
1 | P a g e
Cloud Computing Project Report – WS22/23

Cloud Computing WS22/23

Project Report

Automatic Rat Detection using Edge Computing

Supervisor: Prof. Dr. Christian Baun

Submitted By: Anish Pokhrel (1394715),

Ashlesh Mithur (1386367),

Deepak Kumar (1400489),

Nidhi Nayak (1404524),

Shobhit Tiwari (1387366),

Pushpita Sarkar (1384152),

Arpan Kumar (1378650)

Submission Date: 8th February 2023

2 | P a g e
Cloud Computing Project Report – WS22/23

Contents
1. Introduction ... 4

2. Architecture ... 4

3. Sensor Node ... 5

4. Machine Learning Model ... 5

5. Setting up K3S Cluster using Raspberry Pi 3 .. 8

6. REST API .. 11

7. Web Application .. 15

8. Slack Notification Service ... 16

9. Deployment .. 17

10. Results .. 20

11. References .. 22

3 | P a g e
Cloud Computing Project Report – WS22/23

Team Members and Contributions

Task Contributors

Initial Hardware Setup, Testing Ashlesh Mithur, Arpan Kumar

K3S cluster, Sensor Node

setup

Ashlesh Mithur

ML Model, Training, Sensor

Node Deployment

Deepak Kumar

API development & DB setup Anish Pokhrel

User Interface development Shobhit Tiwari, Nidhi Nayak

Notification and Alerts Anish Pokhrel, Pushpita Sarkar

Sensor Node and Cluster

Integration

Deepak Kumar, Ashlesh Mithur

Project Integration Anish Pokhrel, Ashlesh Mithur, Deepak Kumar

Documentation Anish Pokhrel, Ashlesh Mithur, Deepak Kumar, Shobhit Tiwari

Repository: https://github.com/dpk0811/Rat-Detection

Scrum Board: https://trello.com/b/9EJAa3ZV/cloud-computing-project

https://github.com/dpk0811/Rat-Detection
https://trello.com/b/9EJAa3ZV/cloud-computing-project

4 | P a g e
Cloud Computing Project Report – WS22/23

1. Introduction
For the cloud computing semester project WS22/23, our goal was to develop an edge

computing solution to detect rats at the sensor node and store the results in cloud.

In cloud computing, data is sent to the cloud for processing and storage. Edge computing on

the other hand, processes data at the edge node and then sends only limited amount of data to

the cloud for storage. Edge computing has several benefits over traditional cloud computing

approaches. Edge computing offers better latency compared to cloud computing as the data is

processed near the source i.e., at the edge node. Edge computing solutions also require lesser

bandwidth as the data is processed at the edge node. Edge computing solutions are scalable,

reliable, cost effective and offer better privacy and security.

2. Architecture

Figure 1: System Architecture

5 | P a g e
Cloud Computing Project Report – WS22/23

Our rat detection project is built as an edge computing solution. We used a Raspberry Pi 4

single board computer (SBC) as the edge/sensor node on which our machine learning model

trained to detect rats was deployed. The SBC is also equipped with a Raspberry Pi 2 camera

module. We also have a K3S cluster built using 4 Raspberry Pi 3 SBC’s where 1 SBC behaves

as the master node and the rest 3 behave as the worker nodes. Live detection is ran using the

camera module at the edge node. Whenever a rat is detected, the frame is captured and is sent

to the K3S cluster. On the K3S cluster, we have setup a postgres database which is used to

store data relevant to the detection such as confidence level, timestamp of the capture and the

image frame itself. We have also setup a python flask web application on the K3S cluster,

which is used to view the detected images. To send the image from the edge node to the K3S

cluster, we have used REST API’s. The detected images along with the relevant data are sent

to the REST API. Upon receiving data, the REST API pushes the data to the postgres database

and triggers a notification. For notification, we are using Slack. With every detection, a slack

notification is sent which informs the user about the number of rats detected along with the

highest confidence level of detection.

3. Sensor Node
Sensor node is a Raspberry Pi 4 single board computer (SBC) with an attached Raspberry Pi

camera module 2. In our project, the sensor node is used as an edge device to detect rats,

build relevant data and send it over to the REST API running on K3S cluster.

