
Frankfurt University of Applied Sciences
Dept. of Computer Science and Engineering

Project Report
WS 2022

Master of Science (M.Sc.)

Edge-Computing (Framework: EdgeX)

Submitted by

Ruchit Dobariya (Matr. N - 1378799)
Fargina Mahmud (Matr. N - 1379510)
Nelli Aghajanyan (Matr. N - 1378647)
Bhargav Anghan (Matr. N - 1387230)

Under the guidance of
Prof. Dr. Christian Baun

Contents

Contents i

List of Figures ii

1 Introduction 1
1.1 EdgeX Foundry Service Layers . 1

2 Installation 4
2.1 System Requirments . 4
2.2 Installation of Raspberry Pi OS . 4
2.3 Installation Docker and docker-compose . 5
2.4 Installation and Starting EdgeX Foundry . 5

3 Graphical user interfaces 7
3.1 Raspberry Pi OS User Interface . 7
3.2 Edgex UI user interfaces . 8

4 Device creation 10
4.1 Device Profiles . 10

5 Data Generation 13
5.1 Temprature and humidity Sensor (DHT22) . 13
5.2 Export data to Edgex . 14

6 Export Edgex data to AWS 16
6.1 DynamoDB Implementation . 16
6.2 AWS Lambda Implementation . 17
6.3 AWS Gateway API Implementation . 20

Conclusion 21

Bibliography 22

i

List of Figures

1.1 EdgeX gateway between the ”things” and the IT-System [9] 1
1.2 EdgeX platform architecture [8] . 2

3.1 Raspberry Pi OS GUI [?] . 8
3.2 Portainer Login . 9
3.3 Portainer UI . 9

4.1 sensorClusterDeviceProfile.yaml . 11

5.1 DHT22 and Raspberry Pi connection [5] . 14
5.2 Create Stream Using Postman . 15
5.3 Create Temparature rule Using Postman . 15
5.4 Create Humidity rule Using Postman . 15

6.1 AWS DynamoDB table . 17
6.2 Create a new IAM role . 18
6.3 Create new Lambda service role . 18
6.4 Index.js(Appendix) . 19
6.5 API Gatway . 20

ii

Chapter 1

Introduction

What is Edgex Foundary? In simple words, EdgeX Foundry connects to devices, sensors, actuators,
and other IoT objects in the real world. It is an open source, vendor-neutral, adaptable, and in-
teroperable software platform. Since it acts as a link between modern information technology (IT)
systems and actual items that are capable of sensing and acting in the real world, EdgeX can be
regarded as edge middleware. In order to reduce risk, accelerate time to market, and enable scale,
the EdgeX platform facilitates and encourages collaboration among the rapidly growing community
of IoT solution providers in an ecosystem of interconnected components. MQTT, REST are just a
few of the IoT device connectivity protocols that EdgeX provides. It permits for encryption, trans-
formation, filtering, and formatting before delivering the data through multiple protocols, including
MQTT, to an external source. Data is typically not stored in the EdgeX Gateway itself for a long
time. EdgeX is made up of several services, some of which the user has the option to enable or
disable. For instance, it is possible to build rules that, when the conditions are met, automatically
perform a specific behaviour [7]. Figure 1.2 shows the general overview of the edgex middleware.

Figure 1.1: EdgeX gateway between the ”things” and the IT-System [9]

1.1 EdgeX Foundry Service Layers
A set of open source micro services is called EdgeX Foundry. These micro services are separated into
2 underlying augmenting system services and 4 service layers.

EdgeX Foundry’s 2 underlying System Services :

• Security
• System Management

1

EdgeX Foundry’s 4 Service Layers:

• Device Services Layer
• Core Services Layer
• Supporting Services Layer
• Application Services Layer

Figure 1.2: EdgeX platform architecture [8]

The Device Services Layer, actually interacts with IOT devices and sensors while also connects other
service layers.

The majority of an EdgeX instance’s natural understanding of what "things" are connected, what
data is passing through them, and how EdgeX is set up is found in the core services.
Core layer has the following micro services:

• Core data
• Command
• Metadata
• Registry and Configuration

The supporting servies are responsible for scrubbing in terms of Edgex means for data clean up,
logging and scheduling. Some of the services are:

• Rules Engine

2

• Scheduling
• Logging
• Alerts and Notifications

The last layer is Application Services Layer, which is responsible for sending this data after scrubbing
to endpoint or cloud. Ex. Amazon Web Services (Amazon IoT Hub), Google Cloud (Google IoT
Core), Azure IoT Hub, IBM Watson IoT.

