
Cloud Computing - Rat Detection Software

Group 5

Amandeep Singh Chhatwal

amandeep.chhatwal@stud.fra-uas.de
Matriculation Number: 1386396

Rajapreethi Rajendran

rajapreethi.rajendran@stud.fra-uas.de
Matriculation Number: 1396483

Shounak Ozarkar

shounak.ozarkar@stud.fra-uas.de

Matriculation Number: 1386299

Mansi Patil

mansi.patil@stud.fra-uas.de

Matriculation Number: 1388967

Sneha Srinivasa

sneha.srinivasa@stud.fra-uas.de

Matriculation Number: 1400476

Mrinal Tyagi

mrinal.tyagi@stud.fra-uas.de

Matriculation Number: 1383988

Faculty 2,
Computer Science & Engineering

February 8, 2023

Contents

1 Introduction 1

2 Architecture Diagram 1

3 Hardware and Software Configuration 2

3.1 Hardware Configuration in Edge Node 2

3.1.1 Raspberry Pi 4 . 2

3.1.2 Raspberry Pi Camera Module v2 3

3.2 Software Configuration in Edge Node . 3

3.2.1 Python . 3

3.2.2 OpenCV . 4

3.2.3 YOLOv4 . 4

3.2.4 MinIO Client Library . 4

3.3 Hardware Configuration in Cluster . 4

3.3.1 Raspberry Pi 3 model . 4

3.3.2 TP-LINK Switch . 5

3.3.3 Fritz-Box . 5

3.4 Installing necessary software components on the cluster 5

4 Implementation 5

4.1 Edge Node and Camera Module Set Up for Object detection 5

4.2 Cluster Set up . 7

4.2.1 Setting the master node using the docker container 7

4.2.2 Setting the worker nodes using the docker container 7

4.2.3 Setting up of the kubectl utility 8

4.3 Deployment of MinIO in Cluster . 8

4.3.1 Setting Minio over Kubernetes Service 9

4.3.2 Enabling minio with persistent volumes 9

4.4 Model Training . 9

4.4.1 Idea behind tuning the config parameters: 11

4.5 Rat Detection in Edge Node . 11

4.6 Detected Frame upload to MinIo . 12

4.7 Web Application Implementation . 13

4.7.1 Installation of Required Software 14

4.7.2 Containerization and Deployment of the web app 14

5 Challenges 16

6 Summary 16

2

1 Introduction

Cloud computing offers a wide range of services like storage, databases, networking and

processing power, software, analytics, and intelligence—over the Internet (“the cloud”)

to offer faster innovation and flexible resources.

Cloud computing can be used to implement a Raspberry Pi-based object detection sys-

tem. A Raspberry Pi is a low-cost, single-board computer that can be used to run machine

learning algorithms and other software applications. The Raspberry Pi can be connected

to various sensors and camera to collect data and store it in the cloud.

In a rat detection system, the Raspberry Pi can be connected to camera module to

capture image or video. The images can be processed through trained machine learning

model to detect and identify rats in the images. The results of the rat detection is then

be stored in MinIO server on the cloud for further analysis, reporting and to display the

detected image on the UI.

This data combined with image to provide comprehensive picture of the rat popula-

tion can further be used to train the ML model for more accurate detection and rats

behavior in the environment.

The use of cloud computing in a rat detection system provides several advantages, in-

cluding scalability, accessibility, and cost-effectiveness. In Addition, cloud computing

eliminates the need for expensive hardware and storage solutions, making the rat detec-

tion system more affordable and accessible.

2 Architecture Diagram

In the Architecture diagram shown below, the edge node runs the machine learning algo-

rithm locally and computes the desired output. This setup is not cluster managed as the

industry standard is to use multiple sensor nodes to capture and process data. This is a

fundamental concept used in Edge computing. In case of failure of the sensor node, the

other sensors nodes running in edge computing topology captures the objects and does

the required computation. The local processing of data on the edge node itself delivers

faster and efficient results and avoids the latency which would be introduced by sending

the data back and forth into the cluster for processing.

The UI application has been build in Flask which renders the results from the database

with confidence intervals of the images detected as rats.

The use of CLI is quite efficient to check the health of the cluster in general and to

monitor the status of different nodes, pods and services running as a part of the cluster.