3.1.Sensor Node Setup

To setup the sensor node, we installed Raspberry Pi OS 64 bit using the Raspberry Pi Imager

tool.

The OS can be selected from the Choose OS option on the tool. The storage i.e., the SD card

was set using the Choose Storage option of the tool. Once both these are set, we can write the

OS on the SD card using the Write Option of the tool.

The SD card was then inserted back into the Raspberry Pi 4 SBC.

4. Machine Learning Model
For automatic rat detection on the sensor, we trained a machine learning model using YOLOv7

framework.

6 | P a g e
Cloud Computing Project Report – WS22/23

YOLOv7 (You Only Look Once) is a real-time object detection framework which can detect

multiple objects. By default, YOLOv7 is trained to detect over 70 classes which include most

of the common objects encountered in day-to-day life. For our scenario i.e., detection of rats,

the YOLOv7 model had to be retrained.

Google Colab was used as it offers free computing resources to train machine learning models.

We started with scraping rat images for training and validating the model. Around 4500 rat

images and their labels were used to train the model.

Training a YOLOv7 model is very straight forward. We started with cloning the YOLOv7

repository from GitHub using the below command,

git clone https://github.com/WongKinYiu/yolov7.git

The repository comes with python scripts to train, test and validate the model and also to

perform detections after the model has been built.

The entire dataset of 4500+ rat images and their labels were split into training and validation

datasets in a 70:30% ratio. After this they were placed into their respective folders in the

YOLOv7 cloned structure i.e., data\train & data\val.

In the next step, we updated the config file present at data\coco.yaml used during training to

find the training & validation data and also to check the classes for which we are training the

model. Since we trained the model only for 1 class i.e., rat class, we removed other classes

from this configuration file.

We then uploaded the YOLOv7 cloned structure to Google Drive for easier accessibility with

Google Colab.

To begin training the model in Google Colab, we first need to link it with Google Drive. Run

the below lines in Google Colab,

from google.colab import drive

drive.mount('/content/drive')

7 | P a g e
Cloud Computing Project Report – WS22/23

Once Google drive is mounted successfully, we need to install all the python libraries needed

by YOLOv7 during model training. YOLOv7 already provided a requirements.txt containing

the list of libraries within in. We can use this file to install everything at once with the below

command,

!pip install -r drive/MyDrive/yolov7/requirements.txt

If we have access to GPU, we can train the model even faster and to do this, YOLOv7 needs

few additional libraries which are mentioned in the requirements_gpu.txt. To install these

libraries, run the below command,

!pip install -r drive/MyDrive/yolov7/requirements_gpu.txt

Now that all the libraries are installed in Google Colab, we begin training our model. The below

command can be used to start model training,

!python train.py --workers 1 --device 0 --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

The above command takes a lot of arguments which sets up various parameters for training the

model.

For ex.:

--img: image size for which model is trained,

--epochs: number of training epochs,

--weights: pre-trained YOLOv7 weights,

--batch-size: batch size used during training, etc.

Free version of Google Colab allocates computing resources for a limited duration every day.

In case the model training is interrupted due to this reason, the training session can be resumed

from where it stopped using the command,

!python train.py --resume --workers 1 --device 0 --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

The model training can also be done without using GPU. To do so, the below command can be

used,

!python train.py --workers 1 --device cpu --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

Once the training is completed, we would get the weights file that can be used to perform

detections. During the entire training process, several weight files are created in the folder

runs\train\yolov7-custom\weights. For detection, we used weight file named best.pt.

8 | P a g e
Cloud Computing Project Report – WS22/23

Using the below command, we can perform detections on images,

!python detect.py --weights best.pt --conf 0.3 --img-size 640 --source test_cat.jpg --no-trace

To perform detection on video from Google Colab, we can use the below command,

!python detect.py --weights best.pt --conf 0.3 --img-size 640 --source test_video.mkv --no-trace

To view statistics related to model training, we can find confusion matrix, p curve, r curve, pr

curve etc., in the folder runs\train\yolov7-custom\.

5. Setting up K3S Cluster using Raspberry Pi 3
As discussed in the architecture we had used 4 different Raspberry Pi 3 SBC to setup a light

weight Kubernetes cluster or K3S cluster. The cluster was created with 1 master and 3 worker

nodes.

