
Rat Detection Using Rasberry Pi
Rahul Bhowmik Shuvo, Arash Abdollahi Kakroodi, Mohammad Aftabudduza, Husain Ahmad Jahid

High Integrity Systems (MSc.)
Frankfurt University of Applied Sciences

I. INTRODUCTION

Pests, particularly rats, seem to be a major problem in
people’s daily life. Rat detection using a Raspberry Pi plays
a vital role in detecting the presence of rats using a small,
low-cost computer. This paper presents a system for detecting
rats using Raspberry Pi. This system proposes Raspberry Pi
for model implementation, Cameras for capturing images, and
YOLOV5 for testing and training of the objections detection
model.

II. BUILD A RASPBERRY PI KUBERNETES CLUSTER WITH
K3S

The system is generated with 4 Raspberry Pi-3 and one
Raspberry Pi-4. Here is one Raspberry used for the sensor
node and the other three for master and worker nodes.

A. Installation procedure of Raspberry Pi OS

First needs to download Raspberry Pi Imager and install on
a local machine [1]. After installing, choose Raspberry Pi OS
(64-bit) for the operating system then select mircroSD card as
the following figure 1. Then it is configured with Raspberry
Pi-04.

Fig. 1. Raspberry Pi Image:(64bit)

Choose the SD card and follow the write button to flash
the card with the version of Raspberry Pi OS. After flashing
the card, it needs to check the availability of the host network.

After being set up on Raspberry Pi-04, Raspberry Pi OS
Lite (64-bit) is installed and configured on other Raspberry Pi-
03 nodes as like before. The following figure 3 demonstrates

Fig. 2. Raspberry Pi OS(64bit)

the installation of Raspberry Pi OS Lite (64-bit) on these
three Raspberry Pi-03.

Fig. 3. Raspberry Pi OS lite(64bit)

Now unique host-name are written for the individual
Raspberry Pi such as Kmaster for the master node and
knode1 for the worker node1. After the naming, fix up the
wifi configuration as well enable ssh along with password
authentication. Then follow 4 the save button to the SD card.
As like worker node1, need to write the same configuration
for other nodes as well.



Fig. 4. Nodes labelling

Fig. 5. Network set up

Fig. 6. Network set up

Fig. 7. Network set up

After installing OS, before removing the sd card from
the computer it’s needed to edit dhcpcd.conf from the
directory /etc for set IP address for sensor and master node6.
So here is ip address 192.168.0.99 for sensor node and for
192.168.0.100 for all other raspberry pi-03 showed on figure.7

After configuration, power on all Raspberry Pi and check
their availability on the current network. For set-up confirma-
tion, run the ping command 8 according to their hostnames.

Fig. 8. Ping command

B. Final configurations

To upgrade the operating system and to enable the cgroup
memories on raspberry pi’s, an ssh connection can be done
to remote access the boards looks like the following image 9.

Fig. 9. SSH Connection for remote access

After this step, from the path /boot the following text must
be added to the file cmdline.txt without creating a new line:

cgroup_memory=1 cgroup_enable=memory

The final step is to run the below command to upgrade the
operating system:

sudo apt-get update && sudo apt-get upgrade

C. Creating k3s Kubernetes Cluster

For the Raspberry pi cluster, a lightweight Kubernetes
distribution k3s is used. K3S is specially designed for IOT
solutions with restricted-resources devices such as raspberry
pi boards.



Fig. 10. SSH Connection for remote access

Fig. 11. K3s downloading

1) System Architecture: K3S server installed on the master
node whereas worker nodes Raspberry Pi possesses K3S
worker as like the following figure 12. And all of the agent
nodes are registered to the master node:

To install K3s [2] the following command must be executed
on the master node:

curl sfL https://get.k3s.io |
K3S_KUBECONFIG_MODE="644" sh -s -

After this step, the token from the master node can be read
from the file shown on figure 13.

With this token, k3s can be installed[3] on worker nodes by
the following command:

curl sfL https://get.k3s.io |
K3S_TOKEN="<TOKEN>"

K3S_URL="https://<master_node_ip>:6443" sh -

III. DOCKER IMAGES

For running the program on cluster, it is essential to create
docker images. The challenge is to create docker images for
raspberry pi CPU architecture. To achieve this goal, docker
is installed on raspberry pi-4 and the docker images, shown

Fig. 12. System Architecture

Fig. 13. Server-token ID

on figure 14, are created on this device. One of this images
which belongs to the program on sensor node will be run
locally on raspberry pi 4 and the other two which are for the
logger program on the back-end and the front end website will
be pushed to docker hub to be used for deployment on cluster.

