
Containerization of a Web Application Using
Docker and Container Orchestration using

Kubernetes
Md Zahirul Islam, Kantish Roy Chowdhury, and Mansur Uddin Khan

High Integrity System (MSc.)
Frankfurt University of Applied Sciences

Abstract
Due to the portability and ease of reproducible, the containerized

application development became trend among software organizations.
As the number of containers in a system increases the deployment
and managing the containers became difficult. Therefore, container
orchestration tools like Kubernetes offers automatic deployment, scal-
ing, and management of containerized applications. In this paper, we
have explained containerized application deployment into Kubernetes
cluster with Jenkins.

1 Introduction
In past few years, containers have added new dimensions to the way the soft-
ware build, ship, and maintain. A containerized process is highly portable,
and reproducible which enable us to move, and scale container application
more easier than before. Docker is the leading container platform to build,
ship, and run application. It provides loosely isolated environment called
container to package and run application [5].

Managing the life-cycle of containers, especially in a large and dynamic
environment, requires container orchestration tool. The most popular orches-
tration tool is Kubernetes. With kubernetes, we can provision, and deploy
containers, scale up, and down number of containers based on demand, load
balancing of the service discovery among containers, and many other things
[6].

1

Our goal is to deploy the containerized web application to kubernetes
cluster in public cloud. To bridge the gaps between development, and op-
erational activities (build, test and deployment) of our application we have
implemented Continuous Integration and Continuous Deployment (CI/CD)
process which is the backbone of modern DevOps practice.

The scope of this paper would work as an installation guide that explains
step by step instructions of deployment process of web API. It covers the de-
ployment of container from local to public cloud Kubernetes cluster of both
manual and automated approach.

This paper discusses following contributions in different sections: Sec-
tion 2, describes system architecture, tools, and methodologies used in this
project. We have explained the containerization process of our application
in section 3. Section 4 explains the container orchestration process. In this
section, we have shown the container deployment and scaling of Kubernetes
to local and cloud environment. Jenkins installation and pipeline configura-
tions are included in section 5. We have discussed the deployment results in
section 6. Finally, section 7 concludes this report.

2 System Overview
Our application is a web REST API service to fetch dummy data from an
in-memory database of application. We have deployed containerized appli-
cation in kubernetes cluster of Google Cloud Platform (GCP) using Jenkins
pipeline. The deployment covers both local, and cloud Kubernetes clus-
ter. Finally, we have automated whole deployment procedures with Jenkins
pipeline.

2.1 System Architecture
The backbone of the system architecture is Jenkins which handles container
deployment to google cloud kubernetes cluster. We have used github as
source control repository, and dockerhub as a container repository. Container
creation, and deployment are handled by Jenkins pipeline. Pipeline execution
is triggered as soon as github source is updated by developer. Jenkins uses
plugins to build application and interact with dockerhub, github, and google
kubernetes engine. Kubernetes cluster has a loadbalancer service which route
traffic to available pods. Our high level system architecture is illustrated in
figure 1.

2

Figure 1: System Architecture

2.2 Tools and Methodologies
In this project, we have used number of tools including some DevOps tools,
and the techniques which are listed below:

Programming Language: Java
Database: H2
Framework: Spring Boot
Application Build Tool: Apache Maven
DevOps Tools: Docker, Jenkins, Kubernetes
Cloud Platform: Google Cloud Platform
Source Control Repository: GitHub
Container Repository: DockerHub
API Test: Postman

3 Containerization
To create and deploy software faster and more efficiently, containerization
became a major trend in software development [1]. We have used Docker to
create container for our web application. For our local environment, we have

3

installed Docker for Desktop, for detail installation instructions please refer to
reference [2]. Docker builds images automatically by executing instructions
written in Dockerfile which is stored in our source control repository [13].
For a container repository, we have used Dockerhub. With the following
commands we create, run and push Docker container image to Docherhub.