3

Chapter 2

Installation

2.1 System Requirments
For Edgex Foundary(Used in this project):

• Ubuntu 22.04

• Internet Connection

• Minimum 1GB Memory

• 64bit CPU

• Raspberry pi 3 Model B (For Sensor Data Generation)

2.2 Installation of Raspberry Pi OS
In this section, we discussed about how to install Raspberry Pi OS on an SD card with laptop or
PC. Below are the steps in order to successfully install Raspberry Pi OS on an SD card [11].

1. Download the Raspbian OS ISO from https://www.raspberrypi.com/software/ official
website

• Use Raspbian Stretch with desktop and recommended software

2. Install a Raspberry Pi Imager that can create an image of your Raspberry Pi OS on your SD
card from https://www.raspberrypi.com/software/

3. Select operating system to be written on your SD card by clicking on the option “CHOOSE
OS”.

4. Click on "Settings" and add wifi "USERNAME" and "PASSWORD"

5. choose "STORAGE" option, select SD Card

6. Click on "WRITE".

4

https://www.raspberrypi.com/software/
https://www.raspberrypi.com/software/

2.3 Installation Docker and docker-compose
Commands to install Docker and Docker Compose:

1. Update the system

• sudo apt update
• sudo apt upgrade -y

2. Install the Docker-CE

• sudo apt install apt-transport-https ca-certificates curl software-properties-common -y
• curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
• sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

focal stable"
• sudo apt update
• sudo apt install docker-ce -y
• sudo usermod -aG docker $USER

3. Now install docker-compose

• sudo apt install docker-compose -y

2.4 Installation and Starting EdgeX Foundry
Commands to install Edgex Foundary:

1. Create directory with name edgex

• mkdir edgex
• cd edgex

2. Download the docker-compose.yml

• wget https://raw.githubusercontent.com/edgexfoundry/developer-scripts /aster/releases
/geneva/compose-files/docker-compose-geneva-redis.l

• cp docker-compose-geneva-redis.yml docker-compose.yml

3. Pull the containers and list downloaded

• docker-compose pull
• docker image ls

4. Start EdgeX Foundry

• docker-compose up -d

5

• docker-compose ps

5. Stop EdgeX Foundry

• docker-compose stop
• docker-compose down -v

6

Chapter 3

Graphical user interfaces

3.1 Raspberry Pi OS User Interface
Connect Raspberry Pi to laptop display. Follow the below step to install User Interface [3].

1. Turn on Your Raspberry Pi

• Insert SD Card in Raspberry Pi. Turn it on.

2. Make connection with Raspberry Pi using SSH. Run below command in command prompt.

• ssh pi@[Raspberry Pi’s IP Address]
• Default USERNAME and PASSWORD.
• USERNAME: pi
• PASSWORD: raspberry

3. Install VNC Server

• sudo apt-get update
• sudo apt install realvnc-vnc-server realvnc-vnc-viewer

4. Enable VNC Server.

• sudo raspi-config
• Select "Interfacing Options"
• Navigate to “P3 VNC”
• Click on "Yes"

5. Install a VNC Viewer.

• Download VNC Viewer from https://www.realvnc.com/en/connect/download/viewer/
official website.

• Start VNC Viewer.

6. Now, you can access Raspberry pi OS using IP address of Raspberry Pi in laptop. As shown
in figure 3.1

7

https://www.realvnc.com/en/connect/download/viewer/

Figure 3.1: Raspberry Pi OS GUI [?]

3.2 Edgex UI user interfaces
In order to access Edgex Foundry using a UI, we need to add the UI service inside the docker com-
pose file. For this purpose, we have used Portainer UI, which is a powerful graphical UI, where the
containers, images, volumes and networks are visualised. To avoid working with terminal and all the
commands, Portainer can be used to control the Docker resources [2].

portainer:
image: portainer/portainer
ports:
- "0.0.0.0:9000:9000"
container_name: portainer
command: -H unix:///var/run/docker.sock
volumes:
- /var/run/docker.sock:/var/run/docker.sock:z
- portainer_data:/data

8

While keeping the identation we need to add the above mentioned image with all its configuration
in docker compose file —> below the services section. The Portainer listens on port 9000, upon first
usage we need to set a password for admin user when we visit the page. Figure 3.2 shows how the
login page looks like. We use the following credentials
username: admin
password: raspberry

Figure 3.2: Portainer Login

In the figure 3.3 we can see the screenshot of Portainer Web UI. The details as the number of
networks, container and images can be easily tracked on this UI.