Below is initial configuration required for setting up the cluster (windows machine was used

during this setup) and followed the article [1].

5.1. Setting up all Raspberry Pi 3

• All the Raspberry Pi 3 was equipped with 32GB SD cards, we manually flashed 32-

bit Raspberry Pi OS with help of Raspberry Pi Imager v1.7.3.

• Download Raspberry Pi Imager for your computer and insert an empty SD card to

your PC.

• In the Pi Imager application, we chose 32-bit Raspberry Pi OS (Debian Bullseye)

and configured the hostname, enabled SSH and also set password for authentication

in the advanced options as shown below image.

• Once values are configured and saved, select storage option as the SD card and click

on ‘write’ button that fill flash the SD card with chosen OS.

• We repeated this process for all 4 SD cards and named our hosts as k3smaster,

ksworker1, ksworker2, ksworker3 respectively.

• Insert all the SD cards back to the Raspberry Pi and power up and connect them to

your network via LAN switch.

9 | P a g e
Cloud Computing Project Report – WS22/23

• We did a ping check to confirm if everything is working as shown in the image

below.

• Another important step we followed is to enable the cgroup memory. SSH into all

the Raspberry Pi 3 and update the cmdline.txt file.

• We used “sudo nano /boot/cmdline.txt” command in all the hosts and added

“cgroup_memory=1 cgroup_enable=memory” on the end of the first line and save

the file.

• Now reboot using “sudo reboot” and start again.

5.2. Setting up k3s cluster

• SSH into master node, k3smaster

• Use the command:

curl -sfL https://get.k3s.io | sh -s - --docker

• After successful run, this will start K3S service and it will automatically create few

configurations file as well.

• Now check if the master node is ready using the command:

sudo kubectl get nodes -o wide

10 | P a g e
Cloud Computing Project Report – WS22/23

• To add agent or worker nodes, first we will generate token from master, this token

will then be used by all agent nodes while creating the K3S cluster.

• Run below command and save the generated in a text editor:

sudo cat /var/lib/rancher/k3s/server/node-token

• Also check the Master IP using the command

hostname -I | awk '{print $1}'

• Now SSH each worker nodes and following command:

curl -sfL https://get.k3s.io | K3S_URL=https://<Master_IP>:6443

K3S_TOKEN=<token_generated_from_master> sh -s - --docker

• Now repeat this for all 3 worker nodes.

• Once done our K3S cluster is ready and we can check again in master node by using

the command:

sudo kubectl get nodes -o wide

5.3. Setting up kubectl on the local computer

This is an optional step which we followed and is not mandatory. By configuring the

kubectl on our local machine, we can access our cluster locally and need not SSH

every time.

• SSH into master and run the command:

sudo cat /etc/rancher/k3s/k3s.yaml

• Copy the content of this file and into local file kubeconfig. In this file update the

localhost IP to the Master node IP.

• Now the cluster should be accessible from our PC using the kubectl commands.

kubectl get nodes -o wide

11 | P a g e
Cloud Computing Project Report – WS22/23

6. REST API
The backend application is to save and retrieve data for images detected by the sensor node.

This means that the system is designed to receive data from the sensor node, store it in a

database or other persistent storage, and allow the retrieval of that data as needed.

The use of Java and Spring Boot framework in this system ensures that it is efficient, scalable

and secure, making it well suited to handle large amounts of data and to provide a stable and

reliable service.

Technologies Used

• Java: The application is designed on Java programming language with version 11. The

use of Java 11 provides access to a rich set of libraries and frameworks, allowing to

create and scalable applications with ease.

• Maven: The application is also a Maven project, which means it is built and managed

using the Apache Maven build automation tool. It provides a standardized way to

manage dependencies, build the application and manage the development process.

• Hibernate: The system uses Hibernate, an Object-Relational Mapping (ORM)

framework, to interact with the database. Hibernate provides a convenient way to map

Java objects to database tables and vice versa, allowing the application to perform

database operations without writing a raw SQL code.

