
CI/CD of Cloud Functions including the Service by using
Infrastructure as Code

Cloud Computing SS2022

Table of Content

1. Introduction
2. Architecture
3. Installation
4. Pipelines

2

1. Introduction — Goal

● Automated cluster creation and deployment
● Processes can be repeated and is reliable
● Deployment of OpenFaas Functions

3

1. Introduction — CI/CD

● Automates manual processes
● Reduces error proneness
● Reduces the likelihood of buggy versions going into production

https://www.redhat.com/en/topics/devops/what-is-ci-cd

4

1. Introduction — Terraform

1. Developer describes the desired end-state for Cloud of on-premises infrastructure
2. Terraform generates a plan to reaching the end-state
3. Terraform executes the plan

https://www.ibm.com/cloud/learn/terraform#:~:text=Terraform%20is%20an%20open%20source%20%E2%80%9CInfrastructure%20as%20Code%E2%80%9D,cloud%20or%20on-premises%20infrastructure%20for%20running%20an%20application

● Infrastructur as Code Tool
● High-Level Configuration Language HCL (HashiCorp Configuration Language)

5

1. Introduction — Kubernetes

● Framework to manage containerized workloads and services
● Kubernetes offers the following features

○ Service discovery (expose Services through DNS)
○ Load balancing
○ Storage orchestration (automatically mount a storage system of choice)
○ Automated rollouts and rollbacks (automatically creates, deploy, removes containers)
○ Automatic bin packing (tell a kubernetes how much cpu and ram a container is allowed to use)
○ Self-healing (kills and restarts failed and unresponsive containers)

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

6

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

1. Introduction — Github Actions
● Github: the most popular version-control and collaboration platform
● Github Actions: Reusable event based workflows, which are divided into jobs, are executed on predefined events.
● Example Events:

○ push to repository, pull events, an issue being created or other workflow

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions 7

2. Architecture

8

3. Deployment of GKE Cluster with Terraform

- Google Kubernetes Engine (GKE)

9

- Resource “google_container_cluster”

- Resource
“google_container_node_pool”

- Store Terraform state in a remote
storage

3. AWS

● root_volume_type: type of Storage pool gp2
= ssd’s only, gp3 = newer generation of ssd’s

● Instances describe how many CPU, Memory,
Storage and Network speed is usable (1
vCPU, 2GiB RAM)

● desired_capacity: the initial capacity of the
Auto Scaling group

10

eks-cluster.tf

3. Installation Openfaas

11

3. Possible connections to Openfaas

Port-forwarding

12

1.

2.

3.

3. Possible connections to Openfaas

Connection over public IP:

13

1.

1.

1.

 3. Function from store

14

3. Create own function

Prerequisite: Docker -> hub.docker.io account and connected to local instance

15

-> build docker image

-> push docker image to local repository

-> push docker image to public docker repository

1.

1.

1.

up command:

1.

1.

1.

3. Example Openfaas function

16

test.yml

__init__.py

requirements.txt

handler.py

4. Pipelines - Initialisation

17

1. Setup trigger 2. Set VM and permissions

3. Load packages
4. Setup Google Cloud

Pipeline - Create Cluster
and install function from store

18

1. Create cluster and get credentials

2. Install Openfaas

3. Get IP and password

4. Login to Openfaas install function

Pipeline - Upload to existing Cluster

19

1. Connection to Docker Hub

2. Get Credentials, IP and password 3. Connect to Openfaas and upload function

