
Cloud Computing
Under the guidance of Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences

Project Report
&

Installation Manual of
AI/ML Based Pest Detection System

Group Members
Jatinkumar Nakrani (1386383)

Kaival Arvindbhai Akbari (1387256)
Sameer Soni (1392911)

Santosh Ganiger (1420663)
Usman Tariq (1384673)

Report Prepared by Sameer Soni and Santosh Ganiger

1

INDEX
1. Abstract

2. Provided Requirements

3. Solution Architecture
3.1. Overall Architecture
3.2. Sequence Diagrams

4. Tools and technologies
4.1. Node
4.2. Cluster

5. Applications
5.1. Sensor Node
5.2. Kubernetes Cluster Applications

5.2.1. MQTTReceiver
5.2.2. Notifier
5.2.3. WebApp
5.2.4. MinIO Object Storage
5.2.5. Mosquitto MQTT Broker

6. Installation Procedure
6.1. Hardware Requirements
6.2. Install operating system
6.2.1. Setup Raspberry Pi headless:
6.3. Installing Kubernetes
6.3.1. Install Docker on Master Node
6.3.2. Install k3s on Master Node
6.3.3. Install k3s on Worker Nodes
6.3.4. Validate k3s cluster nodes
6.4. Deploying Pods and Services on Worker Nodes
6.4.1. Downloading / Copying deployment files
6.4.2. MinIO Object Storage Deployment
6.4.3. MQTT server Deployment
6.4.4. MQTTReceiver Application Deployment
6.4.5. WebApp Deployment
6.4.6. Telegram Notifier Deployment
6.4.7. Alternate Procedure of deployment
6.5. Edge Node Configuration

7. Testing Rat Detection System
7.1. Accessing the WebApp
7.2. Subscribing to Telegram Bot
7.3. Checking Results

8. Open Points

9. References

2

1. Abstract

This document explains the architecture, operation, workflow and installation procedure of the
solution built for the requirements provided by the user who is interested in detecting ‘Rats’ in
the surroundings. Document also gives brief information about the method and technologies
used to achieve the goal. Main purpose of this document is to give the user a step by step
guide to install this solution in his own hardware.

2. Provided Requirements

1. Need a system to detect rat in the surroundings
2. System should should use ML/AI to detect rat
3. System should perform Edge computing and only send processed data
4. System should use Kubernetes cluster to store, access, view detections
5. System should notify user via telegram on rat detection

3. Solution Architecture

3.1. Overall Architecture

Overall Solution Architecture [Fig 1]

3

3.2. Sequence Diagrams

Cluster [Fig 2]

4

Node [Fig 3]

3.3. Communication API

Communication API [Fig 4]

5

4. Tools and technologies

4.1. Node

YOLOv5
Python
PyTorch

4.2. Cluster

K3s Kubernetes
Docker
MinIO Object Storage
Mosquitto MQTT Server
Python

5. Applications

5.1. Sensor Node

Sensor node application ‘detect2.py’ is the main application which runs the machine
learning model on captured camera frames and detects rats. This application loads
already trained ML model weights and feeds it to the YOLOv5 model using PyTorch.

Application is available in the node directory of the project folder which can run an
independent application or as a service. Running detect as a service is recommended.

Procedure of deployment is mentioned in the installation section.

5.2. Kubernetes Cluster Applications

5.2.1. MQTTReceiver

MQTTReceiver is a custom application built to achieve specific goals for the system.
MQTTReceiver app connects to MQTT broker server and subscribes to the topic
mentioned below. Whenever this message appears on the MQTT broker server
forwards the message to all the subscribers.

Topic : detection/rat

Docker image of application can be pulled from the
https://hub.docker.com/r/dockingsameer/mqttreceiverimage and can also be built locally
by executing script buildImage.sh in the respective application directory.

6

https://hub.docker.com/r/dockingsameer/webappimage

5.2.2. Notifier

Notifier application is a custom application which sends detection pictures directly to Telegram
bot. This application connects to MQTT broker server and subscribes to the same topic as
MQTTReceiver and whenever a message is received from it sends to the bot.

Docker image of application can be pulled from the
https://hub.docker.com/r/dockingsameer/notifierappimage and can also be built locally
by executing script buildImage.sh in the respective application directory.