Inside the cluster, there is one master node and 3 worker nodes running. The mas-

1

ter node manages the services currently active and manages their lifecycle. These include

the health of the pods, managing the load balancing services for incoming traffic. The

architecture follows the convention of using single container inside one pods until explic-

itly needed. The real benefit of cloud infrastructure comes from running multiple pods

with single containers to achieve the real scalability features. The MinIO runs only in one

POD as the Single Node Single Drive mode of deployment is used. For the Ui applications

the multiple pods are running to share the load of the incoming traffic.

Figure 1: Architecture Diagram

3 Hardware and Software Configuration

3.1 Hardware Configuration in Edge Node

3.1.1 Raspberry Pi 4

The Raspberry Pi 4 is a single-board low-cost, high-performance computer developed by

Raspberry Pi Foundation. It has a wide range of applications such as home automation,

computer vision, IoT, Artificial Intelligence, etc. Raspberry Pi 4 can run several operating

systems such as Raspbian, Debian Ubuntu, Windows, and Linux. It is compatible with

a wide range of programming languages such as Python, C, C++, Java, and many others.

Raspberry Pi 4 with Raspberry Pi 4 BULLSEYE 64-bit Debian Os is used as an edge

node to perform live rat detection. As Raspberry Pi 4 an edge node, it helps to reduce

2

the amount of data sent to the cloud, reduce latency, save bandwidth, and improve the

speed of data processing.

Figure 2: Raspberry Pi 4 [1]

3.1.2 Raspberry Pi Camera Module v2

The Raspberry Pi Camera Module v2 is the official camera module from the Raspberry

Pi foundation. It is capable of capturing high-quality video and still images. The Camera

Module v2 comes with a Sony IMX219 8-megapixel sensor, which provides a large field

of view and high-resolution images.

Camera module v2 is used to capture frames from the live feed for rat detection. It

is connected to the Raspberry Pi via a ribbon cable.

Figure 3: Raspberry Pi Camera Module v2 [2]

3.2 Software Configuration in Edge Node

3.2.1 Python

Python is a high-level, popular interpreted programming language for object detection

in computer vision. Raspberry Pi supports Python and it is pre-installed on Raspberry

Pi’s OS.

The object detection frameworks such as TensorFlow, PyTorch, and OpenCV, provide

Python APIs to easily train and deploy object detection models. It has many libraries

3

and packages that are specifically designed for the Raspberry Pi including libraries for

accessing the GPIO pins, controlling the camera module and working with sensors.

3.2.2 OpenCV

OpenCV is a popular open-source computer vision library that is well-suited for use on

the Raspberry Pi4. It provides a large collection of algorithms and functions for image

and video processing, including object detection.

To use OpenCV on the Raspberry Pi 4, the OpenCV library is installed to capture

live feeds and to perform object detection. The advantage of using OpenCV on the

Raspberry Pi 4 is its performance. The Raspberry Pi 4 has a more powerful CPU and

GPU compared to previous Raspberry Pi models, which makes it well-suited for more

demanding computer vision tasks.

3.2.3 YOLOv4

YOLOv4 (You Only Look Once version 4) is a state-of-the-art real-time object detection

model that is widely used in computer vision applications. Although YOLOv4 requires

a powerful GPU. It can be used on the Raspberry Pi 4 for object detection.

It requires an OpenCV library that provides the implementation of YOLOv4. In our

project, the YOLOv4 algorithm is used to train and detect rats from the live camera

feed.

3.2.4 MinIO Client Library

Minio Client library is a software library for Minio, an object storage server. The Minio

Client library provides simple APIs to access Minio and perform various operations such

as listing buckets, creating and deleting objects.

3.3 Hardware Configuration in Cluster

3.3.1 Raspberry Pi 3 model

The Raspberry Pi 3 model forms the basis of the cluster hardware. There are total 4

devices which are of type Raspberry Pi 3 which are used in the cluster. One of the

device is used as a master and other three devices are used to setup the worker nodes.

These models are setup with 32 GB micro sd cards on the appropriate OS will be made

available.

4

3.3.2 TP-LINK Switch

The hardware also consists of the TP-Link Switch for connecting the devices via the

Ethernet ports for connectivity. All the Raspberry Pi are connected via Ethernet ports

to the splitter.

3.3.3 Fritz-Box

Fritz Box is used to establish the services of the Router for configuring the IP addresses

of the devices and providing the DHCP link for the network.

