
CI/CD of Cloud Functions
including the Service by using

Infrastructure as Code

Cloud Computing SS2022

Submitted by:

Tobias Maas
Tobias Schiffhauer
Raoul Neumann

Under the guidance of:

Prof. Dr. Christian Baun

Table of content
1 Introduction 3

1.1 Continuous Integration and Continuous Delivery 3
1.2 Github Actions 3
1.3 Terraform 3
1.4 Kubernetes 4
1.5 Cloud Solution 4

2 Architecture 5

3 Installation 6
3.1 Google Cloud 6

3.1.1 Configure Google Cloud SDK 6
3.1.2 Terraform 6
3.1.3 Kubernetes 9

3.2 Setting up Amazon Web Service EKS EC2 Cluster 9
3.2.1 Create a AWS Account 9
3.2.2 Terraform 12
3.2.3 Kubernetes 13

3.3 Installation of OpenFaas 15
3.4 Possible connection to OpenFaas 16

3.4.1 Port-forwarding 16
3.4.2 Connection over public IP 17

3.5 OpenFaas functions 17
3.5.1 Add function from store 17
3.5.2 Creating new function 17
3.5.3 Example function 18

4 Pipelines 20
4.1 Create Cluster, install OpenFaas and upload function 20
4.2 Add function to existing cluster 22

2

1 Introduction
OpenFaaS makes it easy for developers to deploy event-driven functions and
microservices to Kubernetes without repetitive, boiler-plate coding. Package your
code or an existing binary in a Docker image to get a highly scalable endpoint with
auto-scaling and metrics.1

1.1 Continuous Integration and Continuous Delivery
CI/CD stands for Continuous Integration, Continuous Delivery and Continuous
Deployment. Continuous integration is the process of testing and integrating new
code automatically into an existing code base. Continuous delivery describes the
automatic release of the code. The automatic deployment of the build code to the
different environments is called Continuous Deployment. The process from start to
finish has the term pipeline.
Our project focuses more on the deployment aspects of the pipeline. The terraform
language is not a typical programming language, so testing and integrating is
handled. Although the amount of lines of code can not be compared to a typical
programming language.2

1.2 Github Actions
Github is the biggest version-control and collaboration platform. It is based on the git
program, which is an Open-Source code management tool. Github Actions is their
CI/CD pipeline product. If there are changes in a specified area of the repository, a
program is started with step by step instructions of tasks. The possible tasks and
steps depend only on the wished outcome.
Our pipeline deploys a Kubernetes cluster into the Google and Amazon Cloud. Then
it installs OpenFaas into the cluster and uploads an example function in the cluster.3

1.3 Terraform
With Terraform it is possible to declare the wanted infrastructure as a script. With
these scripts it is possible to automate the creation of the infrastructure and have the
same configuration every time. The usage of different cloud providers is also
possible.4

We use Terraform for the description of our Kubernetes cluster and configuration for
a public IP or domain for the accessibility of our service.

4 https://www.terraform.io/
3 https://www.techtarget.com/searchitoperations/definition/GitHub
2 https://www.redhat.com/en/topics/devops/what-is-ci-cd#overview
1 https://docs.openfaas.com/

3

https://www.terraform.io/
https://www.techtarget.com/searchitoperations/definition/GitHub
https://docs.openfaas.com/

1.4 Kubernetes
Kubernetes is a tool for automatic deployment, scaling and management of
containern. The tool is designed and developed by Google and is now the standard
for container orchestration. The configuration demand for a response to demand
changes or pushing a new update to the containers is low.5

Our OpenFaas service will run in a Kubernetes cluster for the reasons mentioned
above.

1.5 Cloud Solution
Unlike a private or shared cloud solution, the public cloud is accessible to businesses
and the general public. Because the cloud platform is also intended to appeal to
private individuals, the offered services have a wide price range.There are a few free
education offers or trials available, although they have their limitations on the
resources that can be used. On the other side, the available services offer easy
scalability to fulfill the needs of bigger companies or government organizations as
well.