Figure 3.3: Portainer UI

9

Chapter 4

Device creation

4.1 Device Profiles
In this section we will describe how to send sensor data to Edgex Foundry. First of all we have to:

• create a device on Edgex

In order to do that we need to set the value, type, format and some other configuration.
To communicate with EdgeX Foundry, we are using the Postman application.
Step 1: Open Postman application
Step 2: Set method : POST ;
URI : http:\<edgexip>:48080/api/v1/valuedescriptor ;
Payload Setting : raw - JSON format ;
Payload Data :

{
"name": "humidity",
"description": "Humidity %",
"min": "0",
"max": "80",
"type": "Int64",
"uomLabel": "humidity",
"formatting": ""labels": [
"environment",
"humidity"
]
}

{
"name": "temperature",
"description": "Temperature Celsius",
"min": "0",
"max": "80",
"type": "Int64",
"uomLabel": "temperature",
"formatting": ""labels": [
"environment",
"temperature"
]
}

Response status should be 200 OK.

• upload the device profile

The device profile is a yaml file that contains device name and the list of data it can han-
dle.
Step 1: Open Postman application
Step 2: Set method : POST ;

10

http:\<edgexip>:48080/api/v1/valuedescriptor

URI : http://<edgexip>:48081/api/v1/deviceprofile/uploadfile ;
Payload Setting : form-data : KEY - File;
Select the yaml file : sensorClusterDeviceProfile.yaml
Have file as the KEY

The figure 4.1 depics the sensorClusterDeviceProfile.yaml file, which is used to describe the
device - data formats and commands.

Figure 4.1: sensorClusterDeviceProfile.yaml

• value descriptor and device profile are ready to create the device

Step 1: Open Postman application
Step 2: Set method : POST ;
URI : http://<edgexip>:48081/api/v1/device ;
Payload Setting : raw - JSON format;
Payload Data :
{
"name": "Temp_and_Humidity_sensor_data",
"description": "DTH11 sensor data",
"adminState": "unlocked",
"operatingState": "enabled",
"protocols":
"example":
"host": "random",
"port": "1000",
"unitID": "10"

11

http://<edgexip>:48081/api/v1/deviceprofile/uploadfile
http://<edgexip>:48081/api/v1/device

,
"labels": [
"Humidity sensor",
"Temperature sensor",
"DHT11"
],
"location": "Germany",
"service":
"name": "edgex-device-rest"
,
"profile":
"name": "SensorData"

}

Response should be 200 OK.

After all of these steps, now the EdgeX Foundry is ready to capture temperature and humidity
data.

• send sensor data from client side
We can use Postman to do so using POST request and the URI as http://<edgexip>:
49986/api/v1/resource/Temp_and_Humidity_sensor_data/temperature

• fetch the data
To fetch the same data from EdgeX we can use the GET api and URI http://<edgexip>:
48080/api/v1/reading from server side.

12

http://<edgex ip>:49986/api/v1/resource/Temp_and_Humidity_sensor_data/temperature
http://<edgex ip>:49986/api/v1/resource/Temp_and_Humidity_sensor_data/temperature
http://<edgex ip>:48080/api/v1/reading
http://<edgex ip>:48080/api/v1/reading

Chapter 5

Data Generation

5.1 Temprature and humidity Sensor (DHT22)
In this project we are gernrating real data time data of Temprature and humidity using DHT22 and
Raspberry Pi.

DHT22: The DHT22 is a basic digital temperature and humidity sensor. It measures the humidity
and temperature of the air around it using a thermistor and a capacitive humidity sensor, and it
outputs a digital signal.

• Accuracy:±2

• Humidity Range:0 100

• Temperature:-40°C 80°C

• Output Type:Digital

• Voltage - Supply:3.3V 6V

Connection circuit diagram is shown in figure 5.1
In order to run python script on raspberry pi OS. We require to install some library and packages.
Follow below commands to install python and other things [6].

