
'

&

$

%

Frankfurt University of Applied Sciences

Cloud Computing
WS 20/21

OpenFaaS Installation Guide on
Single-Node and Multi-Node

Kubernetes Cluster

Kshitij Yelpale (1322509)
Sohail Dua (1322512)

Safir Mohammad Shaikh (1322554)
Karishma (1322486)

Guidance:
Prof. Dr. Christian Baun

Table of Contents
1 Introduction 2
2 Architecture 3
3 Installation 4

3.1 Single-Node Kubernetes Cluster 4
3.1.1 Minikube 5
3.1.2 Common Steps for Kubernetes 7
3.1.3 Common Steps for OpenFaaS 7
3.1.4 OpenFaaS 10

3.2 Multi-Node Kubernetes Cluster 13
3.2.1 Custom Made Cluster 13
3.2.2 Using Managed Service - AWS EKS 19
3.2.3 OpenFaaS 20

4 Operation 22
4.1 Lifecycle of Functions 22
4.2 OpenFaaS Store 24
4.3 A Simple Web Application - ML FaaS 24
4.4 Monitoring of Functions 29

5 Conclusion 31
References 32

1

1. Introduction

One of the emerged topics in industries currently is the transition from Monolith to Micro-
services to Serverless architecture. Serverless computing is the cutting-edge technology
now-a-days that improves the traditional client-server architecture by optimizing load on
resources. It describes the concept of developing and running applications without having
to worry about the servers. However, this does not illustrate that there are no servers at all
but, the overhead of creating and mananging servers is overcome. Developers only have
to create new pieces of features as functinos on a cloud service. Due to its light weight
architecture, it allows efficient scaling. In this approach, almost all operating concerns are
abstracted away from developers. The platform then takes care of function execution, stor-
age, container infrastructure, networking and fault tolerance. Additionally, the serverless
platform takes care of scaling the functions according to the actual demand. Currently,
all major cloud service providers offer solutions for serverless computing, namely, Ama-
zon Web Services (AWS) Lambda, Azure Functions Serverless Compute (Microsoft), IBM
Cloud Functions and Cloud Functions (Google) as depicted in figure 1. Also, this architec-
ture is built by removing database from server and running individual functions on demand
and hence it is also referred to as function-as-a-service (FaaS). Primarily, it overcomes 2
major drawbacks of client-server architecture:

• Single Point of Failure: Unlike the traditional approach, like in micro-services ar-
chitecture, one does not need to be completely dependent on the server and worry
about the failure of servers.

• Always Paying: And, one only needs to pay for the amount of time the services are
used.

Fig. 1. Serverless Providers [1]

OpenFaaS platform is a promising solution to carry the power of serverless computing on-
premises. OpenFaaS is a serverless open-source platform for Docker and Kubernetes. It

OpenFaaS Installation Guide 2

is distributed under the MIT license. These frameworks offer greater flexibility (to deploy
software, customize the system, etc.) and thus prevent the lock-in of vendors. Open-source
systems, for example, can be implemented on both edge/fog devices and the public cloud
for distributed data analytics. In this regard, a serverless architecture should be simple to
set up, configure and maintain in this respect; it should also provide some guarantees of
performance. It is rapidly becoming a famous paradigm because of efficient code main-
tenance, fewer prices for hosting, and the peace of mind due to running the functions on
managed infrastructure.

2. Architecture

The OpenFaaS cloud architecture consists of following modules [2]:

• CICD Pipeline

• Dashboard

• Container Builder

• Authentication Service

• Edge Router

The CICD pipeline is made up of many OpenFaaS functions and the dashboard is served
through OpenFaaS. An edge-router maps the user domains to endpoints. Kubernetes is the
recommended platform for deploying OpenFaaS, be it local environment, self-hosted clus-
ter, or with a managed service. The API gateway, the feature watchdog, and an example of
Prometheus are the components of OpenFaaS. The Gateway can be availed through REST
API, via the UI, or through the CLI. The OpenFaaS CLI is used for the creation and im-
plementation of OpenFaaS functions. The developer must supply only the function and the
handler, and the CLI manages the packing of the function into a Docker container.

Faas-netes is the widely used orchestration service for OpenFaaS. By communicating with
the container orchestrator plugin, an API gateway provides an external interface to the fea-
tures, collects metrics, and manages to scale. By adjusting the service replica count in the
Docker Swarm or Kubernetes, API Gateway can scale functions according to demand.