We have chosen the two largest providers, Google Cloud and Amazon Web Services
(AWS), because they either provide a generous starting credit upon registration or
because they are relatively inexpensive. The two cloud service providers have also
already made a name for themselves in the area of cloud solutions and are also used
by companies or government organizations, so the experience gained with these
cloud service providers has a certain practical relevance.

5 https://kubernetes.io
4

2 Architecture
The goal of the project is to create a CI/CD pipeline which deploys OpenFaas Functions on a
given Kubernetes cluster. The pipeline gets triggered by a change in a Github repository.
OpenFaas will be deployed into a Kubernetes Cluster, which will be hosted in a public cloud.
In our case the public clouds from Google or Amazon (AWS) are used. For a reliable
installation process, the most of the configuration will be scripted in Terraform files or short Tf
files. In the files is declared how the cluster shall be configured. For the use case of Google
Cloud, in the Terraform files are the configurations for the Google Kubernetes Engine (GKE)
Cluster. In the use case of AWS, the Terraform files contain the configuration for the Elastic
Kubernetes Service (EKS).
The Terraform state contains information about the current state of the deployed cluster and
is stored in a remote storage, because the virtual machines that execute the Github Actions
do not store files permanently.

5

3 Installation
In this section the manual steps for the deployment of a GKE and EKS Cluster as well as for
the deployment of OpenFaas and OpenFaas Functions on the created cluster are displayed.
Code Blocks with a dark background represent terminal commands, whereas code blocks
with a light background is expressing other code from Terraform files, Github Actions or a
python function.

3.1 Google Cloud

3.1.1 Configure Google Cloud SDK
Install Google SDK

$ sudo apt install google-cloud-sdk

Connect Google SDK with Google Account

$ gcloud init

Add Google Account to ADC Application Default Credentials, so that Terraform can access
the credentials

$ gcloud auth application-default login

3.1.2 Terraform
Our kubernetes setup is based on the example from Terraform.6

We are using this a base and extend it into usage for Github Actions and OpenFaas

$ git clone

https://github.com/hashicorp/learn-terraform-provision-gke-cluster

To start working with the example and later execute terraform commands, we have to change
the working directory.

$ cd learn-terraform-provision-gke-cluster

In the terraform.tfvars file, we have to enter our project id as well as the region in which we
want the cluster to be created. In this case we choose europe-west3, this region has three
zones respectively europe-west3-a, europe-west3-b and europe-west3-c.
All available regions and their zones can be seen at the following link.7

project_id = "crypto-parser-350713"

region = "europe-west3"

7 https://cloud.google.com/compute/docs/regions-zones?hl=en
6 https://learn.hashicorp.com/tutorials/terraform/gke

6

https://learn.hashicorp.com/tutorials/terraform/gke

The project id can be retrieved with the following command from the command line or from
the google cloud console website at the dashboard.

$ gcloud config get-value project

The following two blocks of code show the content of the file gke.tf. In here we declare the
resources that we want to deploy on google cloud to create our cluster. First the variable
“gke_num_nodes” is created with a default value of 1. With this variable we can declare how
many nodes we want to deploy in a single zone. This is the first thing you have to change if
you are using the free google cloud trial, because the default value from the terraform
example was 2, which exceeds the limit of the free trial.
Next a resource called “google_container_cluster” is created. Therefore you have to provide
the name and location for the cluster, in this case the values from the terraform.tfvars file we
set earlier are used. As recommended we want to use a separately managed node pool,
because this has more flexibility in customizing the kubernetes cluster. Therefore we
immediately delete the default node pool by setting the remove_default_node_pool to true.

variable "gke_num_nodes" {

default = 1

description = "number of gke nodes"

