbound trafficl"{
type = "egress"

description = "Allow outbound traffic to the internet"

from port = 0

to port = 0

protocol = -

cidr blocks = ["0.0.0.0/0"]

security group id = aws_security group.security group alb.id}

resource "aws_security group rule" "allow ssh" {

type = "ingress"

description = "Allow ssh traffic for Administration reasons"
from port = 22

to port = 22

protocol = "tcp"

cidr block = ["0.0.0.0/0"]

security group id = aws security group.security group webserver.id

resource "aws security group rule" "allow http" ({
type "ingress"
description "HTTP Rule for WebServer"
from port
to port
protocol "tcp"

cidr blocks = ["0.0.0.0/0"]

security group id = aws security group.security group webserver.id

-}

resource "aws security group rule" "allow outbound traffic" ({

type

description

from port

to port

protocol

cidr blocks ["0.0.0.0/0"]

security group id aws_security group.security group webserver.id

25

6. Ansible installation and configuration

This Chapter describes the Ansible Installation on Ubuntu/Windows and the
configuration.

Ansible installation on Ubuntu

With Ansible it is possible to control automated a lot of different systems from
the one location. With Ansible it is possible to build a simple architecture without
special software that must be installed on nodes. This tool uses SSH to carry out

the automation tasks and YAML files for specifying provisioning details.

Before using Ansible as a manager of infrastructure, it is necessary to install the

Ansible software on the computer that will work as the Ansible control node.

1. $ sudo apt-add-repository ppa:ansible/ansible

As the next, press Enter and accept the PPA addition.

Next, it is need to refresh the system'’s package index for the available packages
in the new PPA:

1. $ sudo apt update

After the update, it is necessary to install the Ansible software :

1. $ sudo apt install ansible

The Ansible control node has all required software to orchestrate the hosts [2].

26

Ansible installation on Windows

First of all we run the following script in CMD to set-up WinRM for Ansible:

powershell.exe -ExecutionPolicy ByPass -File

$ url = "https://raw.githubusercontent.com/ansible/

ansible/devel/examples/scripts/ConfigureRemotingForAnsible.psl"

$ file = "Senv:temp\ConfigureRemotingForAnsible.psl"
(Ne bject -TypeName em.Net .WebClient) .DownloadFile
(Surl, $file)

powershell.exe -ExecutionPolicy ByPass -File $file

As next, you need to execute Ansible playbook on Windows. Then to run Ansible

control node [15].

27

Ansible configuration

The settings in Ansible are regulable via a configuration file ansible.cfg. Paths
where configuration file is located, is to find in reference documentation. By
installing Ansible from a package manager, the latest ansible.cfg file should be

present in /etc/ansibleas a.rpmnew file in the case of updates.

Ansible enables configuration of settings with environment variables. The
determined environment variables will override the setting, which will be loaded

from the configuration file.

Not all configuration options are present in the command line not all config
options existing , only the most common. Due to the configuration file and the
environment the settings will be in the command line override. The full list of

options existing in ansible and ansible-playbook[4].

In the default case, ansible’s configuration file is located at /etc/ansible/ansible.cfg.
Normally, the default configurations are sufficient to get you started using Ansible.
The list of all configs existing in the control node, yo must to use the command

ansible-config [3]:

1. $ ansible-config list

https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#ansible-playbook

28

You can see the output at the figure 10 below.

ACTION WARNINGS:
default: true
description:
- By default Ansible will issue a warning when received from a task action (mg
or action plugin)
- These warnings can be silenced by adjusting this setting to False.
env:

- name: ANSIBLE ACTION WARNINGS
ini:
- key: action warnings
section: defaults
name: Toggle action warnings

type: boolean
version added: '2.5'
AGNOSTIC BECOME PROMPT:

default: true

description: Display an agnostic become prompt instead of displaying a promptf
the command line supplied become method

env:

- name: ANSIBLE AGNOSTIC BECOME PROMPT

ini:

- key: agnostic become prompt
section: privilege escalation

Figure 10: Ansible Config

29

/.Development of Ansible Script

First of all we need to create three EC2 Instances using Ansible. Before we go into

the playbooks part, we need to check and update a few environment set-up.