3.4 Installing necessary software components on the cluster

This section covers the software deployment and configurations done to the devices before

the setting up of the cluster.

1. Raspberry Pi imager is used install the OS on the SD card. The OS used is headless

(lite) version of 64 bit Debian Bullseye without the desktop environment. Using

the full version did overload the devices and performance deteriorated, therefore

the decision to stick with the headless version is made. The SSH connection details

can be added during the OS image setup as this will be later needed to connect the

PI over SSH protocol for access

2. Once the Image is setup on the SD card, it needs to be plugged into the PI and

once the PI is ready, it is then identified onto the network via the router. After

successful login via SSH, the installation is completed by running the update of

the packages via update and upgrade commands. It is done in order to ensure the

availability of the latest packages for use.

3. After the update, the /boot/cmdline.txt file needs to be updated. The following

text cgroup memory=1 cgroup enable=memory need to be appended at the end of

the file. After the save, the node needs to be restarted.

4. The setting up of the static IP for all the nodes in the cluster is also needed. This

is important to ensure that every time the Raspberry PI boots up and connects to

the network, it should retain the same IP address. This is relevant for having the

stable configurations of the system. The /etc/dhcpcd.conf file needs to be updated

for setting the static IP configurations on each of the available nodes (master as

well as worker nodes).

4 Implementation

4.1 Edge Node and Camera Module Set Up for Object detec-

tion

To set up Raspberry Pi 4 as an Edge Node with the Pi Camera Module v2, the following

steps are followed.

5

1. Install and boot the Raspbian Os: Raspberry Pi 4 BULLSEYE 64-bit Debian

Os is installed in the SD card and the SD card is inserted into Raspberry Pi 4. The

Raspbian OS should start up and boot into the desktop environment. Raspberry

Pi 4 Desktop is accessed using SSH via PuTTY and by VNC Viewer.

2. Connect the Pi Camera Module v2: Camera module is connected to the cam-

era port on the Raspberry Pi 4 and the camera interface is enabled in Raspberry

Pi Configuration and the raspi-config needs to be updated with start x = 1

Figure 4: Raspberry Pi Camera Module v2 [2]

3. Install OpenCV and Python Packages Python is preinstalled in Raspberry Pi

4 as the Desktop version of Raspberry Pi OS is used. Python dependency such as

NumPy and OpenCV 4.7.0 version is installed in order to perform object detection.

To upload the detected image to MinIO, The Minio Client library for Python is

installed. This will allow interact with the Minio server from the Python code.

For NumPy installation, the following commands are used.

(a) Install the pip package manage

sudo apt-get install python3-pip

(b) Use pip to install Numpy

pip3 install numpy

For OpenCV Installation following commands are executed [5]

(a) Install minimal prerequisites

sudo apt update sudo apt install -y cmake g++ wget unzip

(b) Download and unpack sources

wget -O opencv.zip https://github.com/opencv/opencv/archive/4.x.zip unzip opencv.zip

(c) Create build directory

mkdir -p build cd build

(d) Configure

cmake ../opencv-4.x

(e) Build

cmake --build .

For MinIO python library installation, the following command is used.

(a) Use pip to install Minio Client Library

pip install minio

By following steps, Raspberry Pi 4 is set up as an Edge Node and Pi Camera Module

v2 is enabled for live video capture. Further Python and OpenCV libraries will be used

for object detection and image upload.

6

4.2 Cluster Set up

4.2.1 Setting the master node using the docker container

The raspberry cluster can be setup in different modes. For this project, the use of docker

as the runtime container is preferred as it is widely used as a standard for creating

images for running the container in the Pods. The k3s has the default container runtime

of containerd. This can be changed by specifying the option of docker runtime while

setting the k3s on each of the nodes. The docker runtime must be made available before

its use via one of Rancher scripts using the following command

curl https://releases.rancher.com/install-docker/20.10.sh | sh

Once the docker is available, then the setup of k3s on the nodes can be done. The use of

the following command install the k3s on the master node

curl -sfL https://get.k3s.io | sh -s - --docker

Once the k3s service is up and running, the next step would be to extract the token from

the master node to be then used while setting the worker nodes. The token is available

at the location /var/lib/rancher/k3s/server/node-token

4.2.2 Setting the worker nodes using the docker container

The use of the following command sets up the worker node k3s service. The docker run-

time assumed to be available on the worker node and in case it is not available, please

refer the section above to download the docker runtime.