}

GKE cluster

resource "google_container_cluster" "primary" {

name = "${var.project_id}-gke"

location = var.region

remove_default_node_pool = true

initial_node_count = 1

network = google_compute_network.vpc.name

subnetwork = google_compute_subnetwork.subnet.name

}

Now the separately managed nodel pool is declared with the resource
“google_container_node_pool”. Here we again set the name and location of the node-pool,
then we have to assign the predefined cluster from above to the cluster argument. The
variable node_count is set to our predefined variable with the default value of 1. Another
argument to pay attention to is the machine_type, because this determines the machine_type
of the single nodes and in this case has a great impact on cost. In this case the
machine_type “n1-standard-1” is chosen which is a low cost machine. More information on
available machine_types and their specifications here.8

Separately Managed Node Pool

resource "google_container_node_pool" "primary_nodes" {

name = "${google_container_cluster.primary.name}-node-pool"

location = var.region

cluster = google_container_cluster.primary.name

8 https://cloud.google.com/compute/docs/general-purpose-machines?hl=en#n1_machines

7

node_count = var.gke_num_nodes

node_config {

oauth_scopes = [

"https://www.googleapis.com/auth/logging.write",

"https://www.googleapis.com/auth/monitoring",

]

labels = {

env = var.project_id

}

preemptible = true

machine_type = "n1-standard-1"

tags = ["gke-node", "${var.project_id}-gke"]

metadata = {

disable-legacy-endpoints = "true"

}

}

}

Another important aspect when working with terraform is considering the state. The state
contains the necessary information for terraform to know which resources are deployed at
the moment. For our use case we need a remote state, because the machines that execute
the Github Actions does not have permanent storage. Therefore the state is stored in google
cloud storage, as declared in backend.tf.

terraform{

backend "gcs" {

bucket = "cloudprojekttest"

prefix = "terraform/state"

}

}

With the command terraform init, terraform initializes the needed state and providers

$ terraform init

Initializing the backend...

Successfully configured the backend "gcs"! Terraform will automatically

use this backend unless the backend configuration changes.

Initializing provider plugins...

- Finding hashicorp/google versions matching "3.52.0"...

- Installing hashicorp/google v3.52.0...

- Installed hashicorp/google v3.52.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the

8

provider selections it made above.

Terraform has been successfully initialized!

The command terraform apply then installs the defined structure in GCP.

$ terraform apply

Terraform used the selected providers to generate the following execution

plan. Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

..

Plan: 4 to add, 0 to change, 0 to destroy.

3.1.3 Kubernetes
For managing Kubernetes clusters, their CLI is needed. So we will install kubectl first.

$ sudo apt install kubectl

As the second step, we need the credentials to connect to our cluster. With the following
command, we will get the credentials from Google Cloud.

$ gcloud container clusters get-credentials $(terraform output -raw

kubernetes_cluster_name) --region $(terraform output -raw region)

Fetching cluster endpoint and auth data.

kubeconfig entry generated for crypto-parser-350713-gke.

3.2 Setting up Amazon Web Service EKS EC2 Cluster

3.2.1 Create a AWS Account
In order to use Amazon Web Services (AWS), you first need an account, as with Google
Cloud. After creating the aws account, we still need to create a user, which we need to
interact with aws. The Identity and Access Management (IAM) dashboard is responsible for
managing users, groups and permissions. Once in the IAM, select Users on the left-hand
side and then Add users. Now you can think about a username and in Select AWS credential
type you must select Access key - Programmatic access.After we have created a new user,
we select it on the overview page and in the first tab Permissions we add to the user all the
permissions it needs to be able to create and manage the cluster. To give the user the
necessary permissions, we first click on Add Permissions and then on Attach Existing
Policies Directly from the top three buttons. In the lower table we now mark three

9

https://aws.amazon.com/

permissions: AmazonEC2FullAcces, IAMFullAccess, AmazonEKSServicePolicy. Then we
review the selected permissions again and confirm them. Now we add another permission,
but instead of selecting it from the table we click on the Create policy button above it and
click on the JSON tab. Here you can program permissions instead of selecting them from the
predefined pattern.