The container also includes a watchdog feature, i.e. a web server that functions inside
the system as an entry point for function calls. By adding Feature Watchdog, we can turn
any Docker image into a serverless function (a tiny Golang HTTP server). It is the entry
point that enables the forwarding of HTTP requests to the target process. Alert manager
reads the metrics collected by the Prometheus and informs the gateway to scale the replica
of the functions if needed. The rules for sending alerts can be defined in the configuration
file. The conceptual diagram of OpenFaaS by Alex Ellis is illustrated in figure 2.

OpenFaaS Installation Guide 3

Fig. 2. OpenFaaS Architecture - Alex Ellis
[3]

3. Installation

OpenFaaS may be executed in several contexts. We have implemented OpenFaaS on

• Single Node Kubernetes Cluster - Minikube
• Multi Node Custom Kubernetes Cluster - 3 EC2 instances on AWS

• Multi Node Kubernetes Cluster using Managed Service (AWS EKS)

Note: All the commands mentioned in this report can be executed by a normal user, how-
ever, we have included sudo in the commands which need to be executed by the root user.
Moreover, the ’#’ symbol represents a comment in the command block.

3.1 Single-Node Kubernetes Cluster

Kubernetes coordinates a highly available cluster of computers linked to work as a single
unit. Kubernetes’ abstractions allow us to deploy containerized applications to a cluster
without specifically tying them to individual machines. Kubernetes more efficiently auto-
mates the distribution and scheduling of application containers across a cluster. Kubernetes
is a framework for open-source development and ready for production. A Kubernetes clus-
ter consists of two types of resources:

OpenFaaS Installation Guide 4

• The cluster is coordinated by the master node.

• The worker nodes runs application.

Kubernetes can be used on both physical and virtual machines. Minikube is the component
of Kubernetes which can be used for development on local systems. It is a lightweight im-
plementation of Kubernetes that creates a VM on our local machine and uses only one node
in its simple Cluster and it serves a master role. Minikube CLI provides basic bootstrapping
operations, including start, stop, status, and delete for working with your cluster.

3.1.1 Minikube

Please follow below instructions in order to create a cluster using Minikube on your system
[4].

• For best practices, always update your system packages to the latest release. Run
following commands to achieve the same:

Update System Packages

1 sudo apt -get update

2 sudo apt -get install apt -transport -https

3 sudo apt -get upgrade

• Now, download Minikube, assign execute permissions to the downloaded package
and add the directory to bin folder. Verify the instllation by executing version com-
mand. This step can be viewed in figure 3.

Download Minikube

1 wget https :// storage.googleapis.com/minikube/releases/

latest/minikube -linux -amd64

2 chmod +x minikube -linux -amd64

3 sudo mv minikube -linux -amd64 /usr/local/bin/minikube

4 minikube version

OpenFaaS Installation Guide 5

Fig. 3. Get Minikube

• Next, Install kubectl. To do the same, please execute the steps given in section
’Common Steps for Kubernetes’.

• Now that components are installed, we can start Minikube to create the single node
cluster. Also, check the cluster created with one running master node. This step is
shown in figure 4.

Start Minikube

1 minikube start

2 kubectl get nodes

Fig. 4. Start Minikube

OpenFaaS Installation Guide 6

• Since the cluster is created, lets move on to OpenFaaS. Please jump to section ’Com-
mon Steps for OpenFaaS’ and continue execution from there.

3.1.2 Common Steps for Kubernetes

• We need kubectl which is a command line tool used to deploy and manage applica-
tions on Kubernetes.

Install kubectl

1 curl -LO https :// storage.googleapis.com/kubernetes -release/

release/‘curl -s https :// storage.googleapis.com/

kubernetes -release/release/stable.txt ‘/bin/linux/amd64/

kubectl

2 chmod +x ./ kubectl

3 sudo mv ./ kubectl /usr/local/bin/kubectl

3.1.3 Common Steps for OpenFaaS

This section focuses on the commons steps which are required to run before OpenFaaS [5].

• Install OpenFaaS CLI on the top of the Kubernetes cluster. It is a client of OpenFaaS
which is used to communicate through the command line. This step is depicted in
figure 5.

Install faas-cli

1 curl -sL cli.openfaas.com | sudo sh

Fig. 5. Download OpenFaaS

OpenFaaS Installation Guide 7

• Helm is a repository tool which is used to download OpenFaaS deployments. The
output to the following commands should be similar to how it is in figure 6.

Install Helm

1 curl -fsSL -o get_helm.sh https :// raw.githubusercontent.com

/helm/helm/master/scripts/get -helm -3

2 chmod 700 get_helm.sh

3 ./ get_helm.sh

4 helm version

Fig. 6. Get Helm

• Let’s separate all the deployments (container abstraction) of OpenFaaS in a separate
namespace as depicted in figure 7.