• sudo apt-get update

• sudo apt-get upgrade

• sudo apt-get install python3-dev python3-pip

• sudo python3 -m pip install –upgrade pip setuptools wheel

• sudo pip3 install Adafruit-DHT

13

Figure 5.1: DHT22 and Raspberry Pi connection [5]

5.2 Export data to Edgex
In this section we discuss about sending data from Edgex foundary to AWS cloud. Here, Kuiper
Rules Engine is used to export the data. Edgex-kuiper is running on port 48075.

There are two step to setup rules engine.

1. Create Stream

2. Create rules

1) Create Stream

Here, we used Postman to create stream and rules. Just set url and payload shown in figure 5.2.

2) Create rules

Here, we created the rules into two separate categories: "Temparature" and "Humidity". Our AWS
Dynamo DB end point is used as "Url", and the request type is "post". For reference see figures 5.3
and 5.4 [4].

14

Figure 5.2: Create Stream Using Postman

Figure 5.3: Create Temparature rule Using Postman

Figure 5.4: Create Humidity rule Using Postman

15

Chapter 6

Export Edgex data to AWS

We have used four AWS services to export EdgeX data to AWS. These are AWS DynamoDB, IAM
Service, AWS Lambda and AWS API Gateway.

6.1 DynamoDB Implementation
The construction of database tables with limitless data storage and retrieval capabilities is possible
due to a fully managed NoSQL database service called AWS DynamoDB. While handling the data
traffic of tables over several servers, performance is automatically maintained. Additionally, it relieves
consumers of the burden of scaling and managing a distributed database. As a result, management
of hardware provisioning, setup, configuration, replication, software patching, cluster scalability is
provided by Amazon.We created a table in DynamoDB following the steps below:-

1. Go to https://console.aws.amazon.com/dynamodb/ to access the DynamoDB console.

2. selecting Create Table.

3. Do the following on the Create DynamoDB table screen:

4. Choose ”IoTDeviceData” as name of the table as shown in figure below.

5. Enter "Id" in the Partition key box for the Primary key. Choose string as the data type.

6. Select Create once the settings are exactly how you want them.

16

https://console.aws.amazon.com/dynamodb/

Figure 6.1: AWS DynamoDB table

6.2 AWS Lambda Implementation
One can run code without setting up or maintaining servers by using the compute service Lambda.
While your code is running on a high-availability compute infrastructure, Lambda manages the
compute resources, including server and operating system maintenance, capacity provisioning and
automatic scaling, code monitoring and logging. With Lambda, we can run code for virtually any
form of application or back-end service. Just we need to submit code in one of the languages that
Lambda supports.

First lambda functions are required in order to access the newly constructed DynamoDB table.
However, the newly generated table is first inaccessible to lambda functions. For accessing lambda
function, we have to create IAM service. Utilize the management console to access the IAM service,
choose "Roles" from the left-hand menu and name the new IAM service role as "IoTDeviceDataAccess"
(as seen in figure 6.2), and then press "create role" button.
Secondly, "AWS service" selected and pick Lambda as the service this role is intended. Then, click on
"Next" In the Permissions, and type "AWS Lambda Basic Execution Role" into the search window.
Click "Next" after selecting the role specified under that name. [1]

Now, Click "Create role" after naming the role as "StoreDeviceData". Select the newly formed role
and click "Add inline policy" as seen in figure 6.3 to grant this role more particular rights.Then, enter
"DynamoDB" in the service search bar and "GetItem" and "PutItem" in the actions search bar in the
next view.

17

Figure 6.2: Create a new IAM role

Figure 6.3: Create new Lambda service role

18

Lambda functions are compatible with a wide range of computer languages. Because JavaScript was
utilized in this instance, Node.js has to be the runtime option. Select "Choose an existing role" from
the role-dropdown menu, then pick the recently created "StoreDeviceData" position.

Put the code from appendix file into the index.js file(as seen in figure 6.4). The event object containing
the entries "ID" in the json body will be received by the script when it is enabled. The "IoTDevice-
Data" DynamoDB table is then updated with these two values. It also provides a response object
with the http response status in it[1].

Figure 6.4: Index.js(Appendix)

19

6.3 AWS Gateway API Implementation

The Gateway API service supports RESTful-APIs. A RESTful API can be created by following
these steps.