• Spring Boot: The system is built using the Spring Boot Framework, version 2.7.5. It is

a widely used framework for building web applications that provides a number of

benefits, including ease of development and improved performance. With version 2.7.5,

the developers will have access to the latest features and bug fixes, ensuring that the

application is stable, efficient, and secure.

• Docker: A containerization technology used to deploy and run software applications in

isolated environments, providing benefits such as isolation, portability, scalability,

reproducibility, and automation.

• Postgres: A widely used and open-source relational database management system used

to store and manage data.

• REST API: A standard for building web APIs that allows the backend application to

interact with other systems over the internet.

• Slack: A communication channel to provide notification for the detected rat images.

APIs:

POST /image/upload

The goal of this REST API is to receive an image detected by the sensor node and save it in

the database for the future retrieval. It accepts the file in the RequestParam as a Multipart file

and persist it into postgres database. After saving the data, it is also responsible to call slack

api to provide the notification details for the rat detection.

12 | P a g e
Cloud Computing Project Report – WS22/23

GET/image/list

The purpose of this REST API is to provide the details of the saved images in the database to

the client.

GET/image/{id}

This API provides the actual detected image to the client. It accepts id of the image in the

PathVariable for which the backend application executes the query to fetch the specified image

in the database and provides it to the client side.

13 | P a g e
Cloud Computing Project Report – WS22/23

Local Docker Deployment

The backend application relies on the PostgresSQL container; thus, we employed a docker

compose environment file to generate an image and execute the application within a docker

container.

Steps in building application image and running in container.

• From the code base root directory, creating an application jar with the command

mvn clean install -DskipTests

14 | P a g e
Cloud Computing Project Report – WS22/23

• Run the docker compose file with the command

docker-compose up

• Postgres image and backend application will be created respectively and runs on the

specified ports.

15 | P a g e
Cloud Computing Project Report – WS22/23

Finally, the private dockerhub repository was created to host the image of our own build

application. The tag of the application image was created and pushed into the repository.

7. Web Application
The frontend application will fetch data from REST API call and then display the

corresponding data into the website. Flask is a micro web framework for Python that provides

minimal functionality for building web applications; and Jinja is a fast, expressive, and

extensible templating engine for Python that is used in Flask to render HTML templates. These

tools, when combined, provide a scalable and flexible web development solution with an

emphasis on simplicity and ease of use.

Technologies Used

• Python: The application is designed using Python programming language to provide

a scalable and flexible web development solution with an emphasis on simplicity and

ease of use.

• Flask: Flask is a micro web framework for Python that provides minimal

functionality for building web applications,

• Jinja: Jinja is a fast, expressive, and extensible templating engine for Python that is

used in Flask to render HTML templates

• Docker: Docker for deploying the application on different environments.

16 | P a g e
Cloud Computing Project Report – WS22/23

Local Setup

python -m venv .venv

• Change the path to below to activate the created virtual environment and hit enter:

.\.venv\Scripts\activate

• Create a requirements.txt file that will contains the list of libraries required for the

application:

• Type below command to install the required python libraries and hit enter:

pip install -r .\requirements.txt

• Run the view.py file using command

python view.py runserver

8. Slack Notification Service
The notification service was implemented by integrating slack webhook in the backend

application. For every image availability, the backend application saves the data to database

and notifies the detection details by sending post request through slack webhook. In addition,

we configured notification channel through slack web.

17 | P a g e
Cloud Computing Project Report – WS22/23

9. Deployment

9.1. Deploying Machine Learning model on Sensor Node

Our machine learning model to detect rats is ready and now we can deploy it on our sensor

node.

First, we need to download YOLOv7 folder from the Google Drive and copy it to a pen drive.

We can clear certain files to reduce the size of the YOLOv7 folder such as, data\train &

data\val folders containing training and validation data. After this is done, we insert the pen

drive in the Raspberry Pi 4 USB port and copy the YOLOv7 folder onto the Desktop.

The YOLOv7 folder has a python script names detect.py which can be used to run detections.

Before this can be done, we first need to install libraries required by this script on the sensor

node, as we did in Google Colab environment.

