
RAT DETECTION USING RASPBERRY PI

Group-4
Rahul Bhowmik Shuvo (1387395)
Arash Abdollahi Kakroodi (1359459)
Mohammad Aftabudduza(1393208)
Husain Ahmad Jahid (1293793)

Supervised By
Prof. Dr. Christian Baun,
Frankfurt University of Applied Sciences

 Content

● Introduction
● System Architecture
● K3S Kubernetes Cluster
● Sensor node
● MQTT Broker and Logger
● Model training
● Backend and Frontend UI
● Demonstration

 Introduction

Pests, particularly rats, seem to be a major problem in people’s daily life.
This paper presents a system for detecting rats using Raspberry Pi.

This system proposes Raspberry Pi for model implementation, Cameras
for capturing images, and YOLO v5s for testing and training of the
objections detection model.

System Architecture

System Architecture

K3S Kubernetes Cluster
For the Raspberry pi cluster, a lightweight Kubernetes distribution k3S is
used.

K3S Kubernetes Cluster

To install K3S the following command must be executed on the
master node:
curl sfL https://get.k3s.io | K3S_KUBECONFIG_MODE="644" sh -s -

With this token, k3S can be installed on worker nodes by the
following command:
curl sfL https://get.k3s.io |K3S_TOKEN="<TOKEN>"
K3S_URL="https://<master_node_ip>:6443" sh -

Sensor Node
● Opencv library to work with the camera

■ Picamera is not supported for 64 bits os
■ Picamera v2 needs libcamera: Very slow to build the docker image
■ The problem with video0 file : bcm2835-v4l2
■ For camera quality

Sensor Node
● On Detection : publishes the data

■ encode the image as jpg file format
■ Convert the binary to byte array
■ Encode the byte array with iso_8859_1 standard

Sensor Node
Issues in docker Image:

● Problems with picamera and picamera2 and libcamera
● Extra libraries for opencv :

○ libsm6
○ libxext6
○ Libxrender

Docker installed on Raspberry pi4:

● Running the sensor node image
● Creating docker images for the cluster

Logger
Tasks:

● Subscribes to MQTT broker
● Handles the new message with on_message method
● Inserts the new discovery into database

Logger
● Docker image creation
● Deployment on the cluster with two container ports:

○ 3306 to connect to Mariadb
○ 1883 to connect to MQTT broker

● Services:
○ NodePort on 1883 for MQTT broker
○ NodePort on 3306 for Mariadb

Deployment of MQTT Broker on k3s

● eclipse Mosquitto version 1.6.15
● it serves all the nodes in the network
● MQTT service is defined from the type

LoadBalancer.
● MQTT uses default port 1883.

MQTT Broker

Publisher and Subscriber

● publisher - the docker image running on the sensor node
● subscriber - the logger application on the cluster
● publisher side: loop_start(), loop_forever and loop_stop() methods are used.
● publish() method which is not a block, is handled successfully
● Mosquitto uses to encode messages which is iso-8859-1. This standard

handles the special characters in a binary file that are not allowed to be in a
string variable

MQTT

 Master node

Mosquitto
Broker

logger

publisher

subscriber

Model training
● Using data set https://app.roboflow.com/frauas/rat_detection/3 from group 2
● Train the dataset using YOLO v5s model in google colab
● Getting the best trained model for our detection project

Model training

https://docs.google.com/file/d/1-zCgWqFPyUVcL40U9IS-xHQWPJG8RJnW/preview

Backend

Flask:

● Flask is a micro web framework written in Python that makes it
easy to build web applications.

● Flask provides support for integrating HTML, CSS, and JavaScript
into your web application and also provides built-in support for
serving static files like CSS and JavaScript.

FrontEnd

HTML, CSS, and JavaScript:

● HTML (Hypertext Markup Language) is used to structure the content
of web pages.

● CSS (Cascading Style Sheets) is used to define the appearance and
layout of web pages.

● JavaScript is a client-side scripting language that can be used to add
interactivity and dynamic behavior to web pages.

FrontEnd

https://github.com/rahulshuvo/rat-detector

 Demonstration

 Thank you!