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "eksadministrator",

"Effect": "Allow",

"Action": "eks:*",

"Resource": "*"

}

]

}

Alternatively, we can also distribute the rights via groups. For this we still click in the IAM on
User groups and then on create group. Here we give our new group a name and select all
users who should belong to this group. Below that we select the same three permissions that
are needed for the administration of the cluster.

We confirm this self-created authorization again. Back on the User Profile page, we now
select Security credentials in the upper tabs where we now generate our access key so that
our user has access to aws systems. For this we click on Create access key and write down
the two number and letter combination Access key ID and the Secret access key.

Although AWS offers several free services, unfortunately an EKS cluster is not free. You will

10

be charged $0.045 per GB Data Processed by NAT Gateways, $0.045 per NAT Gateway
Hour, $0.0464 per On Demand Linux t2.medium Instance Hour, and an additional fee
depending on the location of the server. To prevent these costs from skyrocketing
unattended, you should create a new budget in the Billing Dashboard -> Budgets and select
that all services should be switched off as soon as the set limit is exceeded. Alerts can also
be set to notify you either when certain amounts are exceeded or when a percentage is
reached.

Now that we have set up everything important in the AWS Dashboard, it's time to set up and
install AWS and Terraform. In order to interact with AWS Services, we first need the AWS
Command Line Interface (AWS CLI).

$ curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o

"awscliv2.zip"

unzip awscliv2.zip

sudo ./aws/install

After the successful AWS CLI installation, which can be verified with $ aws -v , we run
$ aws configure to configure AWS CLI. Here we first enter the AWS generated access
key ID and the secret access key. Afterwards we can decide for a region in which our cluster
should run later and for the default output format we decide for json.

$ aws configure

AWS Access Key ID [None]: YOUR_AWS_ACCESS_KEY_ID

AWS Secret Access Key [None]: YOUR_AWS_SECRET_ACCESS_KEY

Default region name [None]: YOUR_AWS_REGION

Default output format [None]: json

In earlier versions of AWS CLI (before 1.16.156 approx. summer 2019), the AWS IAM
Authenticator was additionally required to be able to authenticate against the system. In the

11

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html
https://docs.aws.amazon.com/eks/latest/userguide/install-aws-iam-authenticator.html

meantime, this function is integrated in AWS CLI and can also be queried manually with the
command $ aws eks get-token .

After all the tools required by AWS have been installed, we then move on to setting up
Terraform in the next Chapter.

3.2.2 Terraform
After we have created an AWS account in the last chapter, set up the cost limit and assigned
all necessary rights to our new user, we can now start with the installation of Terraform.

For this we need kubectl, which we can create using

$ curl -LO https://dl.k8s.io/release/$(curl -L -s

https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl

and then install it with.

$ sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

We also need Wget, for which we need the following command:

$ sudo apt-get install wget

After that we can install Terraform. To do this, we first clone the corresponding repository:

$ git clone

https://github.com/hashicorp/learn-terraform-provision-eks-cluster

And then go into the freshly created directory with

$ cd learn-terraform-provision-eks-cluster

In the directory there are several .tf among others to change terraform settings, but for this
example we can take the default values.

Now that we have everything we need for Terraform installed, let's initialize the Terraform
workspace next.

$ terraform init

12

And then we run the planned actions.

$ terraform apply

Terraform will now display a list of actions to be performed. These have to be confirmed
again with a yes before execution.

Terraform now creates a cluster, which takes about 10 to 15 minutes.

After the cluster has been created, we continue in the following chapter with the setup of
Kubernetes.

3.2.3 Kubernetes
Now that our cluster is live we need to set up kubectl. How kubectl gets installed is described
under 3.1.3. For this we used the following command:

$ aws eks --region $(terraform output -raw region) update-kubeconfig

--name $(terraform output -raw cluster_name).