curl -sfL https://get.k3s.io | K3S URL=https://<ip-address> :6443 K3S TOKEN=<node-token>

sh -s - --docker

The ip-address needs to be replaced with the IP of the Raspberry Pi where the master

node has been setup. The port number 6443 is the default port where the service is

running for k3s. The node-token needs to be replaced by the node-token captured from

master node at the location mentioned in the above section. This same process needs to

be repeated for all the worker nodes that need to be setup as part of the cluster. Once

all the services are up and running, the status of the cluster can be requested by the

following command.

kubectl get nodes --output=wide

The command will render similar results as shown below

Figure 5: Cluster status

7

4.2.3 Setting up of the kubectl utility

It is efficient to use the kubectl utility without logging physically into the Raspberry

Pi. For this, the contents of the following file /etc/rancher/k3s/k3s.yaml from the

master node needs to be copied to the local kubectl config file. The Server https ad-

dress needs to be updated from https://127.0.0.1:6443 to the actual IP of the rasp-

berry pi running the master node. Important commands used during the project times-

pan can be found at https://github.com/AmandeepChhatwal/FindTheRats/blob/main/

Read Me file for all cluster setup.docx

The cluster setup can look something like the following, once everything is up and run-

ning.

Figure 6: Cluster setup

4.3 Deployment of MinIO in Cluster

The database of MinIO is chosen as it is specifically designed to handle the storage of

objects especially images which is the case in this image detection software. There are

different factors which have been considered before the use of MinIO. The scalability,

resilience and the availablity of RESTful API tailor made for use in Kubernetes cluster

are some of those features of MinIO that are really useful. The deployment of MinIO is

done via the deployment artifact and a service is made available to expose the access to

the command line interface. There are mutiple modes in which MinIO can be setup in

the cloud network [8]. In the project developed, the use of Single Node Single Drive mode

has been used. The Multi node Multi Drive features require more resourceful hardware

for ensuring the synchronization between multiple instance of the database running on

the cluster. This is tried out but because of the challenges faced and keeping in mind the

8

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/Read_Me_file_for_all_cluster_setup.docx
https://github.com/AmandeepChhatwal/FindTheRats/blob/main/Read_Me_file_for_all_cluster_setup.docx

time constraints of the project, the single drive single node mode is implemented. The

entire information is found in the YAML file available at the location on the GitHub at

https://github.com/AmandeepChhatwal/FindTheRats/tree/main/minio

4.3.1 Setting Minio over Kubernetes Service

The availability of the Minio exist over a Kubernetes service which is useful for testing

and integration purposes. The use of Service helps to access the Command line UI from

outside the cluster network. In this project, the use of RESTful API from MinIO helps

to connect the Edge Node for uploading the images to the MinIO database directly.

4.3.2 Enabling minio with persistent volumes

The use of Persistant volumes is advocated in order to ensure the availability of data in

case of scenarios where the POD running the minio server crashes because of any rea-

sons. This ensures the preventation of data loss in cloud based infrastructures. Once the

service is up and running, it could be accessed with the following command

kubectl get services

Figure 7: Service status

4.4 Model Training

For object detection we used YOLOv4 [5]. YOLO is short for You Only Look Once. It is a

real-time object recognition system that can recognize multiple objects in a single frame.

YOLO recognizes objects more precisely and faster than other recognition systems.

1. The utmost important thing for object detection is having a good quality labeled

images for training data. The label data set can be found on https://universe.

roboflow.com/ which may suffice for the needs or label data can be set using one

the tools available. Recommendation would be https://github.com/developer0hye/

Yolo Label

2. After labeling you should have a text file containing the coordinates of the box for

the labels. Based on the version of YOLO you are using you’ll have different label

files

3. Split the data into train and test folder (code snippet available at the link https://

stackoverflow.com/questions/66579311/yolov4-custom-dataset-train-test-split can be

used to split this into 2 folders)

9

https://github.com/AmandeepChhatwal/FindTheRats/tree/main/minio
https://universe.roboflow.com/
https://universe.roboflow.com/
https://github.com/developer0hye/Yolo_Label
https://github.com/developer0hye/Yolo_Label
https://stackoverflow.com/questions/66579311/yolov4-custom-dataset-train-test-split
https://stackoverflow.com/questions/66579311/yolov4-custom-dataset-train-test-split

4. After we have our data set ready we move on to training the model. Easiest Option

is to create a clone of Google Collab notebook for training the model as we have

a dedicated GPU available for certain period of time. We can do this on a system

with a GPU as well. Around 3000 rat images and their labels were used to train

the model.