Create OpenFaaS Namespaces

1 kubectl apply -https :// raw.githubusercontent.com/openfaas/

faas -netes/master/namespaces.yml

Fig. 7. Apply Namespaces

OpenFaaS Installation Guide 8

• Add OpenFaaS repository to Helm and update the charts. This step is illustrated in
figure 8.

Add OpenFaaS to Helm repository and update Helm charts

1 helm repo add openfaas https :// openfaas.github.io/faas -

netes/

2 helm repo update

Fig. 8. Happy Helming!!!

• For the authentication of OpenFaas, we need to have a password which can be gen-
erated randomly.

Generate and display a random password for basic authentication

1 export PASSWORD=$(head -c 12 /dev/urandom | shasum| cut -d’

’ -f1)

2 echo $PASSWORD

• Now, Basic auth needs to be created using above generated password.

Creation of basic-auth for OpenFaaS

1 kubectl -n openfaas create secret generic basic -auth --from

-literal=basic -auth -user=admin --from -literal=basic -auth

-password="$PASSWORD"

• List all available namespaces.

Display all Namespaces

1 kubectl get namespaces

OpenFaaS Installation Guide 9

• Let’s switch to the openfaas namespace so that there will be no need to mention
namespace in every command. To set the required namespace, first, get the kuber-
netes context by following command.

Get the Context

1 kubectl config current -context

• Now, set the namespace using above fetched context. Since above command is exe-
cuted in the minikube installation process, minikube is mentioned here as a context
name but this name will be different in other cases. This step is depicted along with
the previous step in figure 9.

Set the namespace

1 kubectl config set -context minikube --namespace openfaas

Fig. 9. Set Context

3.1.4 OpenFaaS

Once the steps from section ’Common Steps for OpenFaaS’ are covered, proceed with the
following steps which are unique to Minikube [5]:

• Now, download the OpenFaaS deployments with below commands as shown in figure
10.

OpenFaaS Installation Guide 10

Download and Create OpenFaaS Deployments

1 helm upgrade openfaas --install openfaas/openfaas --

namespace openfaas --set functionNamespace=openfaas -fn

--set basic_auth=true

Fig. 10. Get OpenFaaS Deployments

• Get the URL to access OpenFaaS and communicate with commands and set it as an
environment variable. This step is displayed in figure 11.

Set OpenFaaS URL

1 export OPENFAAS_URL=$(minikube ip):31112

2 echo $OPENFAAS_URL

Fig. 11. Get OpenFaaS URL

OpenFaaS Installation Guide 11

• List down pods, deployments and services to track the status of running instances.

Get the status of Containers

1 kubectl get pods , deployment , svc

• Please wait until all the containers are ready and once all the Pods are started, you
can login using the CLI as shown in figure 13. Moreover, you can also access the
OpenFaaS portal in your browser directly using the OpenFaaS URL as depicted in
figure 12. Meanwhile, you can verify the status by executing the above command
continuously.

Fig. 12. Access the URL and Authenticate

• All set! Now login to OpenFaas and explore!

Login to OpenFaaS through CLI

1 echo -n $PASSWORD | faas -cli login -g http :// $OPENFAAS_URL
-u admin --password -stdin

Fig. 13. Login through CLI

OpenFaaS Installation Guide 12

3.2 Multi-Node Kubernetes Cluster

We can use OpenFaas on multi node cluster in several ways and we have implemented two
of the many possibilities.

3.2.1 Custom Made Cluster

We can create a custom cluster on our own with multiple nodes, one of them serving as
a Master node and other nodes serving as Worker nodes. There are several steps involved
in creating such type of cluster. We have used AWS for implementing the same. AWS
(Amazon Web Services) provides on-demand cloud computing services on a metered pay-
as-you-go basis. AWS provides a free-tier account for new users with limited services free
of cost for one year. AWS uses Public Key Cryptography to encrypt and decrypt Login
Information where AWS stores Public Key and User stores Private Key.

• Create an AWS Account.

• Create a user with Programmatic access

– Click on Add user
– Enter user name and select Programmatic access. Click on Next.

– Click on Create Group. Assign Group name. Select the policy as Administra-
torAccess. Click on Create group.

– Go ahead and click on Download .csv so that these credentials can be used to
configure your account on AWS CLI as depicted in figure 14.