Fig. 14. Docker Images

IV. DEPLOYMENT OF DOCKER IMAGES ON CLUSTER

To deploy the docker images of the applications on cluster,
a deployment configuration file must be created to specify
a name for the service, Name of the docker image, replica
set and the ports which are needed for communication. This
file will be saved with a meaningful arbitrary name with the
extension of yaml. The following image is illustrated this 15.

The following command can be used to deploy the docker
image using the yaml file:

kubectl apply -f <filename>.yaml

At this point, it is seen the pod running on the cluster,
However to access the container within the pod a service must
be defined with another yaml file which contains the type of
the services(LoadBalancer, NodePort, ...), and the necessary
port definitions.



Fig. 15. Deployment code

V. DEPLOYMENT OF MOSQUITTO MQTT BROKER ON
CLUSTER

In this project to communicate between different
applications, one eclipse Mosquitto version 1.6.15 has
been used. The reason for this version choice is that by
default versions above 2 only serve on localhost and cannot
be reached by other computers in the network. to achieve
that, a configuration file must be created and a persistent
volume must be defined in the deployment’s yaml file which
unfortunately was time constraint for such practice. The
chosen version by default serves all the nodes in the network.

After the Deployment of the broker on k3s a service is
needed to provide access to the MQTT broker on the cluster.
Hence the IP address of the server is required for clients, this
service is defined from the type LoadBalancer. MQTT uses
default port 1883.

To program the publisher and the subscriber(the publisher
is the docker image running on the sensor node and the
current subscriber is the logger application on the cluster),
The sample code on the documentation was tried which was
functional for small payloads. However, for heavy payloads
such as images, it was inconsistent and unreliable and the
reason was the disability of the publisher to successfully send
the message. To solve this issue on the publisher side, two
methods are provided by the API [4] which are loop start(),
loop forever and loop stop() methods. By these methods, the
publish() method which is not a block, is handled successfully.

Another challenge is to encode the binary image file as
a string because the payload of the MQTT message must
be a string. To achieve the goal of the project, we used
the same encoding standard that Mosquitto uses to encode
messages which is iso-8859-1. This standard handles the
special characters in a binary file that are not allowed to be
in a string variable.

VI. CREATING THE RAT DETECTOR MODEL

1) Data Collection and Labeling: Gather images of rats
and label them to create the training dataset. The dataset
should include a variety of different rat poses, lighting
conditions, and backgrounds. In this case, a data set from
roboflow is used.

app.roboflow.com/frauas/rat_detection/3

2) Dataset Preparation: The dataset is then split into two
parts: a training set and a validation set. The training set is
used to train the model, while the validation set is used to
evaluate its performance.

3) Hardware and Software Setup: A suitable hardware
platform for training the model is chosen, such as a high-end
desktop computer or a cloud-based GPU instance. In this
case, google colab16 is used as a cloud-based computer. The
necessary software and libraries, including a deep learning
framework such as PyTorch or TensorFlow, and the YOLOv5
implementation, are installed.

Fig. 16. Google colab platform

4) Model Initialization : The YOLOv5 architecture and
weights pre-trained on a large image classification dataset are
downloaded.

5) Configuration: The YOLOv5 configuration file is
modified to reflect the characteristics of the rat dataset,
including the number of classes, the input image size, and
the number of anchor boxes. The hyperparameters for the
training process, such as the learning rate, batch size, and a
number of epochs, are set.

6) Training: The training process is started, with the model
being fed the training set images and their corresponding
labels. The training process is monitored, including the loss
function and the accuracy of the validation set. The model
weights are saved at regular intervals or when the accuracy



of the validation set reaches a desired threshold.

7) Model Evaluation and Fine-Tuning: The trained
YOLOv5 model is used to perform object detection on a test
set of images. The performance of the model is evaluated,
including the precision, recall, and F1-score. The model is
fine-tuned and the evaluation process is repeated if necessary.

By following these steps, a YOLOv5 model can be trained
on a rat dataset collected from roboflow and its performance
can be evaluated for the task of rat detection.

VII. USING THIS MODEL IN RASPBERRY PI 4 WITH
RASPBERRY PI CAMERA V2

1) Selection of Trained Model: A YOLOv5 model that has
been trained on a rat dataset is selected for use.