- Build image: docker build -f Dockerfile -t library-cloud-api .
- Run image: docker run -t -d library-cloud-api
- Tag image: docker tag library-cloud-api zahirulislam/library-cloud-api:1.0
- Login Dockerhub: docker login -u zahirulislam
- Push to Dockerhub: docker push zahirulislam/library-cloud-api

4 Container Orchestration with Kubernetes
The containerized application is highly portable, and reproducible which is
easy to move and scale across clouds [7]. We have used Kubernetes as an
orchestrator tool to manage, scale, and maintain our containerized applica-
tion. Kubernetes comes along with Docker engine of Docker for Desktop tool
where we just needed to enable few settings to use Kubernetes of Docker
engine and explained in section 4.2.1.

4.1 Kubernetes Architecture
Following are the key components of a kubernetes cluster (see figure 2):

• Cluster: A Kubernetes cluster is a set of node machines for running
containerized applications which has two parts: control plane and the
compute machines, or nodes.

• Nodes: Physical or vitural machine

• pods: Each node runs pods which are groups of co-located containers
that share some resources.

To run a kubernetes cluster, we require a container registry where con-
tainer images are stored (in our case Dockerhub), underlying infrastructure
where kubernetes can run, and a persistent storage to manage the application
data attached to a cluster (we did not used it).

4

Figure 2: Kubernetes Architecture [8]

4.2 Deployment
Workloads are scheduled as deployment which are scalable group of pods
maintained by kubernetes automatically. At first, we have deployed our
containers in local kubernetes cluster, then we have deployed in Kubernetes
engine of GCP, and finally, we have automated whole deployment using
Jenkins.

4.2.1 Local Cluster

For local kubernetes cluster depoloyment, we need to check and enable fol-
lowing features include respective commands, and instructions given below:

- Enable Hypervisor: Enable-WindowsOptionalFeature -Online
-FeatureName Microsoft-Hyper-V -All

- Enable Kubernetes: From setting in Docker for desktop tool

Kubernetes objects for local environment are described in manifest file
called deployment_local.yml file [10]. It has following two objects:

• Deployments: It describes a scalable group of three identical pods.

• NodePort: It is a service to route traffic from port 8080 on your host
to port 8080 inside the pods.

5

With the following commands, we create kubernetes deployments and
services in local kubernetes cluster where name of both deployment, and
service objects is library-cloud-api.

- kubectl create -f deployment_local.yml

We can scale up and down number of pods either with manual or auto-
matic approach. For example, if we want to increase current number of pods
from three to five, then we can execute following scripts. This is manual
approach.

kubectl scale deployments/library-cloud-api --replicas=5

We can instruct kubernetes engine to scale up and scale down automati-
cally to number of pods based on CPU usage with following script:

kubectl autoscale deployment library-cloud-api \
--cpu-percent=50 --min=1 --max=10

The above script will increase and decrease number of pods between 1 to
10 based on CPU utilization where we mentioned threshold utilization is 50%.

We have checked and discussed the deployment results in section 6.1.

4.2.2 Google Kubernetes Cluster

In section 3, we have explained how to push container image in Dockerhub.
We took same image from Dockerhub and deploy it in Google Kubernetes
Engine. We can deploy our containers in Kubernetes cluster by following
instructions given below, and executing related commands in GCP. This is a
manual approach, however, we will automate whole deployment process with
Jenkins which is explained in section 5.

At first, we have created a project with name my-k8s-project and our
project id is my-k8s-project-300415 (id will be going to be used in script).
We will use cloud shell and Google command line tool gcloud to execute our
commands.

- Pull Image from Dockerhub : docker pull zahirulislam
/library-cloud-api:1.0

- Tag image : docker tag zahirulislam/library-cloud-api:1.0 \
gcr.io/my-k8s-project-300415/library-cloud-api:1.0

6

- Authenticate gcloud Tool : gcloud auth configure-docker

- Push Image to GCR : docker push gcr.io/my-k8s-project-300415/
library-cloud-api:1.0

- Create deployment.yaml Files with nano Command. Contents of the
file is same as the deployment_cloud_manually.yaml file in our
github repository. It contains both service and deployment object.

- Create a Cluster : gcloud container clusters create \
library-cloud-api-k8-cluster \
--num-nodes 1 --enable-basic-auth \
--issue-client-certificate --zone \
europe-west1

- Check Nodes : kubectl get nodes

- Create Deployment : kubectl apply -f deployment.yaml

- Check pods : kubectl get pods

- Check Services : kubectl get services

We have checked and discussed the outcome of this deployment in section
6.2.