13

Before we look at our cluster through the Kubernetes dashboard, we can view additional
metric values using the Kubernetes metrics server.
To do this, we download the metrics server using the following command.

$ wget -O v0.3.6.tar.gz

https://codeload.github.com/kubernetes-sigs/metrics-server/tar.gz/v0.3.6

&& tar -xzf v0.3.6.tar.gz

And run it with the following command

$ kubectl apply -f metrics-server-0.3.6/deploy/1.8+/

Then we check if the deployment of the metric server was successful.

$ kubectl get deployment metrics-server -n kube-system

To use the dashboard, we need to run this first, through the following command:

$ kubectl apply -f

https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0-beta8/aio/d

eploy/recommended.yaml

Now we need a proxy, which allows us to access the dashboard conveniently through the
browser.

$ kubectl proxy

Now it is possible to access the Kubernetes Dashboard with the following link.

http://127.0.0.1:8001/api/v1/namespaces/kubernetes-dashboard/services/htt

ps:kubernetes-dashboard:/proxy/

To be able to authenticate to the dashboard we have to give admin rights to the cluster.
To do this, in a new terminal window, since we do not want to terminate the proxy, we need to
enter the following command:

$ kubectl apply -f

https://raw.githubusercontent.com/hashicorp/learn-terraform-provision-eks

-cluster/main/kubernetes-dashboard-admin.rbac.yaml

And then another command to generate an authentication token:

$ kubectl -n kube-system describe secret $(kubectl -n kube-system get

secret | grep service-controller-token | awk '{print $1}')

We copy out the token we get now and select the dashboard token from the freshly
generated token below it.
We are then greeted by the Kubernetes Dashboard displaying all of our cluster nodes.

14

When we are done with the cluster and want to turn it off again, this is easily done with the
command.

$ terraform destroy

3.3 Installation of OpenFaas
Arkade is an Open-Source tool for installing programs to the Kubernetes cluster. Arkade
makes it relatively easy for the developer and is also recommended by OpenFaas. For
installing Arkade you need the following command.

$ curl -sLS https://get.arkade.dev | sudo sh

The next step is to install OpenFaas in the Kubernetes Cluster. That can be done with only
one command:

$ arkade install openfaas -load-balancer

Using Kubeconfig: /home/runner/.kube/config

Client: x86_64, Linux

15

..

Release "openfaas" does not exist. Installing it now.

NAME: openfaas

LAST DEPLOYED: Tue Jun 7 09:09:58 2022

NAMESPACE: openfaas

STATUS: deployed

REVISION: 1

TEST SUITE: None

..

3.4 Possible connection to OpenFaas
OpenFaas has in the standard installation configuration two different gateways. One is for
internal calls and the other one for external calls. If we use the port-forwarding capabilities
from Kubernetes, we use the gateway and if we use a public IP or Domain from a public
cloud provider, we use the external-gateway.

The first step in this process is to download the OpenFaas-CLI, which is needed not only for
the login, but also for uploading a function. For downloading is the following command
needed:

$ curl -sSL https://cli.openfaas.com | sudo sh

3.4.1 Port-forwarding
For the connection from a local computer, it is possible to forward the gateway port to your
local one. With the first command, you can see the deployment status of the gateway. Only if
the gateway is completely deployed, a port-forward is possible.

$ kubectl rollout status -n openfaas deploy/gateway

The following command will forward the port from the gateway to your local computer. A
server will be started, so that you also can connect with a browser on your localhost domain
to the cluster.

$ kubectl port-forward -n openfaas svc/gateway 8080:8080 &

The next step is getting the password for openfaas and saving it into a variable.

export PASSWORD=$(kubectl get secret -n openfaas basic-auth -o

jsonpath="***.data.basic-auth-password***" | base64 --decode; echo)

)

As the last step, you can login into OpenFaas via the command line and the saved password.