Fig. 14. Configure User in CLI

OpenFaaS Installation Guide 13

• Install AWS CLI

Install AWS CLI

1 curl "https :// awscli.amazonaws.com/awscli -exe -linux -x86_64.

zip" -o "awscliv2.zip"

2 unzip awscliv2.zip

3 sudo ./aws/install

• Configure AWS CLI

Configure AWS CLI

1 aws configure

• AWS VPC (Virtual Private Cloud) is a virtual network in public cloud which can be
configured according to the requirements. We have following architecture:

– 1 VPC with IP Range 10.0.0.0/16

– 1 Public Subnet within the VPC with IP Range 10.0.1.0/24

– 3 EC2 Instances (Nodes) in the Public Subnet

– All the resources in Public Subnet connected to Internet Gateway

– Rules in Route Table:

Destinition Target Status Propagated

10.0.0.0/16 local active No
0.0.0.0/0 IGW-ID No

– Rules in Security Group - Inbound Rules:

Type Protocol Port Range Source Description

All Traffic All All Custom
All Traffic All All My IP/[Anywhere]

– Rules in NACL - Inbound Rules:

Rule Type Protocol Port Range Source Allow/Deny

100 All Traffic All All 0.0.0.0/0 Allow

OpenFaaS Installation Guide 14

Let’s build above specified architecture now:

AWS VPC

1 # Create VPC

2 aws ec2 create -vpc --cidr -block 10.0.0.0/16

3 # Use the generated VPC_ID in upcoming commands

4 aws ec2 create -tags --resources VPC_ID --tags Key=Name ,

Value=my-cloud -vpc

5 # Create Internet Gateway and Attach it to VPC

6 aws ec2 create -internet -gateway

7 # Use the generated IGW_ID in upcoming commands

8 aws ec2 create -tags --resources IGW_ID --tags Key=Name ,

Value=my-cloud -igw

9 aws ec2 attach -internet -gateway --internet -gateway -id

IGW_ID --vpc -id VPC_ID

10 # Create Subnet

11 aws ec2 create -subnet --vpc -id VPC_ID --cidr -block

10.0.1.0/24

12 # Use the generated SUBNET_ID in upcoming commands

13 aws ec2 create -tags --resources SUBNET_ID --tags Key=Name ,

Value=my-cloud -pub -subnet

14 # Fetch the Route Table ID (From AWS Console) and Add the

rule

15 aws ec2 create -tags --resources RTB_ID --tags Key=Name ,

Value=my-cloud -pub -rt

16 aws ec2 create -route --route -table -id RTB_ID --destination -

cidr -block 0.0.0.0/0 --gateway -id IGW_ID

17 # Create Subnet Association with the Route Table

18 aws ec2 associate -route -table --route -table -id RTB_ID --

subnet -id SUBNET_ID

19 # Identify the Security Group corresponding to the

SUBNET_ID and Add tags

20 aws ec2 create -tags --resources SEC_GRP_ID --tags Key=Name ,

Value=my-cloud -sec -grp

21 # Identify the NACL corresponding to the SUBNET_ID and Add

tags

22 aws ec2 create -tags --resources NACL_ID --tags Key=Name ,

Value=my-cloud -nacl

• AWS EC2 (Elastic Compute Cloud) is a web service that allows you to launch VMs
in the AWS cloud with inbuilt easy web-scale computing. One can obtain and launch
a single VM or 1000s of VMs in minutes. While creating a VM, we have to select an
AMI (Amazon Machine Image) which is a template containing S/W configurations
including OS, application server, and applications required to launch the instance.
And AWS provides many kinds of AMIs. Some of the most commonly used AMIs
include Amazon Linux AMI, Redhat Enterprise, Ubuntu, and Windows. Now, let’s
create 3 EC2 instances of Ubuntu AMI.

OpenFaaS Installation Guide 15

– Go to AWS Management Console through your favourite browser. Click on
Services. Select EC2 under Compute.

– Click on Instances. Select Launch Instances.

– Select AMI as Ubuntu Server 20.04 LTS (HVM), SSD Volume Type.

– Choose an Instance Type as t2.micro.
Note: You can use this only for demo purpose since the minimum requirement
for Multi Node Kubernetes Cluster is :

* Minimum 2 CPUs in each VM and

* Minimum 2 GB RAM in each VM,

which is not provided by this type (t2.micro). However, if you want better
performance and you are willing to pay, you can choose other instance types
according to your requirement. Since our instance type doesn’t meet the mini-
mum requirements, we have provided a work-around.

– Click on Next. And,

* Choose the number of instances as 3

* Select above created VPC under Network option.

* Select above created Subnet under Subnet option.

* Enable Auto-assign Public IP
And, Click on Next.