5 CI/CD with Jenkins
Jenkins is a popular open source tool written in Java that allows to deliver
software continuously by integrating building, testing and deployment tech-
nologies. We will include step-by-step instructions to configure Jenkins.

5.1 Installation
Firstly, we have created the virtual machine (VM) in GCP to configure Jenk-
ins server with following steps:

- Create a VM instance (debian is default OS) in GCP
- Select both http and https firewall rules from option list
- Select region "europe-west1" (we have selected same region

7

as for kubernetes cluster but any region can be selected)

Jenkins requires following dependencies: JDK (Jenkins need java to run),
Git, Maven, wget (to download jenkins package), docker, kubectl

5.1.1 JDK

Jenkins needs Java to run, so we have installed JDK. Execute following
commands to install openjdk-8.

- sudo apt-get update
- sudo apt-get install software-properties-common
- sudo apt-add-repository

'deb http://security.debian.org/debian-security stretch/updates main'
- sudo apt-get update
- sudo apt-get install openjdk-8-jdk

5.1.2 Git and Maven

We need to install Git for source control and Maven for building application
in Jenkins server with the following commands.

- sudo apt-get install git
- sudo apt install maven

5.1.3 Docker

We have used Docker to create container of our web application, so Jenkins
server needs Docker to be installed by following commands [4].

- sudo apt-get update
- sudo apt-get install \

apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common

- curl -fsSL https://download.docker.com/linux/debian/gpg
| sudo apt-key add -

- sudo apt-key fingerprint 0EBFCD88
- sudo add-apt-repository

"deb [arch=amd64] https://download.docker.com/linux/debian

8

$(lsb_release -cs) stable"
- sudo apt-get update
- sudo apt-get install docker-ce docker-ce-cli containerd.io

We also need to add users to docker group, and restart Jenkins server
with following command

- sudo usermod -aG docker $USER
- sudo service jenkins restart

5.1.4 kubectl

It is a command line tool to control kubernetes cluster. We have installed
kubectl with following commands:

sudo apt-get update && sudo apt-get install \
-y apt-transport-https gnupg2 curl

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg
| sudo apt-key add -

echo "deb https://apt.kubernetes.io/ kubernetes-xenial main"
| sudo tee -a /etc/apt/sources.list.d/kubernetes.list

sudo apt-get update
sudo apt-get install -y kubectl

5.1.5 Jenkins

With the following commands [3], we have installed Jenkins in server. We
have used wget to download Jenkins from internet. Prior to install Jenkins,
we have installed wget.

sudo apt-get install wget
wget -q -O - https://pkg.jenkins.io/debian-stable/jenkins.io.key

| sudo apt-key add -
sudo sh -c 'echo deb https://pkg.jenkins.io/debian-stable binary/ > \

/etc/apt/sources.list.d/jenkins.list'
sudo apt-get update
sudo apt-get install jenkins

9

5.2 Activation
Browse the Jenkins by clicking the external IP of Jenkins VM from google
cloud. But the site might not accessible as port 8080 might not be already
opened. So, we must create a firewall rule to allow all traffics on port 8080.
To do that, follow the steps mentioned below.

- Go to firewall and create firewall rules
- Provide any name of the rule
- Select target as "All instances in the network"
- Provide IP range 0.0.0.0/0
- Select tcp port 8080

For the first time, Jenkins needs to be activated by providing it’s secret
stored in server. Secret is stored in file initialAdminPassword in directory
/var/lib/jenkins/secrets. Follow below steps to fetch the secret.

cd /var/lib/jenkins/secrets
nano initialAdminPassword
copy the secret

After submitting the secrets, select install Jenkins option, then it will
start installation. After installation, it will let us create another user, and
password which we can later usable for the login Jenkins from browser.

5.3 Configure Pipeline
We want our Jenkins pipeline to handle the following task: pull source code
from github as soon as git repository is updated, build the application, build
docker image and deploy image to google Kubernetes cluster.

5.3.1 GitHub Webhook

With webhook, Jenkins pipeline would be triggered whenever github reposi-
tory gets updated.