16

echo -n $PASSWORD | faas-cli login --username admin --password-stdin

As mentioned above, it is also possible to access OpenFaas via the browser on a local port.
If you enter the domain localhost:8080 in the browser, a login window will pop. The user is
admin and the password is in the saved password variable.

3.4.2 Connection over public IP
For accessing the cluster over the public IP, we need two pieces of information. The first one
is the IP-address, which can change from each upload to the cloud config provider and the
password of OpenFaas. The first command saves the IP of the cluster and the second
command saves the password from OpenFaas into a variable.

$ export GATEWAY_IP=$(kubectl get service gateway-external -n openfaas -o

jsonpath="{.status.loadBalancer.ingress[0].ip}")

$ export PASSWORD=$(kubectl get secret -n openfaas basic-auth -o

jsonpath="{.data.basic-auth-password}" | base64 --decode; echo)

The last step is to login into Openfaas. For that we are using the IP as gateway address and
the password as password.

$ echo -n $PASSWORD | faas-cli login --username admin --password-stdin

--gateway http://$GATEWAY_IP:80$ export PASSWORD=$(kubectl get secret -n

openfaas basic-auth -o jsonpath="{.data.basic-auth-password}" | base64

--decode; echo)

3.5 OpenFaas functions

3.5.1 Add function from store
The function store is a collection of templates, which are designed and maintained by the
OpenFaas community. These functions are hosted on public docker repositories and can be
installed per UI or console.9 For our test example, we are installing the NodeInfo function.
The NodeInfo function gives information about the host system. The returned values are
Count of CPUs, hostname, OS and Uptime.

faas-cli store deploy 'NodeInfo' --gateway http://$GATEWAY_IP:8080

curl $GATEWAY_IP/functions/NodeInfo

3.5.2 Creating new function
For creating a new function it is necessary to have docker installed.

9 https://github.com/openfaas/store

17

https://github.com/openfaas/store

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key

add -

sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu focal stable"

The next step is to login via docker into a docker hub account or if no account exists, create a
new one. One important remark is to be sure that the docker hub and the following created
repositories are public.

$ docker login --username user --password password

The easiest way is to use a template from the OpenFaas store. With the following it is
possible to pull every template on the local machine.

$ faas-cli template pull

After all templates are pulled, it is possible to code a new function. With the command

$ faas-cli new function-name --lang template

openfaas cli will create the needed yml file and the corresponding folder. The yml file holds
the configuration for the docker repository, gateway ip, programming language and the folder
name. The files in the corresponding folder vary from template and programming language.
After the wanted code is added to the function, the next step is to upload the function to the
OpenFaas cluster. This will do the command

$ faas-cli up -f function-name.yml

The uploading process is divided into the three steps: build, push and deploy. The first step
is, that faas-cli will build a docker file, which includes the code files. Then it will save the
docker file to the local docker repository. The next is uploading the docker file to a remote
docker repository. Therefore it is necessary to have for example a docker hub account and to
have it connected to your console.

The last step of the upload process is the deployment to the OpenFaas cluster. All the steps
are included in the up command, but can be executed as separate commands.10

$ faas-cli build

$ faas-cli push

$ faas-cli deploy

3.5.3 Example function
Our test function is created with the python template and is therefore a python function. The
function was created with the following command.

10 https://docs.openfaas.com/cli/templates/#get-started

18

https://docs.openfaas.com/cli/templates/#get-started

$ faas-cli new test --lang python3

The command will create a main yaml file and in a folder two python and one text file.
The created yml file has as provider name openfaas and provider gateway the url of the
kubernetes cluster. The cluster url is given at the upload, because the IP can change from
every upload of the cluster. In the function part of the yml file is the programming language
Python3, the corresponding folder test with the python files and the public docker repository.
test.yml

version: 1.0

provider:

name: openfaas

gateway: http://${URL:-exampleco}:8080

functions:

test:

lang: python3

handler: ./test

image: saibot101/test:latest

The __init__.py will be created, will remain unchanged, so will not be further discussed.
test/__init__.py

empty

The handler.py file contains the python code, which will be executed, when the endpoint will
be called. Our test example is very simple and will return a string.
test/handler.py

def handle(req):