– Select the SSD storage according to your requirement. Again, maximum of 30
GiB can be chosen per instance in free-tier. Click on Next and go to Configure
Security Group

– Choose Select an existing security group under Assign a security group op-
tion and select above created security group.

– Download the Key-Pair.

– Once the instances are created, go to the instances and click on Connect (X2).

• Once the terminal is open after Connect, Install Docker and implement below steps
on all instances

OpenFaaS Installation Guide 16

Install Docker

1 # Update System Packages

2 sudo apt -get update

3 # Install Required packages

4 sudo apt -get install apt -transport -https ca -certificates

curl gnupg -agent software -properties -common

5 # Add D o c k e r s official GPG key

6 curl -fsSL https :// download.docker.com/linux/ubuntu/gpg |

sudo apt -key add -

7 sudo apt -key fingerprint 0EBFCD88

8 # SET UP THE REPOSITORY

9 sudo add -apt -repository "deb [arch=amd64] https :// download.

docker.com/linux/ubuntu $(lsb_release -cs) stable"

10 # Update System Packages

11 sudo apt -get update

12 # INSTALL DOCKER ENGINE

13 sudo apt -get install docker -ce docker -ce -cli containerd.io

• Install Kubernetes and implement below steps on all the instances [6].

Install Kubernetes

1 # Get the Kubernetes gpg key

2 curl -s https :// packages.cloud.google.com/apt/doc/apt -key.

gpg | sudo apt -key add -

3 # Add the Kubernetes repository

4 cat << EOF | sudo tee /etc/apt/sources.list.d/kubernetes.

list

5 deb https ://apt.kubernetes.io/ kubernetes -xenial main

6 EOF

7 # Update System Packages

8 sudo apt -get update

9 # Install kubelet , kubeadm and kubectl

10 sudo apt -get install -y kubelet kubeadm kubectl

11 # Hold the versions of Docker , kubelet , kubeadm and kubectl

12 sudo apt -mark hold docker -ce kubelet kubeadm kubectl

13 # Add the iptables rule to sysctl.conf

14 echo "net.bridge.bridge -nf -call -iptables =1" | sudo tee -a /

etc/sysctl.conf

15 # Enable the iptables

16 sudo sysctl -p

• Execute below steps only on Master Node. As mentioned in the earlier steps, the
work-around is provided in the first command with the flag –ignore-preflight-errors
which ignores the configuration and runs anyway.

OpenFaaS Installation Guide 17

Start the Cluster

1 # Initialize the cluster

2 sudo kubeadm init --pod -network -cidr =10.244.0.0/16 --ignore

-preflight -errors=NumCPU ,Mem

3 # Set up local kubeconfig

4 mkdir -p $HOME/.kube
5 sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
6 sudo chown $(id -u):$(id -g) $HOME/.kube/config
7 # Apply Flannel CNI network overlay

8 kubectl apply -f https :// raw.githubusercontent.com/coreos/

flannel/master/Documentation/kube -flannel.yml

• Execute the complete ”kubeadm join” command generated as output of above com-
mand only on all Worker nodes.

• Execute the commands from sections ’Common Steps for Kubernetes’, ’Common
Steps for OpenFaaS’ and ’OpenFaaS’ sequentially only on Master node.

• Similar to Minikube process, you can access the OpenFaaS portal directly through
the browser using the OPENFAAS URL. In Custom made Kubernetes Cluster, the
URL is as follows:
PUBLIC IP OF MASTER NODE:GATEWAY EXTERNAL PORT NO

• Moreover, as we are dealing with multi-node architecture, we can also view the ser-
vices running on each node. Since the master node doesn’t possess any service but it
splits the tasks among the worker nodes. This command depicts the same and shows
what resources/containers are running on each node and demonstrates the utilization
of multi-node architecture as shown in figure 15.

List services on nodes

1 kubectl get pods -n openfaas -o wide --field -selector spec.

nodeName=NODE_NAME_HERE

Fig. 15. Workload on Worker Nodes

OpenFaaS Installation Guide 18

3.2.2 Using Managed Service - AWS EKS

We can also create a multi node kubernetes cluster using a managed service. We have opted
for the flexible service provided by AWS called EKS (Elastic Kubernetes Service) [7]. EKS
helps us to create and manage a cluster with automatic scaling.