Environment Setup for Ansible to work with AWS EC2 module.

The modules of Ansible are written in python. That's why for working with AWS

modules it is necessary to install prerequisite elements on Ansible machine:

e Dboto
e Dbotocore
e boto3

e python version 2.6.
Boto is one of the Amazon SDK and boto3 is the newest version of boto.

Then you need to execute the Python in the terminal and type import boto and
import boto3. Prerequisite for installing both boto and boto 3 is that you have

already pip3.

Below is the code for creating EC2 instances and for getting the list of our AWS

Cloud account. The code is divided in two blocks (group of tasks) :

e The first block is for the instances information

e The second block is to create the instances [1].

The first block is for the instances information

Here is the code for deploying the simple AWS Infrastructure present.

1. - name: Deploy simple AWS Infrastructure

50

We use a local host where the actual script is launched from.

1. hosts: localhost vars:

We have AWS Region eu-central 1.

aws_region: eu-central-1

vpC_name:

igw name: Test

image name: ami-0Oelce3e0deb8896d2

tasks:

name: Create AWS VPC
ec2 vpc net:

name: "{{ vpc name }}"

As next, will the range of IPs for VPC specify.

cidr block: 10.10.0.0/16
region: "{{ aws_region }}"
tenancy: default

register: VPC AP.

vpc_id: "{{ VPC AP.vpc.id }}"

region: "{{ aws region }}"
state: present

register: IG

51

Creating of Subnet1 AWS VPC.

—name:

ec2 vpc_subnet:

state: present

vpc_id: "{{ VPC AP.vpc.id }}"

Specifying the range of IPs for Subnet 1. CIDR - classless Inter-Domain routing.

1. cidr: 10.10.16.0/20

2. region: "{{ aws region }}"

Specifying the availability zone for Subnet 1.

1. az: eu-central-la

2. register: Test subnet 1 AP

Creating of Subnet2 AWS VPC.

-name: Create VPC Subnet2
ec2 vpc subnet:

state: present

vpc_id: "{{ VPC AP.vpc.id }}"
cidr: 10.10.32.0/20

region: "{{ aws region }}"

az: eu-central-1b

register: Test subnet 2 AP

Creating of Subnet 3 AWS VPC.

1. -name: Create S VPC Subnet3

ec2 vpc_subnet:

state: present

vpc_id: "{{ VPC AP.vpc.id }}"
cidr: 10.10.48.0

region: "{{ aws region }}"

1. az: eu-central-1lc

2. register: Test subnet

—-name: Create /P onet Routing Table

ec2 vpc_route table:

vpc_id: "{{ VPC AP.vpc.id }}"

"

region: "{{ aws region }}

subnets:

-"{{ Test subnet 1 AP.subnet.id }}"
-"{{ Test subnet 2 AP.subnet.id }}"
-"{{ Test subnet 3 AP.subnet.id }}"
routes:

-dest: 0.0.0.0/0

gateway id: "{{ IGW AP.gateway id }}"

register: route table AP

53

Creating of AWS Security Group.

1. -name: Create curity Group
2. ec2 group:

3. name:

description: urity Group for AP
vpc_id: "{{ VPC AP.vpc.id }}"

region: "{{ aws_region }}"

rules:

rules egress:
-proto: tcp

from port: 80

to port: 80

cidr ip: 0.0.0.0/0
-proto: tcp

from port: 22

>

to port: 22

. “proto: tcp

. from port: 443

. to port: 443

ruesc: Allow inbound traffic on ports 22 80 443
rulesle d egress:

- proto: tcp

from port: 80

to port: 80

cidr ip: 0.0.0.0/0

rule desc outbound traffic
on ports 27 80 (HTTP), 443 (HTTPS)

register: sec_group

The second block is to create the instances

Below we can see how instances are created. Here will EC2 instance created for

Subnet 1:

1. - name: Create EC2 instance for Su
ec2 instance:
name: seitel
region: "{{ aws region }}"
instance type: t2.micro
user data: "{{ lookup('file', 'user data.sh') }}"
image id: "{{ image name }}"

wait: yes

Here you can see as well that all of our created instances belong to the same

security group.

security group: Te

vpc_subnet id: "{{ Test subnet 1 AP.subnet.id }}"
network:

assign public ip: true

register: instl

Here will be an EC2 instance created for Subnet 2.

-name: Create EC2 instance for Subnet 2
ec2 instance:

name: seite?2

region: "{{ aws region }}"

instance type: t2.micro
user data: "{{ lookup('file', 'user data.sh')
image id: "{{ image name }}"
wait: yes
security group: Te
. vpc_subnet id: "{{ Test subnet 2 AP.subnet.id

. network:

. assign public ip: true

. register: inst2

-name: Create EC2 instance for S

ec2 instance:

name: seite3

region: "{{ aws_ region }}"

instance type: t2.micro

user data: "{{ lookup('file', 'user data.sh')
image id: "{{image name}}"

wait: yes

security group: T¢
. vpc_subnet id: "{{ Test subnet 3 AP.subnet.id
. network:
. assign public ip: true

. register: inst3

Create a target group see health check in amazon, in target group we specify

instances, where the traffic is routed to.

—name: c te target group with a ol: health check
elb target group:

name: testTG

health check path: /

protocol: http

port: 80

vpc_id: "{{ VPC AP.vpc.id }}"

targets:

"{{ instl.instances[0].instance id }}"

80

"{{ inst2.instances[0].instance id }}"
80

"{{ inst3.instances[0].instance id }}"
80

state: present

Creating Application ELB, the elb target group that was created earlier, is bound
to the elb.

-name: Create Application ELB
elb application lb:
name: AppELBAP
region: "{{ aws_ region }}"
security groups:

"{{ sec group.group id }}"

subnets:

For elb, the list of subnets which elb has to have the access to.

"{{ Test subnet 1 AP.subnet.id }}"
"{{ Test subnet 2 AP.subnet.id }}"
"{{ Test subnet 3 AP.subnet.id }}"

listeners:

present

57

8. Comparing Ansible and Terraform

Nowadays Ansible and Terraform are famed in the DevOps landscape. They both
tools are well- known for their unambiguous advantages in creating infrastructure
as code. The tools offer infrastructure as a Code that is very helpful in deploying
repeatable environments with complex requirements. They both
haslInfrastructure as a Code. It means that terraform and ansible are automate:

configuring, provisioning and managing the infrastructure.

Let's have a look and compare the main differences between Ansible and
Terraform.The first signifikant difference between it is orchestration and

configuration management.

e Ansible is a configuration management tool vs. Terraform is a tool for

orchestration.

Of course there are many similarities between the functionalities of configuration
management and orchestration, but it is very important to know the differences in
details. Because a distinct understanding of the differences between these tools is
very helpful in choosing the right applications. For better understanding of the
functionality of Ansible and Terraform by, it is important to know some details.
Terraform focuses mainly on the final objectives and Terraform always underlines
on maintaining a special state of the environment. Terraform stores the state of
the environment and in this way provides a better foundation for recovery. So,
Terraform can provide the resource automatically upon running it again. It is the

perfect tool for maintaining steady-state environments.

Ansible is a configuration management tool. One of the tasks of a configuration
management tool is equivalent to repairing instruments in an orchestration.All

components of an environment in working condition can be maintained with

58

Ansible. It has to be proved that each instrument works correctly. Ansible acts as a
configuration management tool for repairing more than creating the whole
infrastructure. Ansible has competence for orchestration tasks. This is a reason to
consider it as a hybrid. But the main Tasks of Ansible is first of all to act as a

configuration management tool. One of the important differences is:

e Ansible uses procedural and Terraform uses declarative language

The way their work gives us a good opportunity to compare the tools. Let's have
a look into differences with Terraform based on procedural or declarative
processes. Many DevOps tools can be categorized into procedural and declarative

categories.