- Go to GitHub -> Setting -> Webhook
- Provide payload url "http://34.76.14.187:8080/github-webhook/"
- Select content type "application/json"
- Select "Let me select individual option" and "Push Request" option

10

5.3.2 Plugins

Install following plugins

- Docker Pipeline
- Kubernetes
- Kubernetes Continuous Deploy
- Google kubernetes engine

5.3.3 Credentials

Go to Manage Credentials in Jenkins, and create credentials for the following
service.

- DockerHub
- Google Cloud Kubernetes Engine

We also need to ensure that the service account in GCP has access to the
Google Kubernetes Engine. We can ensure that with following steps:

- Go to IAM & Admin in Google Cloud
- Assign the role "Kubernetes Engine Admin"

5.3.4 Pipeline

To create a pipeline from Jenkins user interface, click New Item and then
follow below steps:

- Select pipeline
- Select github project (and give project url)
- Select build triggers +it["github hook trigger for GITScm polling"]
- In pipeline select "Pipeline script from scm"
- Provide git repository url and branch information

As a pipleline syntax, we have used declarative pipeline, and pipeline
scripts are written in Jenkinsfile. The Jenkinsfile has been stored in source
control repository [14] which serves the single source of truth for our pipeline.
We have defined following five stages in our Jenkinsfile:

- SCM Checkout: Checkout source code from github specified branch.
- Build Application: Build the application with Maven and create

executable Jar file
- Build Docker Image: With the help of Dockerfile [13] &

Docker Pipeline plugin, it create Docker image

11

- Push Docker image to Dockerhub: Using Docker Pipeline plugin, it
pushes the image to Dockerhub (container repository)

- Deployment to GKE: Finally deploy to Google Kubernetes cluster.
It uses a Kubernetes manifest file stored in source
control repository [12] to create deployments and services.

Execution of Jenkins pipeline will display the status, and time what it
took to complete each stage defined in Jenkinsfile [14], see the figure (3.

Figure 3: Jenkins Pipeline Execution

Outcomes of pipeline execution has been discussed in section 6.3.

6 Results and Discussion
Although our containerized application has been deployed in cloud kuber-
netes cluster with Jenkins, but prior to use Jenkins we also have tested our
deployments in local and cloud kubernetes clusters manually. In this sec-
tion, we will discuss the outcomes of deployments in both local, and cloud
kubernetes cluster.

6.1 Local Kubernetes Cluster
Deployment in local environment has been explained in section 4.2.1. With
the following commands, we can check whether our deployments were suc-
cessful.

- kubectl get node,svc,pod

12

Figure 4: Local cluster

The above command will list all nodes, pods, and services running in
local kubernetes cluster like in figure 4.

From figure 4, we see our service ”service/library-cloud-api” has been
deployed with cluster IP 10.97.118.135 and no external-ip which is obvious
case for local deployment. We further see that service type is NodePort
and its port is 8080 which means application container is listening on port
8080. Finally, we can browse application (see figure 5) with following url:
localhost:31451/api/books

6.2 Cloud Environment
In section 4.2.2, we have explained the deployment procedures in Google
kubernetes cluster. We can check our deployments with following commands:

kubectl get node,pod,service

The above command will list nodes, pods and services which are created
in kubernetes cluster (see the figure 6).

In above figure 6, we can see our loadbalancer service is created with
external-ip is 104.199.5.162 and port 8080. So, we can browse our application
(see figure 7) with following url: http://104.199.5.162:8080/api/books

13

Figure 5: Access to Service

Figure 6: Kubernetes Cluster in google cloud

14

Figure 7: Access to the service

6.3 Jenkins
We have discussed how to configure Jenkins and create Jenkins pipeline in
section 5. In this section we will check our deployments done by Jenkins.

Figure 8 shows the deployment status. It displays nodes, pods, and ser-
vices which are created by Jenkins pipeline execution.

Figure 8: Deployment by Jenkins

Now our service is exposed and accessible publicly, (see figure 9).