2) Setting up the Sensor Node: A Raspberry Pi 4 board
with Raspbian OS 64 bits installed is chosen to serve as the
sensor node.

3) Connecting the Camera: A Raspberry Pi Camera v2 is
connected to the Raspberry Pi 4 board to capture images of
the environment.

4) Transferring the Model and Libraries: The trained
YOLOv5 model and the necessary libraries required for
running the model are transferred to the Raspberry Pi 4
board.

5) Configuring the Raspberry Pi 4: The Raspberry Pi 4
board is configured to run the YOLOv5 model using the
Raspberry Pi Camera v2 as the input source.

6) Running the Model: The YOLOv5 model is run on
the Raspberry Pi 4 board to perform object detection on the
images captured by the Raspberry Pi Camera v2.

7) Processing and Communication of Results: The
detection results are processed and communicated to the
master node for further analysis.

By following these steps, the trained YOLOv5 model can
be used on a Raspberry Pi 4 board with a Raspberry Pi
Camera v2 for the task of rat detection.

VIII. THE SYSTEM VISUALISATION

The web component of the rat detection system has been
designed to seamlessly connect the database and the frontend.
This is achieved by using the Flask web framework. Flask is a
lightweight and flexible framework that provides the necessary
tools and functionalities to handle the communication between
the database and the frontend.

The frontend of the system has been developed using
HTML, CSS, and JavaScript. HTML provides the structure and
layout17 of web pages. CSS is used to style and enhance the
visual appearance of the frontend. JavaScript is used to provide
dynamic functionalities and interactivity to the frontend. These
technologies combined create an interface that allows users
to easily access and view the detection results stored in the
database shown on figure 18.

Fig. 17. Web page

Fig. 18. Data page

IX. CONCLUSION

In summary, the ”Rat Detector Using Raspberry Pi” project
has described the implementation of a system that uses one
Raspberry Pi 4 board as the sensor node, four Raspberry
Pi 3 boards as worker nodes, and a Raspberry Pi Camera
v2 as the input source. The system was developed using
Raspbian OS 64 bits for the Raspberry Pi 4 and Raspbian



OS lite 64 bits for the Raspberry Pi 3 boards. The object
detection model was trained using YOLOv5s on a rat dataset.
The trained model was used on the Raspberry Pi 4 board to
perform object detection, and the results were communicated
to the master node for further analysis. The documentation
has described the steps involved in setting up the system and
using the trained model for the task of rat detection.

REFERENCES

[1] [Online]. Available: ”https://medium.com/thinkport/
how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c

[2] [Online]. Available: ”https://docs.k3s.io/advanced#raspberry-pi
[3] [Online]. Available: ”https://saintcoder.wordpress.com/2017/08/14/

sharing-internet-connection-to-raspberry-pis-wired-to-local-network/
[4] [Online]. Available: ”https://www.eclipse.org/paho/index.php?page=

clients/python/index.php/

"https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
"https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
"https://docs.k3s.io/advanced#raspberry-pi
"https://saintcoder.wordpress.com/2017/08/14/sharing-internet-connection-to-raspberry-pis-wired-to-local-network/
"https://saintcoder.wordpress.com/2017/08/14/sharing-internet-connection-to-raspberry-pis-wired-to-local-network/
"https://www.eclipse.org/paho/index.php?page=clients/python/index.php/
"https://www.eclipse.org/paho/index.php?page=clients/python/index.php/

	Introduction
	Build a Raspberry Pi Kubernetes Cluster with k3s
	Installation procedure of Raspberry Pi OS
	Final configurations
	Creating k3s Kubernetes Cluster
	System Architecture


	Docker Images
	Deployment of Docker Images on cluster
	Deployment of Mosquitto MQTT broker on cluster
	Creating the Rat detector model
	Data Collection and Labeling
	Dataset Preparation
	Hardware and Software Setup
	Model Initialization 
	Configuration
	Training
	Model Evaluation and Fine-Tuning


	Using this model in RASPBERRY PI 4 with RASPBERRY PI camera v2
	Selection of Trained Model
	Setting up the Sensor Node
	Connecting the Camera
	Transferring the Model and Libraries
	Configuring the Raspberry Pi 4
	Running the Model
	Processing and Communication of Results


	the system visualisation
	Conclusion
	References