• Before diving straight-away into EKS, lets first install the pre-requisites

Pre-Requisites

1 # Install eksctl CLI

2 curl --silent --location "https :// github.com/weaveworks/

eksctl/releases/latest/download/eksctl_$(uname -s)_amd64

.tar.gz" | tar xz -C /tmp

3 # Move the downloaded package to bin folder

4 mv /tmp/eksctl /usr/local/bin

5 # Check Version

6 eksctl version

7 # Install and Configure AWS CLI - Refer Section 3.2.1

8 # Install Kubernetes CLI

9 curl -LO https ://dl.k8s.io/release/$(curl -L -s https ://dl.

k8s.io/release/stable.txt)/bin/linux/amd64/kubectl

10 curl -LO https ://dl.k8s.io/$(curl -L -s https ://dl.k8s.io/

release/stable.txt)/bin/linux/amd64/kubectl.sha256

11 echo "$(<kubectl.sha256) kubectl" | sha256sum --check

12 # Install Helm CLI and OpenFaaS CLI - Refer Section ’Common

Steps for OpenFaaS ’

• Create the Cluster.
Note: EKS automatically assigns m5.large type of instances to the cluster, which
is a paid service. It can also be configured as per the requirement in the create
cluster command. The steps mentioned below are depicted in figure 16 and 17 re-
spectively.

Create EKS Cluster

1 eksctl create cluster --name=openfaas -eks -demo --nodes=2 --

auto -kubeconfig --region=eu -central -1

2 # Set KUBECONFIG

3 export KUBECONFIG =~/. kube/eksctl/clusters/openfaas -eks -demo

4 # Check the nodes

5 kubectl get nodes

OpenFaaS Installation Guide 19

Fig. 16. Create the Cluster

Fig. 17. List the Nodes

• Now, execute all the commands from the section ’Common Steps for OpenFaaS’.
And, continue execution from next section.

3.2.3 OpenFaaS

• Install and Create OpenFaaS deployments [7]. The output for below command
should be similar to figure 18.

Install OpenFaaS

1 helm upgrade OpenFaaS

2 --install openfaas/openfaas \

3 --namespace openfaas \

4 --set functionNamespace=openfaas -fn \

5 --set serviceType=LoadBalancer \

6 --set basic_auth=true \

7 --set operator.create=true \

8 --set gateway.replicas =2 \

9 --set queueWorker.replicas =2

OpenFaaS Installation Guide 20

Fig. 18. OpenFaaS Deployments

• Here, URL for OpenFaas can be fetched by executing kubectl get service command
for gateway external, then the fetched information is stored in the variable. This step
is illustrated in figure 19.

OpenFaaS Login

1 # Set OpenFaaS URL

2 export OPENFAAS_URL=$(kubectl get svc -n openfaas gateway -

external -o jsonpath=’{. status.loadBalancer.ingress [*].

hostname}’):8080 \

3 && echo Your gateway URL is: $OPENFAAS_URL
4 # Login

5 echo $PASSWORD | faas -cli login --username admin --password

-stdin

Fig. 19. Login to FaaS-CLI

OpenFaaS Installation Guide 21

4. Operation

4.1 Lifecycle of Functions

Every serverless function goes through certain phases of its lifecycle. This section illus-
trates how to create, build, push, deploy, manage and use functions by listing the most
common and important commands with examples. The functions can be created in csharp,
go, java11, node, php7, python3 and ruby programming languages.

• Create: This command will create a directory named ’hello’ in your current directory
along with hello.yml and template directory. hello.yml contains language python3,
and image information. Image name can be preceded with docker id where you want
to store the image. The project is available in the hello directory. Handler.py and
requirements.txt are the files for python, but if you consider java, then the package
will have the source project and Handler.java file that contains the main class. So we
can generate a small project and deploy it as a function. This step is demonstrated in
figure 20.

Create

1 faas -cli new --lang python3 hello

Fig. 20. Create New Project

• Build: This command builds the project, creates the package for deployment and
creates the docker image as depicted in figure 21.

Build

1 faas -cli build -f hello.yml

OpenFaaS Installation Guide 22

Fig. 21. Build the Project

Make sure at this point, that you have logged in to your docker account. The following
command authenticates your docker credentials:

Docker Login

1 docker login

• Push: This command pushes the created image to docker registry and creates a new
repository of the image on docker.

Push

1 faas -cli push -f hello.yml

• Deploy This command deploys the function to OpenFaaS. Here, we need to provide
the gateway URL as shown in figure 22.

Depoy

1 faas -cli deploy -f hello.yml --gateway http ://$(minikube ip

):31112

Fig. 22. Deploy the Project

OpenFaaS Installation Guide 23

Note: Instead of running above 3 commands, we can also use below command to
build, push and deploy a function in a single run:
faas-cli up -f hello.yml –gateway http://$(minikube ip):31112

• Invoke: Now, we are ready to use the deployed function. We can invoke the function
through CLI using cURL and faas-cli as given below. One thing to note here is, the
gateway URL belongs to Minikube, but it will be different in other cases as described
similarly in above sections for OPENFAAS URL.