5.2.3. WebApp

WebApp is the main custom user interface which shows all the pests (Rat) detected by
the system over time. It reads all the objects stored in the database and shows them in
the Web browser.

Docker image of application can be pulled from the
https://hub.docker.com/r/dockingsameer/webappimage and can also be built locally by
executing script buildImage.sh in the respective application directory.

7

https://hub.docker.com/r/dockingsameer/webappimage
https://hub.docker.com/r/dockingsameer/webappimage

5.2.4. MinIO Object Storage

This is a third party open source application which is used in the system to store and
access objects received from sensors. MinIO is a high performance object storage
solution that provides an Amazon Web Services S3-compatible API and supports all
core S3 features.[1]

System uses MinIO docker image available on https://hub.docker.com/r/minio/minio and
deploys on the kubernetes cluster.

8

https://hub.docker.com/r/minio/minio

5.2.5. Mosquitto MQTT Broker

System uses Eclipse Mosquitto message broker which implements MQTT protocol. It
provides a lightweight method of carrying out messaging using a publish/subscribe
model. [2]

Sensors connect on the MQTT server as publishers and a custom application
mqttreceiver also connects to the server as a subscriber.

System uses MinIO docker image available on
https://hub.docker.com/_/eclipse-mosquitto and deploys on the kubernetes cluster.

9

https://hub.docker.com/r/minhttps://hub.docker.com/_/eclipse-mosquittoio/minio

6. Installation Procedure

6.1. Hardware Requirements

a. At Least 4 units Raspberry Pi v3 or above

b. Pi camera for sensor node

6.2. Install operating system

6.2.1. Setup Raspberry Pi headless:

1. Install an operating system on the Raspberry Pi SD Card using Raspberry Pi
imager.

2. Select OS "Raspberry Pi OS Lite (64-bit)" in Raspberry Pi imager and select the
SD card you want to flash.

Above [Fig 5]; Below [Fig 6]

10

3. After successful installation, assign a unique hostname for each Raspberry Pi, for
example, "kmaster" for the master node and "knode1" for the first worker node.
Save and Write in the SD Card.

[Fig 7]

4. Similarly, install OS on two more raspberry pi worker nodes knode2 and knode3.

5. To verify their availability, ping them using their local hostname or check through
our router login interface.

6.3. Installing Kubernetes [3][4]

6.3.1. Install Docker on Master Node
sudo apt install docker #Install docker
sudo systemctl start docker #start docker service
sudo systemctl enable docker #set enable service
sudo systemctl status docker #get status of service

6.3.2. Install k3s on Master Node
curl -sfL https://get.k3s.io | sh -s - --docker
sudo systemctl status k3s
sudo kubectl get nodes -o wide

Extract the token:
sudo cat /var/lib/rancher/k3s/server/node-token

11

6.3.3. Install k3s on Worker Nodes

a. Follow steps mentioned in step 6.3.1 to install docker on all the nodes.
b. Replace <master_IP> with master node ip address and run below mentioned

command -
curl -sfL http://get.k3s.io | K3S_URL=http://<master_IP>:6443
K3S_TOKEN=<join_token> sh -s - --docker

c. Run : sudo systemctl status k3s-agent to check status of the worker agent
d. Do the step a to c for all the worker nodes.

6.3.4. Validate k3s cluster nodes
Run : sudo kubectl get node -o wide

6.4. Deploying Pods and Services on Worker Nodes

6.4.1. Downloading / Copying deployment files

Copy or clone project on the master node and copy ‘node' sensor node

git clone https://github.com/CloudStation1/pestdetectionsystem.git
After downloading, directory content will look like this -

6.4.2. MinIO Object Storage Deployment

Go to directory : pestdetectionsystem/cluster_deploylemt/minio
Execute: sh deploy.sh
Alternatively, you can execute below mentioned commands

sudo kubectl apply -f minio-storage.yaml # creates persistent storage volume

sudo kubectl apply -f minio.yaml # creates minio pod

sudo kubectl apply -f minio-service.yaml # creates a service for minio

After successful deployment, running ‘sudo kubectl get pods -o wide’ should give
output similar to below.