"""handle a request to the function

Args:

req (str): request body

"""

return "test function"

In the requirements.txt must be all used pip modules mentioned with their version. In our
example no module is mentioned, because we don’t use one in our example function.
test/requirements.txt

empty

4 Pipelines
With knowledge from Chapter 3 we created 2 different pipelines. The first one is creating the
kubernetes cluster, installing OpenFaas into it and uploading a preinstalled test function. The
second pipeline takes the credentials from an existing kubernetes cluster, connects to it and

19

uploads a self-written function. The pipelines can be found on our github page
https://github.com/cloud-computing-projekt.

The part of the pipeline is the initialization. There will be the pipeline set up, necessary
packages loaded and for different providers the authorization handled. Because the
initialization phase for both pipelines is similar, it will be explained in the beginning.

In the first block will be defined, on which specific events will the pipeline be triggered. Our
pipeline will be triggered on every push to the main repository or on every pull request. For
our proof of concept the settings are not important and become more relevant, when the
pipeline is used for production use cases.
The workflow dispatch setting lets us run the pipeline independently from push or pull request
triggers, which can be important for testing.
In the next part we define the environment, in which the pipeline will run and which
permissions the will have.

name: CI

Controls when the workflow will run

on:

Triggers the workflow on push or pull request events but only for the

main branch

push:

branches: [main]

pull_request:

Allows you to run this workflow manually from the Actions tab

workflow_dispatch:

jobs:

setup-and-deploy:

name: Setup and Deploy

runs-on: ubuntu-latest

Add "id-token" with the intended permissions.

permissions:

contents: 'read'

id-token: 'write'

steps:

Github Checkout is in our use case not relevant. This package was used in the example
pipeline on the github account from Google11.

11

https://github.com/google-github-actions/setup-gcloud/blob/main/example-workflows/gke/.gith
ub/workflows/gke.yml

20

The terraform package is used in the first pipeline. It can be included with the uses key. In the
later stages of the pipeline a waiting function is needed and because there is no built-in, we
use the wait-action package from Jake Jarvis.

- name: Checkout

uses: actions/checkout@v3

- name: Terraform

uses: hashicorp/setup-terraform@v2

- name: Sleep

uses: jakejarvis/wait-action@master

For our pipeline is a connection to Google Cloud needed. The installation of GCP is split in
the part authentication and setup. For the setup are the credentials needed, which are stored
as a secret in Github. The credentials can be downloaded via the IAM section in Google
Cloud. For the setup part are no credentials needed.

- id: 'auth'

name: 'Authenticate to Google Cloud'

uses: 'google-github-actions/auth@v0'

with:

credentials_json: '${{ secrets.GCP_CREDENTIALS }}'

Setup gcloud CLI

- name: Set up Cloud SDK

uses: google-github-actions/setup-gcloud@v0

- name: 'Use gcloud CLI'

run: 'gcloud info'

For our second pipeline is a connection to a public docker repository needed. Therefore will
be the docker packaged with Username and Access Token initialized and automatically
logged in.

- name: Login to Docker Hub

uses: docker/login-action@v1

with:

username: ${{ secrets.DOCKER_HUB_USERNAME }}

password: ${{ secrets.DOCKER_HUB_ACCESS_TOKEN }}

4.1 Create Cluster, install OpenFaas and upload function
The first step in the creation of the cluster is the initialization. We needed to add the lock
equals false flag, because our pipeline got interrupted in the execution in later stages and the
state management file could not be unlocked by the process. After the initialization, the
defined components will be applied to Google Cloud. Here we use the auto-approve flag,
because in the normal workflow the apply command must be approved by the user, which is
not possible in a pipeline.