Navigate to the folder where YOLOv7 folder was copied and run the command to install

libraries as shown below,

We are ready to run live detection now. Using the below command, we can start live rat

detection,

python detect.py --weights best.pt --conf 0.5 --source 0 --no-trace --exist-ok

The command again takes few arguments which define the mode in which the detection is ran

for ex.,

 --weights: to point to the best.pt weight file,

 --conf: to define the minimum confidence level for detections,

 --source: to define the input source (0 is to access camera),

 --no-trace: to disable tracing during detection, etc.,

18 | P a g e
Cloud Computing Project Report – WS22/23

The below screenshot shows verbose logs after detection is started. At the bottom we see the

detections getting logged in the format,

 <source>: <rat count>

The detected rat images at the sensor node should be sent over to REST API running at the

K3S cluster. To do this, we wrote another python script that dispatches images as soon as it is

detected and saved on the disk in the folder /home/pi/Desktop/Rat_Detection/Detections. The

python script dispatch.py sends the detected rat images to the URL mentioned in the file

/home/pi/Desktop/yolov7/URL.txt. If the dispatch was successful, the image is backed up to

/home/pi/Desktop/Rat_Detection/Detections/Backup. If the dispatch was unsuccessful due to

connectivity issues or some other reason, the dispatch script waits until connectivity is up again.

To automate the detection and dispatch processes, we wrote a makefile which eases the

command calling process.

Using this makefile, we can call the detection & dispatch scripts without passing any arguments

as shown below,

19 | P a g e
Cloud Computing Project Report – WS22/23

9.2. Setting up Postgres Database in the cluster

• The main advantage of having a PV is it creates a permanent storage and data will

remain in the storage even if the pods are deleted.

• And with the help of PVC, users can request and consume PV resources.

• We have deployed the Postgres using Kubernetes manifest files:

 postgrespvcpv.yaml, postgresconfig.yaml, postgresdeployment.yaml

• Once deployment is done, the pod gets created and starts running, then we hosted

Postgres service using service file: postgresservice.yaml.

• As a result we were able to see all the services and deployments running the command:

kubectl get all

9.3. Deployment of Backend Application

• After successful deployment of database service, we proceed to deploy backend

application.

• The previously hosted docker images in private dockerhub repository were pulled in

each worker nodes.

• When the images are ready, we deploy and start the backend application using

respective .yaml files.

20 | P a g e
Cloud Computing Project Report – WS22/23

• We can see the successful deployment and service as shown

9.4. Deployment of Web Application

• Similarly, we deploy web applications by pulling the docker images into worker nodes

and executing deployment and service files in master node for web application as well.

• After successful hosting, we can find the below logs as shown

10. Results
After deploying all the services successfully, the cluster is ready for use. To check the final

results, we run the live detection on the sensor node, the camera present will capture the live

stream and whenever a rat is detected and is above the confidence level, the frame is captured

and locally stored.

21 | P a g e
Cloud Computing Project Report – WS22/23

The stored images are dispatched to the REST API as and when there are detections.

The images received by the REST API are stored in Postgres database and a Slack notification

is generated.

The web application can be accessed to see all the history of rat detection images along with

their timestamp and confidence level.

22 | P a g e
Cloud Computing Project Report – WS22/23

11. References
1. https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-

76224788576c

2. https://www.containiq.com/post/deploy-postgres-on-kubernetes

3. https://github.com/WongKinYiu/yolov7

4. https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623

5. https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-

model-with-yolov7/

6. https://www.raspberrypi.com/documentation/computers/camera_software.html

7. https://www.raspberrypi.com/documentation/computers/configuration.html

8. https://www.raspberrypi.com/documentation/computers/os.html

9. https://docs.docker.com/docker-hub/

10. https://www.baeldung.com/rest-with-spring-course

11. https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-

flask-in-python-3

12. https://flask.palletsprojects.com/en/2.2.x/quickstart/

13. https://www.kite.com/blog/python/flask-tutorial/

14. https://kubernetes.io/

https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://www.containiq.com/post/deploy-postgres-on-kubernetes
https://github.com/WongKinYiu/yolov7
https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://www.raspberrypi.com/documentation/computers/camera_software.html
https://www.raspberrypi.com/documentation/computers/configuration.html
https://www.raspberrypi.com/documentation/computers/os.html
https://docs.docker.com/docker-hub/
https://www.baeldung.com/rest-with-spring-course