The procedural category indicates applications that required the same steps
presented in the code. For example, by increasing/ scaling down EC2 instances, it

is necessary to determine the number of instances.

Declarative tools offer an exact impression of the requirements. For example, If
you need 3 EC2 instances for scaling down your environment, you must
determine the exact number. Terraform follows the declarative language. With
Terraform the environment must be determined particularly. “Terraform Apply”

can adjust any changes in the environment.

Ansible is in fact a hybrid of procedural and declarative. It is possible to execute
ad-hoc commands for procedural configuration. It also exists the opportunity of
using different Ansible modules that can carry out tke declarative configuration

[6].

The summary of differences in Ansible vs Terraform you can see below.

Main Differences between Ansible and Terraform

Point of | Terraform Ansible
Difference
Type Mainly infrastructure | Mainly ~ configuration
provisioning tool/ | toollnstall/Update
Orchestration tool software on that
infrastructure
Support Only partial Support for | Complete Support for
packaging and templating. | packaging and
Terraform offers direct | templating. THe tool
access to HashiCorp's | provides 2 levels of
support professional support
for the enterprise
version
Ease set-up and |[Tool is simpler to use and | It is easy to install and
usage to set-up. THe users can |use. The tool has a
use a proxy server for the | master without agents
installation (agentless), running on
the client machines.
Ansible uses YAML
syntax (Python)
Lifecycle Lifecycle management No Lifecycle
management management
Infrastructure Provides support for | Provides support for
immutable infrastructure mutable infrastructure
Availability Not Applicable The tool has a
secondary node in case
an active node not
function
Modules The modules offer for |Ansible Galaxy

users an abstract away of
any reusable parts. The
parts must be configured

available, it consists of
a repository or library

only once and can be used
everywhere

GUI Only 1/3 parts of GUIs are | GUI is presented as a
available. For example, | command-line tool. The
Codeherent’s Terraform | enterprise version
GUI provides a Ul, but that
does not fulfil the
expectations
Language Uses declarative language | Uses procedural
language
Tool

Relatively new

More mature

Difference between Ansible and Terraform for AWS

Both Terraform and Ansible process AWS management quite variously.

Terraform with AWS

40

Terraform is the perfect tool for users who do not have a lot of practical

knowledge to manage AWS. Nevertheless it is not so easy to act with Terraform.

There are a few benefits of using Terraform with AWS:

Terraform is open-source with it common benefits of utilizing open-source

software

In the event of an error the dependent resources will isolate. Non-dependent

resources can be created, updated and also destroyed.

Preview changes before the applying is possible.

JSON support and a user-friendly syntax

41

Ansible with AWS

Ansible provides good support for AWS. With the help of Ansible playbooks it is

possible to utilize also the complex AWS environments.Users can deploy them

many times and scale out to thousands of instances across different regions.

Ansible has about 100 modules that support AWS capabilities. For example,

Simple Storage Service (S3), Security Token Service, Relational Database Service,

Virtual Private Cloud, Security Groups, Route53, Identity Access Manager, etc. It

also provides about 1300 additional modules for managing various requirements

of a user's Windows, Linux, UNIX.

Here are some benefits of using Ansible with AWS:

Ansible Tower’s cloud inventory synchronization helps to find out which
AWS instances register

Security in automation with its set of role-based access controls

Control inventory by keeping track of deployed infrastructure via the life
cycles. Consequently it shows us that security policies execute correctly.
The same simple playbook language manages infrastructure and deploys

applications to different infrastructures easily [7].