21

- name: Terraform Init

id: init

run: terraform init -lock=false

- name: Terraform Plan

id: plan

run: terraform plan -no-color -lock=false

continue-on-error: true

- name: Terraform Apply

run: terraform apply -auto-approve -lock=false

After the cluster is created, we are setting a kubectl entry to connect to the cluster.

- name: Get kubectl Connection

run: gcloud container clusters get-credentials

crypto-parser-350713-gke --region europe-west1

continue-on-error: true

The next step is the download of the CLI of the arkade marketplace. With the arkade
marketplace is it simple to install Openfaas on the cluster. In the pipeline, we are saying
arkade to install a load-balancer for Openfaas, which connects automatically to the Google
Cloud Systems for an public IP.

- name: Install Arkade

run: curl -sLS https://get.arkade.dev | sudo sh

- name: Test Arkade

run: arkade --help

- name: Install Openfaas

run: arkade install openfaas --load-balancer

continue-on-error: true

Before we can retrieve the public IP and the Password from the cluster, we need to wait,
because the creation time in the cluster is longer than the command line presents. After that
defined period we will retrieve the IP and password and save them in Github Environment
Variables for later use.

- name: Sleep 2 min

run: sleep 120s

- name: Get IP

run: echo GATEWAY_IP=$(kubectl get service gateway-external -n

openfaas -o jsonpath="{.status.loadBalancer.ingress[0].ip}") >>

22

$GITHUB_ENV

continue-on-error: true

- name: Get Password

run: echo PASSWORD=$(kubectl get secret -n openfaas basic-auth -o

jsonpath="{.data.basic-auth-password}" | base64 --decode; echo) >>

$GITHUB_ENV

continue-on-error: true

For the connection is the Openfaas CLI-tool needed and will be installed first. The connection
to Openfaas will be down with the retrieved IP and password. As the last step a function from
the Openfaas store will be as Proof of Concept deployed.

- name: Download open-faas cli

run: curl -sSL https://cli.openfaas.com | sudo -E sh

continue-on-error: true

- name: Connect to Openfaas

run: echo -n ${{env.PASSWORD}} | faas-cli login --username admin

--password-stdin --gateway http://${{env.GATEWAY_IP}}:8080

continue-on-error: true

- name: Push Test function

run: faas-cli store deploy 'NodeInfo' --gateway

http://${{env.GATEWAY_IP}}:8080

continue-on-error: true

4.2 Add function to existing cluster
After the initialization phase the pipeline sets a kubectl entry for the connection.

- name: Get kubectl Connection

run: gcloud container clusters get-credentials

crypto-parser-350713-gke --region europe-west1

continue-on-error: true

After the entry the next step is to receive the IP and password.

- name: Get IP

run: echo GATEWAY_IP=$(kubectl get service gateway-external -n

openfaas -o jsonpath="{.status.loadBalancer.ingress[0].ip}") >>

$GITHUB_ENV

continue-on-error: true

- name: Get Password

run: echo PASSWORD=$(kubectl get secret -n openfaas basic-auth -o

jsonpath="{.data.basic-auth-password}" | base64 --decode; echo) >>

$GITHUB_ENV

23

continue-on-error: true

The Openfaas CLI will be downloaded and with the IP and password to Openfaas in the
cluster connected.
The IP will be given as a parameter in front of the upload command and will be placed in the
test.yml file in the section provider and gateway. The IP changes from upload to upload in the
cloud and can’t be hard coded in the yaml file.

- name: Download open-faas cli

run: curl -sSL https://cli.openfaas.com | sudo -E sh

continue-on-error: true

- name: Connect to Openfaas

run: echo -n ${{env.PASSWORD}} | faas-cli login --username admin

--password-stdin --gateway http://${{env.GATEWAY_IP}}:8080

continue-on-error: true

- name: Upload function

run: URL=${{env.GATEWAY_IP}} faas-cli up -f test.yml

24