12

http://get.k3s.io/
https://github.com/CloudStation1/pestdetectionsystem.git

sudo kubectl get services -o wide

How to access MinIO Console? <Any Node IP>:9000

6.4.3. MQTT server Deployment

Go to directory : pestdetectionsystem/cluster_deploylemt/mosquitto
Execute: sh deploy.sh
Alternatively, you can execute below mentioned commands

sudo kubectl apply -f mosquitto.yaml # creates mosquitto mqtt server pod

sudo kubectl apply -f mosquitto-service.yaml # creates mosquitto service

After successful deployment, running ‘sudo kubectl get pods -o wide’ should give
output similar to below.

sudo kubectl get services -o wide

13

How to access MQTT service? MQTT server can be accessed by using any node ip and
its port number 1883.

6.4.4. MQTTReceiver Application Deployment

Go to directory : pestdetectionsystem/cluster_deploylemt/mosquitto
Execute: sh deploy.sh
Alternatively, you can execute below mentioned commands

sudo kubectl apply -f mqttreceiver.yaml # creates mqttreceiver pod

After successful deployment, running ‘sudo kubectl get pods -o wide’ should give
output similar to below.

‘sudo kubectl get services -o wide’

6.4.5. WebApp Deployment

Go to directory : cd pestdetectionsystem/cluster_deploylemt/WebApp
Execute: sh deploy.sh
Alternatively, you can execute below mentioned commands

sudo kubectl apply -f webApp.yaml # creates webApp pod

sudo kubectl apply -f webApp-service.yaml # creates webApp service

After successful deployment, running ‘sudo kubectl get pods -o wide’ should give
output similar to below.

‘sudo kubectl get services -o wide’

14

6.4.6. Telegram Notifier Deployment

Go to directory : cd pestdetectionsystem/cluster_deploylemt/notifier
Execute: sh deploy.sh
Alternatively, you can execute below mentioned commands

sudo kubectl apply -f notifer.yaml # creates mqttreceiver pod

After successful deployment, running ‘sudo kubectl get pods -o wide’ should give
output similar to below.

15

6.4.7. Alternate Procedure of deployment
Alternative to the above process of deploying applications one by one, users can also
run deploypods.sh which is available in the cluster_deployment directory. This script
will take care of all of the deployment.

After successful deployment status of all pods will look similar to below:

Status of services will similar to below:

16

6.5. Edge Node Configuration

Copy node directory in the sensor node or clone the github repository as mentioned in
the above section.

Go to the directory: cd ./pestdetection/node
Run following commands:

pip install -r requirements
sudo cp detect2.service /etc/systemd/system/
sudo systemctl enable detect2.service
sudo systemctl start detect2.service

To see logs: tail -f detect2.log

7. Testing Rat Detection System

7.1. Accessing the WebApp

After system setup, check if all pods are running and services are active as described in
all above sections. After verifying, go to <any node ip>:8080. WebApp should look
similar to fig 1.

7.2. Subscribing to Telegram Bot

1. Go to Telegrams App on your mobile
2. Go to search “cc-pest-ws-22-bot”
3. Join bot

After subscribing to this bot, the user will start receiving detection images every time the
system detects a rat.

7.3. Checking Results

a. Show a rat in front of camera
b. Go to WebApp by typing <node ip>:8080, webApp should show something

similar to Fig.1
c. Check the telegram bot for a picture similar to Fig 2.

17

WebApp [Fig 8]

Telegram Bot [Fig 9]

18

8. Open Points

● WebApp currently refreshes every 8 seconds which is not a good idea, WebApp should
only load when new objects are added.

● MinIO Object storage is deployed on Single Node Single Drive architecture which works
but does not provide reliable storage. MinIO should be deployed as Single Node Multi
Drive Architecture

● Sensor node takes camera frames and processes which can be improved by feeding
camera output directly to the model.

● PiCamera quality is bad, better camera integration is suggested.

19

9. References
[1] https://min.io/docs/minio/kubernetes/upstream/
[2] https://mosquitto.org/download/
[3] k3s Installation
[4] https://docs.k3s.io/advanced

20

https://min.io/docs/minio/kubernetes/upstream/
https://mosquitto.org/download/
https://medium.com/@amadmalik/installing-kubernetes-on-raspberry-pi-k3s-and-docker-on-ubuntu-20-04-ef51e5e56
https://docs.k3s.io/advanced