5. Update the config file present named as coco.yaml used during training to refer the

training validation data and also to check the classes for which we are training the

model. Since we trained the model only for 1 class i.e. rat class, remove the other

classes from this configuration file.

6. Inside the google collab, we follow the steps mention and make certain changes for

dataset and the classes that we are detecting In the collab

(a) Mount google drive (this make data in the drive available inside the collab)

from google.colab import drive

drive.mount(’/content/drive’)

(b) Upload your train and test data folders in drive

(c) Clone darknet git repository

! git clone https://github.com/AlexeyAB/darknet.git

(d) Compile darknet.exe

!make clean

!make

!chmod +x ./darknet

(e) Make appropriate changes in yolov4 config file (Details mentioned below) then

Download the pre-trained yolov4 weights

(f) Start the training of custom detector

!./darknet detector train data/yolov4.data

cfg/yolov4_custom_train.cfg

backup/yolov4_custom_train_last.weights -dont_show -map

(g) Test the model on new image

img_path = "./example/d37ad1e042b16886.jpg"

!./darknet detect cfg/yolov4_custom_train.cfg

backup/yolov4_custom_train_best.weights {img_path} -dont-show

Detailed steps of the above process are mentioned in the jyputer notebook available at

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ratid lab.ipynb

After training is complete, download weights, configuration, and classes of the trained

model as we’ll need to use it for object detection

10

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ratid_lab.ipynb

4.4.1 Idea behind tuning the config parameters:

Subdivisions are the numbers of mini-batches the complete batch is spit into. To give an

example a batch=52 denotes that 52 images will be loaded for one iteration. Henceforth,

the subdivision=4 denotes that 52/4=13 images per mini-batch and these 13 images will

be sent for processing. This will be repeated till the whole batch is completed. The size of

subdivision also depends on GPU, as for low memory, subdivisions are set a higher value

and visa versa. This brings us to the initial changes in the yolov4-custom.cfg file. we

have trained the dataset on the following parameters. Our explanation of the parameter

is written as comment infron of it

classes= 1, # number of classes of objects which can be detected

max_batches=3000 # the training will be processed for this number of

iterations (batches)

batch=64 # number of samples (images) which will be precossed in one batch

subdivisions=16 # The batch is subdivided in this many "blocks". The images

of a block are ran in parallel on the gpu

width=416 # network size (width), so every image will be resized to the

network size during Training and Detection

height=416 # network size (height), so every image will be resized to the

network size during Training and Detection

channels=3 # network size (channels), so every image will be converted to

this number of channels during Training and Detection

momentum=0.949 # accumulation of movement, how much the history affects the

further change of weights (optimizer)

decay=0.0005 # a term to diminish the weights to avoid having large values.

For stability reasons I guess.

learning_rate=0.001

steps= (640,720) # this is a checkpoints (number of iterations) at which

scales will be applied.

scales=(0.1,0.1) # scales is a coefficients at which learning_rate will be

multiplied at this checkpoints. Determines how the learning_rate will be

changed during increasing number of iterations during training.

4.5 Rat Detection in Edge Node

The “Object detection using deep learning with OpenCV and Python” [4] is taken as a

reference and the rat detection is developed. The rat detection in the edge node is imple-

mented by multithreading using Python and OpenCV. The below architecture explains

the rat detection at edge node.

Thread 1 is a capture thread that captures the live feed and processes one frame per

second and adds it to the queue. Thread 2 is a detection thread that fetches a frame

from the queue and passes it to the YOLOv4 detection model. In the detection model,

the model’s weights, configuration, and classes are given and the network is loaded into

11

Figure 8: Rat Detection at Edge Node

the OpenCV DNN(Deep Neural Network) module.