Invoke

1 # faas -cli

2 echo "Hello World" | faas -cli invoke hello --gateway http

://$(minikube ip):31112

3

4 # cURL

5 curl -X POST --data "Hello World" http ://$(minikube ip)

:31112/ function/hello

4.2 OpenFaaS Store

OpenFaaS also provides a functional store where various pre-built functions are available
and can be easily deployed and used in an application.

OpenFaaS Store commands

1 # List available functions

2 faas -cli store list

3 # Show information about a function of the store

4 faas -cli store inspect <function_name >

5 # Deploy a function from the store

6 faas -cli store deploy <function_name >

Although these functions can be introduced from the CLI, but it is much easier with the
OpenFaaS UI, which is also included in this documentation.

4.3 A Simple Web Application - ML FaaS

We have built a simple web application to demonstrate the use of OpenFaaS functions
which comprises several functions from the OpenFaaS store and a custom made function
as well. The two main options for creating your function are through the CLI or the UI.
This documentation will cover both options. Our application provides a way to use the
OpenFaaS pre-built machine learning capabilities. The project aims to use a serverless
approach and execute all those machine learning algorithms in a serverless way rather than

OpenFaaS Installation Guide 24

using the traditional server model. We can deploy OpenFaaS on any machine which has
Docker and container orchestration tool, or we can use a cloud service. For example, The
following problems are solved with this approach.

• Version control.

• Even if every application is package dependent, but every application has its own
docker file that helps to create unique platform for the function.

• Scalable - Kubernetes helps to achieve scalability.

• Every model being independent of each other, failure of one model won’t affect other
models.

The application can be deployed by the following command. Initially, we need to create
a deployment in Kubernetes, preferred in the same namespace. Since we have already
changed the default namespace to ’openfaas’, so there is no need to mention the namespace
flag in the command now. After the creation of deployment, expose the deployment to port
5000 so that it will be accessible to use.

Create deployment and expose the application ’faasml’

1 kubectl create deployment faasml --image="docker.io/sdgamer007/

faasml:latest"

2 kubectl expose deployment/faasml --type=LoadBalancer --port

=5000

We have included following ML functions in our application:

• Face Blur We have deployed the image directly from the public docker repository.
While deploying we need to pass image and name arguments. While illustrating the
lifecycle above, We have deployed the function hello through yml file.

Pull and Deploy Faceblur image

1 docker pull esimov/pigo -openfaas -faceblur :0.1

2 faas -cli deploy --image=esimov/pigo -openfaas -faceblur --

name faceblur

• Inception It is also possible to deploy function directly from the store through CLI.

Deploy Inception function

1 faas -cli store deploy inception

OpenFaaS Installation Guide 25

Fig. 23. Deploying a function via OpenFaas UI

• Colorization: Let’s deploy a machine-learning function called Colorization through
OpenFaaS UI as shown in the figure 23.

• Coherent Line Drawing: Like Colorization function deployment, search for “line
drawing” and deploy the function.

• Face Detection by Pigo: Like Colorization function deployment, search for “face
detect” and deploy the function.

Hereby, we have described all the ways of deploying a function, i.e. thorugh store (CLI
and UI), directly from the docker repository and yml file.

Application Snapshots: Once the functions are deployed, they are ready to use. You will
find the image links in the references so you can try the same link. You can also use other
images, just try with lower resolution images otherwise the output won’t be generated. The
images in figure 24, 25, 26, 27 and 28 are the captures of our application.

OpenFaaS Installation Guide 26

• Face Blur [8]:

Fig. 24. Face Blur

• Inception [9]:

Fig. 25. Inception

OpenFaaS Installation Guide 27

• Colorization [10]:

Fig. 26. Colorization

• Coherent Line Drawing [11]:

Fig. 27. Coherent Line Drawing

OpenFaaS Installation Guide 28

• Face Detect [12]:

Fig. 28. Face Detect

4.4 Monitoring of Functions

The OpenFaaS Gateway collects metrics on several existing replicas of the functions, how
often they are invoked, their HTTP codes (success/failure), and the latency of each request.
We can view this data in the OpenFaaS UI, or via the command faas-cli list, but the most
effective way to monitor the data is through a dashboard using Grafana.

• Prometheus: It is an open-source event monitoring and alerting tool based on time-
series database. It collects metrics which are available via the Gateway’s API for
auto-scaling. It allows us to view the details in both console and graph as shown in
figure 29 and 30.