4)

9. Summary

It is not so easy to find the answer for the questions: ” What to choose - Terraform
or Ansible”. Mainly it depends of course on the requirements. These tools have
many similarities and differences. Which tool to choose? What tool is better? From
the practice side it is recommendable to use Terraform for orchestration and
Ansible configuration management. Also many technology companies search for
the best solution among these two tools for automating apps and for creating
their IT Infrastructure. But there is no perfect tool, it depends on what it is used

for.

The main task of Terraform is orchestration. Terraform has all necessary updates
that are perfect for orchestration. The command “Terraform Plan” can provide
more helpful information as the “Ansible-dry-run” command. In turn, Ansible is
the perfect tool for configuration management. But take into consideration, the
Ansible orchestration tasks are limited. In comparison to Terraform Ansible is
more tricky in use. If you do not have experience in Ansible, first of all you must
learn to automate the deployment, configuration and management of the
infrastructure. You need much more time for the learning Ansible, because the

documentation of Ansible has only minimal basic information.

https://stackoverflow.com/questions/ask

43

References

[11 AWS ALB Target Group shows unhealthy instances in a custom VPC. URL:
https://stackoverflow.com/questions/65610989/aws-alb-target-group-shows-unhe

althy-instances-in-a-custom-vpc. [Accessed on 2021-01-07].

[2] How to install and configure Ansible on Ubuntu.
URL:https://www.digitalocean.com/community/tutorials/how-to-install-and-config
ure-ansible-on-ubuntu-18-04 [Accessed on 2021-01-10].

[31 Getting started with Ansible - Basic Installation and setup. URL:

https://www.linode.com/docs/guides/getting-started-with-ansible/[Accessed

on 2021-01-09].

[4] Ansible latest installation Guide. URL: https://docs.ansible.com/ansible/
latest/installation_guide/intro_configuration.html#id5 [Accessed on 2021-01-10].
[5] Using Terraform to Manage AWS Programmable Infrastructures.

URL: https://aws.amazon.com/de/blogs/apn/using-terraform-to-manage-
aws-programmable-infrastructures/ [Accessed on 2021-01-10].

[6] Ansible vs Terraform: Understanding the Differences.
URL:https://www.whizlabs.com/blog/ansible-vs-terraform/ [Accessed

on 2021-01-10].

[7] Ansible vs Terraform vs Puppet:Which to Choose? URL: https://phoenixnap.
com/blog/ansible-vs-terraform-vs-puppet. [Accessed on 2021-01-11].

[8] Was ist Infrastructure as Code (laC)? https://www.cloudcomputing-insider.de/

was-ist-infrastructure-as-code-iac-a-917671/[Accessed on 2021-01-13].

44

[9] 15 Infrastructure as Code tools you can use to automate your deployments
URL:https://www.thorntech.com/2018/04/15-infrastructure-as-code-tools/
[Accessed on 2021-01-30].

[10] Introduction to Terraform. URL: https://www.terraform.io/intro/index.
html [Accessed on 2021-01-30].
[11] Command: plan URL: https://www.terraform.io/docs/cli/commands/plan.

html [Accessed on 2021-01-30].
[12] DevOps101 — First Steps on Terraform: Terraform + OpenStack +

Ansible URL: https://medium.com/hackernoon/terraform-openstack-ansible-
d680ead66e22 [Accessed on 2021-01-30].
[13] What Is Ansible? - Configuration Management And Automation With

Ansible URL: https://www.edureka.co/blog/what-is-ansible/ [Accessed on
2021-01-30].
[14] OVERVIEW How Ansible Works URL: https://www.ansible.com/overview/

how-ansible-works [Accessed on 2021-01-30].

[15] Getting started with Ansible: local automation of Windows 10 and Ubuntu
20.04 workstations. URL: https://levelup.gitconnected.com/

getting-started-with-ansible-local-automation-of-windows-10-and-ubuntu-20-04
-workstations-ffd03d7dc92 [Accessed on 2021-01-30].
[16] Ansible or Terraform - a shot answer URL: https://medium.com/faun/

ansible-or-terraform-a-short-answer-90a9fd8bb0aa

[Accessed on 2021-02-04].