1. Go to AWS-Managment console and select the API Gateway service.

2. For selecting REST API select the button ”Create API”.

3. Choose the API-Name as ”EdgeXFoundryCollectedData” and keep the endpoint setting on
regional. Select create API [10]

4. Create method and tools you want. We have created a POST HTTP method to send EdgeX
data to AWS.

5. Implement some kind of access protection and policy.

6. Deploy the API.

Figure 6.5: API Gatway

20

Conclusion

At the end we have integrated every portion of the project. We have tested while integration. During
the test stage, we could see that data is being stored in AWS DynamoDB through API Gateway
from EdgeX.

21

Bibliography

[1] Build an api gateway with crud operations using lambda and dynamodb. https:
//docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.
html#http-api-dynamo-db-create-function.

[2] Portainer : Container management made easy. https://www.portainer.io/.

[3] Lydia Cupery. Raspberry pi gui. https://spin.atomicobject.com/2019/06/09/
raspberry-pi-laptop-display/.

[4] EKuiper. Kuiper rules engine. https://github.com/lf-edge/ekuiper/blob/master/docs/
en_US/edgex/edgex_rule_engine_tutorial.md.

[5] Amna Eleyan. Sensor pin diagram. https://www.researchgate.net/figure/
Wiring-diagram-for-connecting-the-DHT22-sensor-to-the-RPi_fig3_335740857.

[6] Emmet. Install python. https://pimylifeup.com/raspberry-pi-humidity-sensor-dht22/.

[7] Edgex Foundary. Edgex foundary introduction. https://docs.edgexfoundry.org/1.2/.

[8] Edgex Foundary. Edgex foundary service layers description. https://docs.edgexfoundry.
org/1.2/#edgex-foundry-service-layers.

[9] Edgex Foundary. Edgex foundary use cases from official website. https://docs.edgexfoundry.
org/1.2/#edgex-foundry-use-cases.

[10] Ke Han, Youyan Duan, Rui Jin, Zhicheng Ma, Hui Rong, and Xiaobo Cai. Open framework of
gateway monitoring system for internet of things in edge computing. https://www.mdpi.com/
1424-8220/19/22/4905/htm.

[11] Data Slayer. Raspberry pi os installtion. https://www.youtube.com/watch?v=rGygESilg8w.

22

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html#http-api-dynamo-db-create-function
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html#http-api-dynamo-db-create-function
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-dynamo-db.html#http-api-dynamo-db-create-function
https://www.portainer.io/
https://spin.atomicobject.com/2019/06/09/raspberry-pi-laptop-display/
https://spin.atomicobject.com/2019/06/09/raspberry-pi-laptop-display/
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/edgex/edgex_rule_engine_tutorial.md
https://github.com/lf-edge/ekuiper/blob/master/docs/en_US/edgex/edgex_rule_engine_tutorial.md
https://www.researchgate.net/figure/Wiring-diagram-for-connecting-the-DHT22-sensor-to-the-RPi_fig3_335740857
https://www.researchgate.net/figure/Wiring-diagram-for-connecting-the-DHT22-sensor-to-the-RPi_fig3_335740857
https://pimylifeup.com/raspberry-pi-humidity-sensor-dht22/
https://docs.edgexfoundry.org/1.2/
https://docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers
https://docs.edgexfoundry.org/1.2/#edgex-foundry-service-layers
https://docs.edgexfoundry.org/1.2/#edgex-foundry-use-cases
https://docs.edgexfoundry.org/1.2/#edgex-foundry-use-cases
https://www.mdpi.com/1424-8220/19/22/4905/htm
https://www.mdpi.com/1424-8220/19/22/4905/htm
https://www.youtube.com/watch?v=rGygESilg8w

	Contents
	List of Figures
	Introduction
	EdgeX Foundry Service Layers

	Installation
	System Requirments
	Installation of Raspberry Pi OS
	Installation Docker and docker-compose
	Installation and Starting EdgeX Foundry

	Graphical user interfaces
	Raspberry Pi OS User Interface
	Edgex UI user interfaces

	Device creation
	Device Profiles

	Data Generation
	Temprature and humidity Sensor (DHT22)
	Export data to Edgex

	Export Edgex data to AWS
	DynamoDB Implementation
	AWS Lambda Implementation
	AWS Gateway API Implementation

	Conclusion
	Bibliography