Prometheus Setup

1 # Expose Deployment

2 kubectl expose deployment prometheus --type=NodePort --name

=prometheus -ui

3 # View the prometheus -ui service

4 kubectl get svc prometheus -ui

5 # Open prometheus -ui on local system

6 kubectl port -forward svc/prometheus -ui 9090:9090 &

OpenFaaS Installation Guide 29

Fig. 29. Prometheus Console

Fig. 30. Prometheus Graph

• Grafana: It is an open-source visualization software, which helps the users to un-
derstand the complex data with the help of data metrics fetched by Prometheus. This
tool can be used for data analytics, to make cool dashboards and highly customizable.
The data can be visualized for a particular period and can be tuned to fetch metrics
with tunable refresh time rates. The dashboard of Grafana is depicted in figure 31.

OpenFaaS Installation Guide 30

Grafana Setup

1 # Create Grafana pod

2 kubectl run grafana --image=stefanprodan/faas -grafana :4.6.3

--port =3000

3 # Expose the pod

4 kubectl expose pod grafana --type=NodePort --name=grafana

5 # View the Grafana service

6 kubectl get service Grafana

7 # Open Grafana on local system

8 kubectl port -forward svc/grafana 3000:3000 &

Fig. 31. Grafana Dashboard

5. Conclusion

In this project, we have implemented OpenFaaS using several ways. Moreover, we have
successfully built an application to demonstrate the use of OpenFaaS on single-node and
multi-node Kubernetes cluster since OpenFaaS can be integrated with any cloud-orchestration
tool. With Kubernetes, we can build productionized solutions. However, some points need
to be considered while working with OpenFaaS, such as the communication with the gate-
way is not encrypted, both via UI and command line. But, we can use the ingress compo-
nent of Kubernetes to make this secure as it uses SSL. Moreover, other things like disaster
recovery, backups, and fault tolerance need to experiment before using in production.

OpenFaaS Installation Guide 31

Acknowledgments

This research was possible under the guidance and direction of Prof. Dr. Christian Baun.
This report is the final submission for the course Cloud Computing (CC) taught in the
Master’s programme High Integrity Systems (HIS).

References

[1] Gaunt S What you need to know about building serverless architectures. Available at
https://maxkelsen.com/blog/building-serverless-architectures.

[2] OpenFaaS Cloud Architecture. Available at https://docs.openfaas.com/
openfaas-cloud/architecture/.

[3] OpenFaaS Architecture Gateway. Available at https://docs.openfaas.com/architecture/
gateway/.

[4] Mutai J (2020) How to install minikube on ubuntu 20.04/18.04
debian 10 linux. Available at https://computingforgeeks.com/
how-to-install-minikube-on-ubuntu-debian-linux/.

[5] Ellis A (2017) Getting started with openfaas on minikube. Available at https://
medium.com/faun/getting-started-with-openfaas-on-minikube-634502c7acdf.

[6] Shivalkar R Setup a kubernetes cluster on aws ec2 instance with
ubuntu using kubeadm. Available at https://www.howtoforge.com/
setup-a-kubernetes-cluster-on-aws-ec2-instance-ubuntu-using-kubeadm/.

[7] Hein C (2018) Aws eks. Available at https://aws.amazon.com/blogs/opensource/
deploy-openfaas-aws-eks/.

[8] Face Blur image - Avengers. Available at https://cnet4.cbsistatic.
com/img/j7SdHs9Ac8coHkwTOcJG1DYcQI4=/940x0/2019/04/19/
f20d0d6a-1781-49a4-90ab-e285109b65b2/avengers-endgame-imax-poster-crop.
png.

[9] Inception Image - Lion. Available at https://upload.wikimedia.org/wikipedia/
commons/7/73/Lion waiting in Namibia.jpg.

[10] Colorization Image - Lion. Available at https://blinq.art/blog/wp-content/uploads/
2018/04/blinq-art-black-white-default.jpg.

[11] Line Drawing Image - Helicopter. Available at https://hdwallpaperim.com/
wp-content/uploads/2017/08/24/103253-helicopters-MH-53 Pave Low-748x421.
jpg.

[12] Face Detection Image - Team India. Available at https://gumlet.assettype.com/
bloombergquint%2F2021-01%2F4ae730ce-17e5-4438-937e-17c4d27900f2%
2FWhatsApp Image 2021 01 19 at 14 53 47.jpeg?rect=32%2C0%2C1196%
2C861&auto=format%2Ccompress&w=1200.

OpenFaaS Installation Guide 32

