| | FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

Cloud Computing WS22/23
Project Report
Automatic Rat Detection using Edge Computing

Supervisor: Prof. Dr. Christian Baun

Submitted By: Anish Pokhrel (1394715),
Ashlesh Mithur (1386367),
Deepak Kumar (1400489),

Nidhi Nayak (1404524),
Shobhit Tiwari (1387366),
Pushpita Sarkar (1384152),
Arpan Kumar (1378650)

Submission Date: 8" February 2023

1|Page
Cloud Computing Project Report — WS22/23

Contents

Lo INEFOAUCTION ...ttt ettt naesea 4
2. ATCNITECTUNE ...ttt bttt b bbb bbb et et se e bt ebeebenaenes 4
3e SBNSOE NOUE ...ttt b ettt b ettt b e bt s b b e bbb e e st e st e bt eb e b e nen 5
4. Machine Learning MOAELc.ooeeieiiiieiieieeseeee ettt e see s 5
5. Setting up K3S Cluster using Raspberry Pi 3 ... 8
B. REST AP ottt bt a et b et eb et s bt e st et e ae et s be et e nbeeaeens 11
7. WED APPIICATION. ...ttt sttt be e 15
8. SIaCK NOITICATION SEIVICE.......cciitiriiieieieieee sttt ebe e b e 16
LS B =T o] (o) 0 1] o 1 RO RRSRP 17
10, RESUIES ..ttt bbbttt nn e 20
11. RETEIEINCES ...ttt b ettt et be bt s b b e 22

2|Page

Cloud Computing Project Report — WS22/23

Team Members and Contributions

Task Contributors

Initial Hardware Setup, Testing | Ashlesh Mithur, Arpan Kumar

K3S cluster, Sensor Node Ashlesh Mithur
setup

ML Model, Training, Sensor Deepak Kumar
Node Deployment

API development & DB setup Anish Pokhrel

User Interface development Shobhit Tiwari, Nidhi Nayak

Notification and Alerts Anish Pokhrel, Pushpita Sarkar

Sensor Node and Cluster Deepak Kumar, Ashlesh Mithur

Integration

Project Integration Anish Pokhrel, Ashlesh Mithur, Deepak Kumar
Documentation Anish Pokhrel, Ashlesh Mithur, Deepak Kumar, Shobhit Tiwari

Repository: https://github.com/dpk0811/Rat-Detection

Scrum Board: https://trello.com/b/9EJAa3ZV/cloud-computing-project

3|Page
Cloud Computing Project Report — WS22/23

https://github.com/dpk0811/Rat-Detection
https://trello.com/b/9EJAa3ZV/cloud-computing-project

1. Introduction

For the cloud computing semester project WS22/23, our goal was to develop an edge
computing solution to detect rats at the sensor node and store the results in cloud.

In cloud computing, data is sent to the cloud for processing and storage. Edge computing on
the other hand, processes data at the edge node and then sends only limited amount of data to
the cloud for storage. Edge computing has several benefits over traditional cloud computing
approaches. Edge computing offers better latency compared to cloud computing as the data is
processed near the source i.e., at the edge node. Edge computing solutions also require lesser
bandwidth as the data is processed at the edge node. Edge computing solutions are scalable,
reliable, cost effective and offer better privacy and security.

2. Architecture

Edge/Sensor Node

Rat / Live
detection dete;uon
usmg
model

camera

4
e
o
=
o
(]
z

Master Node

K3S Cluster

S,

) @,
Worker 1 Wanero Worker 3

A

8- C e

Postgres DB REST API Website

S

Docker Containe

Figure 1: System Architecture

4|Page
Cloud Computing Project Report — WS22/23

Our rat detection project is built as an edge computing solution. We used a Raspberry Pi 4
single board computer (SBC) as the edge/sensor node on which our machine learning model
trained to detect rats was deployed. The SBC is also equipped with a Raspberry Pi 2 camera
module. We also have a K38 cluster built using 4 Raspberry Pi 3 SBC’s where 1 SBC behaves
as the master node and the rest 3 behave as the worker nodes. Live detection is ran using the
camera module at the edge node. Whenever a rat is detected, the frame is captured and is sent
to the K3S cluster. On the K3S cluster, we have setup a postgres database which is used to
store data relevant to the detection such as confidence level, timestamp of the capture and the
image frame itself. We have also setup a python flask web application on the K3S cluster,
which is used to view the detected images. To send the image from the edge node to the K3S
cluster, we have used REST API’s. The detected images along with the relevant data are sent
to the REST API. Upon receiving data, the REST API pushes the data to the postgres database
and triggers a notification. For notification, we are using Slack. With every detection, a slack
notification is sent which informs the user about the number of rats detected along with the
highest confidence level of detection.

. Sensor Node

Sensor node is a Raspberry Pi 4 single board computer (SBC) with an attached Raspberry Pi
camera module 2. In our project, the sensor node is used as an edge device to detect rats,
build relevant data and send it over to the REST API running on K3S cluster.

3.1.Sensor Node Setup

To setup the sensor node, we installed Raspberry Pi OS 64 bit using the Raspberry Pi Imager
tool.