In the OpenCV DNN module, the output layers for object detection tasks are typically

calculated by forward propagating an input image through a pre-trained deep neural net-

work model. The output layers of the network produce a set of predictions that describe

the locations and class probabilities of objects in the image. The model then returns the

bounding boxes around the detected rat along with the class label rat and confidence

scores. The below figure is the detected rat at the edge node which is shown with the

class label rat and the model predicts it with a 72% confidence level.

Figure 9: Detected Rat

The codebase for the object detection can be found at the following path

https://github.com/AmandeepChhatwal/FindTheRats/tree/main/ObjectDetection

4.6 Detected Frame upload to MinIo

The detected image from the object detection script is uploaded to the MinIO server which

is hosted in K3s Cluster. The below figure shows the end-to-end process of detecting the

rat from the camera and uploading the image to the MinIO server in the K3s cluster.

12

https://github.com/AmandeepChhatwal/FindTheRats/tree/main/ObjectDetection

Figure 10: Frame Upload to MinIO

To upload the rat deducted frame, MinIO client object is created that represents the

MinIO server hosted in the K3s cluster. The MinIO server endpoint, access key, secret

key, and security level are set to the MinIO client object [7]. To store the image in the

MinIO server, buckets needs to be created. Using the MinIO client the bucket can be

created and using the put object method the images are uploaded. The below picture

shows the rat-detected frame from edge node which got uploaded to MinIO server hosted

in k3s cluster

Figure 11: Frame in MinIO Server

4.7 Web Application Implementation

To display the images of the rat captured through the camera which are then subsequently

stored in MinIO Database we have created a web application.

A simple python flask application can be to construct an User Interface. Flask is a small

and lightweight Python web framework that provides useful tools and features that make

creating web applications in Python easier.

13

4.7.1 Installation of Required Software

1. Install Python

https://www.python.org/downloads/release/python-3111/

2. Install a text editor

https://code.visualstudio.com/download

3. Start a new project with VirtualEnv

Create the Python Virtual Environment and then activate the environment.

python3 -m venv venv

source venv/bin/activate

4. Install Requirements

Install the Flask Minio module under the virtual environment.Mention the modules

inside requirments.txt

pip install -r requirements.txt

Create a flask Application and write the code in .py file and run with the python

command.

python3 app.py

The images displayed into the web app are read from the folder rat-images and the images

already displayed on the web app are moved to the archive folder. The codebase for the

Figure 12: User Interface

web application can be found at the following path

https://github.com/AmandeepChhatwal/FindTheRats/tree/main/ImageGallery/Flask-Image-Gallery-master

4.7.2 Containerization and Deployment of the web app

Once the web application is running successfully. The next step is to create an Image of

the web application and run the application in Docker.

The first step to containerizing the application is to create a docker file.

14

https://www.python.org/downloads/release/python-3111/
https://code.visualstudio.com/download
https://github.com/AmandeepChhatwal/FindTheRats/tree/main/ImageGallery/Flask-Image-Gallery-master

The dockerfile can be found at the below github path:

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/

DockerFile

This file is a set of instructions Docker will use to build the image.The instruction are as

follows

1. Get the official Python Base Image for version 3.7 from Docker Hub.

2. In the image, create a directory named app.

3. Set the working directory to that new app directory.

4. Copy the local directory’s contents to that new folder into the image.

5. Run the pip installer (just like we did earlier) to pull the requirements into the

image.

6. Inform Docker the container listens on port 5000.

7. Configure the starting command to use when the container starts. [6]

On the command line or shell, to build the image use the following command:

docker buildx build --platform linux/arm64 -t

<youreponame>/rat-detection:arm64 --push

The application is now containerized.Run the following command to have Docker run

the application in a container and map it to port 5000:

docker run -p 5000:5000 ratui

Now navigate to http://localhost:5000 to see the images of the detected rats

To run the application in Kubernetes, First verify if kubectl is configured, if not, install

and configure it.

kubectl version

kubectl config use-context docker-for-desktop

Create a file named deployment.yaml and add the following contents to it and then saveit:

The github link for the deployment file is as below :

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/

deployment.yaml

This YAML file is the instructions to Kubernetes for what is required for running, For

example,load-balanced service exposing port 6000 and four instances of the container

running.