15

Figure 9: Access to the services (deployed by Jenkins)

7 Conclusion
This paper has discussed the container deployment to Kubernetes cluster and
explained our approaches to do so. It includes step-by-step instructions to
configure and install necessary tools and services. Finally, we have covered
the procedures to test deployments, and discussed the deployment outcomes.

In future, we wish to explore more cloud platforms (which includes private
and hybrid cloud) and their services. Also we want to work with containerized
micro-service deployment and its service discovery.

References
[1] ”What is containerization?”, by IBM Cloud Kubernetes Service

(https://www.ibm.com/cloud/learn/containerization)

[2] ”Docker Installation in different operating system”, by Docker official
documents page (https://docs.docker.com/get-docker/)

[3] ”Jenkins installation in Debian”, by Jenkins users handbook
(https://www.jenkins.io/doc/book/installing/linux/debianubuntu)

[4] ”Install Docker Engine on Debian”, by Docker official documents page
(https://docs.docker.com/engine/install/debian/)

16

https://www.ibm.com/cloud/learn/containerization
https://docs.docker.com/get-docker/
https://www.jenkins.io/doc/book/installing/linux/#debianubuntu
https://docs.docker.com/engine/install/debian/

[5] ”Docker overview”, by Docker official documents page
(https://docs.docker.com/get-started/overview/)

[6] ”What Is Container Orchestration?”, by Isaac Eldridge on Jul. 17th,
2018 (https://blog.newrelic.com/engineering/container-orchestration-
explained/)

[7] ”Container Orchestration with Kubernetes”, by Docker official documents
page (https://docs.docker.com/get-started/orchestration/)

[8] ”Introduction to Kubernetes architecture”, by Redhat
(https://www.redhat.com/en/topics/containers/kubernetes-
architecture)

[9] ”Source control repository in Github”
(https://github.com/zahirulislam04/library-cloud-api)

[10] ”Kubernetes manifest file for local deploy-
ment” (https://github.com/zahirulislam04/library-cloud-
api/blob/main/deploymentlocal.yml)

[11] ”Kubernetes manifest file for deployment in Cloud man-
ualy” (https://github.com/zahirulislam04/library-cloud-
api/blob/main/deploymentcloudmanually.yaml)

[12] ”Kubernetes manifest file for deployment by Jenk-
ins” (https://github.com/zahirulislam04/library-cloud-
api/blob/main/deployment.yaml)

[13] ”Dockerfile in source control repository”
(https://github.com/zahirulislam04/library-cloud-
api/blob/main/Dockerfile)

[14] ”Jenkinsfile for Jenkins pipeline stored in source control
repository” (https://github.com/zahirulislam04/library-cloud-
api/blob/main/Jenkinsfile)

17

https://docs.docker.com/get-started/overview/
https://blog.newrelic.com/engineering/container-orchestration-explained/
https://blog.newrelic.com/engineering/container-orchestration-explained/
https://docs.docker.com/get-started/orchestration/
https://www.redhat.com/en/topics/containers/kubernetes-architecture
https://www.redhat.com/en/topics/containers/kubernetes-architecture
https://github.com/zahirulislam04/library-cloud-api
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment_local.yml
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment_local.yml
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment_cloud_manually.yaml
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment_cloud_manually.yaml
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment.yaml
https://github.com/zahirulislam04/library-cloud-api/blob/main/deployment.yaml
https://github.com/zahirulislam04/library-cloud-api/blob/main/Dockerfile
https://github.com/zahirulislam04/library-cloud-api/blob/main/Dockerfile
https://github.com/zahirulislam04/library-cloud-api/blob/main/Jenkinsfile
https://github.com/zahirulislam04/library-cloud-api/blob/main/Jenkinsfile

	Introduction
	System Overview
	System Architecture
	Tools and Methodologies

	Containerization
	Container Orchestration with Kubernetes
	Kubernetes Architecture
	Deployment
	Local Cluster
	Google Kubernetes Cluster

	CI/CD with Jenkins
	Installation
	JDK
	Git and Maven
	Docker
	kubectl
	Jenkins

	Activation
	Configure Pipeline
	GitHub Webhook
	Plugins
	Credentials
	Pipeline

	Results and Discussion
	Local Kubernetes Cluster
	Cloud Environment
	Jenkins

	Conclusion