Use kubectl to send the YAML file to Kubernetes by running the following command:

kubectl apply -f deployment.yaml

The latest rat Images can be viewed on http://localhost:5000

15

https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/DockerFile
https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/DockerFile
https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/deployment.yaml
https://github.com/AmandeepChhatwal/FindTheRats/blob/main/ImageGallery/Flask-Image-Gallery-master/deployment.yaml

5 Challenges

There are several challenges and learning while implementing rat detection in Raspberry

Pi with edge and cloud infrastructure.

1. In the Edge node, the configuration issues arise when OpenCV tried accessing the

camera’s live feed. The error was not clear which required the complete reinstalla-

tion of OpenCV to resolve the issue.

2. The YOLOv4 object detection model in Raspberry pi 4 results in performance issues

due to its limited processing power and it impacted the performance largely. With

the use of the YOLOv4 tiny model, the performance is improved but the accuracy

is drastically reduced. So the YOLOv4 is used back in object detection but the

efficiency of the model is achieved by multithreading.

3. The sharing of the infrastructure resulted in disarray of the configurations because

of static IP that were already setup. Therefore, there were multiple runs where the

infrastructure had to be setup from the scratch. There is a risk of wear and tear

whenever the infrastructure exchanged hands resulted in non-usability of devices or

its components.

4. The effective use of the infrastructure also had a learning curve as the given Rasp-

berry Pi are resource constrained devices

5. The use of MinIO in Multi Node Multi Drive mode is not possible because of needed

resource capacity for synchronization processes.

6. The use of DHCP server for setting the infrastructure is also a time consuming

process. This is eventually solved by using a Fritz-Box in the end.

6 Summary

The implementation of object detection with a K3s cluster cloud infrastructure in Rasp-

berry Pi has several advantages over traditional on-premise solutions. The use of cloud

infrastructure provides the ability to scale, improve performance, and enables faster ob-

ject detection, and it’s easily accessible. Additionally, the use of the k3s cluster provides

an efficient way to deploy and manage containerized object detection applications and

it can easily be integrated with cloud services such as storage and databases. However,

there are challenges to consider when implementing object detection with cloud infras-

tructure such as containerization, expertise in cloud infrastructure, and object detection,

and the need to carefully consider data privacy and security issues and regulatory compli-

ance. Overall, the combination of technologies provides a flexible and powerful solution

for object detection that can be applied to a wide range of use cases.

References

[1] https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[2] https://www.raspberrypi.com/products/camera-module-v2/

16

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/camera-module-v2/

[3] https://github.com/AlexeyAB/darknet/

[4] https://github.com/arunponnusamy/object-detection-opencv

[5] https://docs.opencv.org/4.x/d7/d9f/tutorial linux install.html

[6] https://towardsdatascience.com/how-to-deploy-a-flask-api-in-kubernetes-and-connect-it-with-other-micro-services-af16965b6

[7] https://medium.com/featurepreneur/upload-files-in-minio-using-python-4f987f902076

[8] https://min.io/docs/minio/linux/operations/installation.html

17

https://github.com/AlexeyAB/darknet/
https://github.com/arunponnusamy/object-detection-opencv
https://docs.opencv.org/4.x/d7/d9f/tutorial_linux_install.html
https://towardsdatascience.com/how-to-deploy-a-flask-api-in-kubernetes-and-connect-it-with-other-micro-services-af16965b6
https://medium.com/featurepreneur/upload-files-in-minio-using-python-4f987f902076
https://min.io/docs/minio/linux/operations/installation.html

	Introduction
	Architecture Diagram
	Hardware and Software Configuration
	Hardware Configuration in Edge Node
	Raspberry Pi 4
	Raspberry Pi Camera Module v2

	Software Configuration in Edge Node
	Python
	OpenCV
	YOLOv4
	MinIO Client Library

	Hardware Configuration in Cluster
	Raspberry Pi 3 model
	TP-LINK Switch
	Fritz-Box

	Installing necessary software components on the cluster

	Implementation
	Edge Node and Camera Module Set Up for Object detection
	Cluster Set up
	Setting the master node using the docker container
	Setting the worker nodes using the docker container
	Setting up of the kubectl utility

	Deployment of MinIO in Cluster
	Setting Minio over Kubernetes Service
	Enabling minio with persistent volumes

	Model Training
	Idea behind tuning the config parameters:

	Rat Detection in Edge Node
	Detected Frame upload to MinIo
	Web Application Implementation
	Installation of Required Software
	Containerization and Deployment of the web app

	Challenges
	Summary