® Rospbery Filmager v1.73 - o ® Rosphery P - =

Operating System X
- rorovcu o T
Online - 0.3 GB download
Raspberry Pi 0S Full (32-bit)

° A port of Debian Bullseye with desktop envi and
Raspberry Pi

Released: 2022-09-22
Online - 2.6 GB download

Raspberry Pi OS (64-bit)
A port of Debian Bullseye with the Raspberry Pi Desktop (Compatible with Raspberry Pi
3/4/400)

Released: 2022-09-22

Operating System Storage

CHOOSE 08 CHOOSE STORAGE

Cached on your computer

Raspberry Pi OS Lite (64-bit)

A port of Debian Bullseye with no desktop

The OS can be selected from the Choose OS option on the tool. The storage i.e., the SD card
was set using the Choose Storage option of the tool. Once both these are set, we can write the
OS on the SD card using the Write Option of the tool.

The SD card was then inserted back into the Raspberry Pi 4 SBC.

. Machine Learning Model

For automatic rat detection on the sensor, we trained a machine learning model using YOLOv7
framework.

5|Page
Cloud Computing Project Report — WS22/23

YOLOV7 (You Only Look Once) is a real-time object detection framework which can detect
multiple objects. By default, YOLOV7 is trained to detect over 70 classes which include most
of the common objects encountered in day-to-day life. For our scenario i.e., detection of rats,
the YOLOvV7 model had to be retrained.

Google Colab was used as it offers free computing resources to train machine learning models.
We started with scraping rat images for training and validating the model. Around 4500 rat
images and their labels were used to train the model.

Training a YOLOvV7 model is very straight forward. We started with cloning the YOLOv7
repository from GitHub using the below command,

git clone https://github.com/WongKinYiu/yolov7.git

The repository comes with python scripts to train, test and validate the model and also to
perform detections after the model has been built.

The entire dataset of 4500+ rat images and their labels were split into training and validation
datasets in a 70:30% ratio. After this they were placed into their respective folders in the
YOLOV7 cloned structure i.e., data\train & data\val.

Mew Volume (D:) » 3rd_Semester » Cloud > yolov? > data

I train

i el

In the next step, we updated the config file present at data\coco.yaml used during training to
find the training & validation data and also to check the classes for which we are training the
model. Since we trained the model only for 1 class i.e., rat class, we removed other classes
from this configuration file.

We then uploaded the YOLOV7 cloned structure to Google Drive for easier accessibility with
Google Colab.

To begin training the model in Google Colab, we first need to link it with Google Drive. Run
the below lines in Google Colab,

from google.colab import drive

drive.mount(‘/content/drive")

6|Page
Cloud Computing Project Report — WS22/23

Once Google drive is mounted successfully, we need to install all the python libraries needed
by YOLOvV7 during model training. YOLOV7 already provided a requirements.txt containing
the list of libraries within in. We can use this file to install everything at once with the below
command,

Ipip install -r drive/MyDrive/yolov7/requirements.txt

If we have access to GPU, we can train the model even faster and to do this, YOLOv7 needs
few additional libraries which are mentioned in the requirements_gpu.txt. To install these
libraries, run the below command,

Ipip install -r drive/MyDrive/yolov7/requirements_gpu.txt

Now that all the libraries are installed in Google Colab, we begin training our model. The below
command can be used to start model training,

Ipython train.py --workers 1 --device 0 --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

The above command takes a lot of arguments which sets up various parameters for training the
model.

For ex.:
--img: image size for which model is trained,
--epochs: number of training epochs,
--weights: pre-trained YOLOV7 weights,
--batch-size: batch size used during training, etc.

Free version of Google Colab allocates computing resources for a limited duration every day.
In case the model training is interrupted due to this reason, the training session can be resumed
from where it stopped using the command,

Ipython train.py --resume --workers 1 --device 0 --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

The model training can also be done without using GPU. To do so, the below command can be
used,

Ipython train.py --workers 1 --device cpu --batch-size 16 --epochs 100 --img 640 640 --

hyp data/hyp.scratch.custom.yaml --name yolov7-custom --weights yolov7.pt

Once the training is completed, we would get the weights file that can be used to perform
detections. During the entire training process, several weight files are created in the folder
runs\train\yolov7-custom\weights. For detection, we used weight file named best.pt.

7|Page
Cloud Computing Project Report — WS22/23

Using the below command, we can perform detections on images,

Ipython detect.py --weights best.pt --conf 0.3 --img-size 640 --source test_cat.jpg --no-trace

To perform detection on video from Google Colab, we can use the below command,

Ipython detect.py --weights best.pt --conf 0.3 --img-size 640 --source test_video.mkv --no-trace

To view statistics related to model training, we can find confusion matrix, p curve, r curve, pr
curve etc., in the folder runs\train\yolov7-custom\.

. Setting up K3S Cluster using Raspberry Pi 3

As discussed in the architecture we had used 4 different Raspberry Pi 3 SBC to setup a light
weight Kubernetes cluster or K3S cluster. The cluster was created with 1 master and 3 worker
nodes.

Below is initial configuration required for setting up the cluster (windows machine was used
during this setup) and followed the article [1].

5.1. Setting up all Raspberry Pi 3

e All the Raspberry Pi 3 was equipped with 32GB SD cards, we manually flashed 32-
bit Raspberry Pi OS with help of Raspberry Pi Imager v1.7.3.

e Download Raspberry Pi Imager for your computer and insert an empty SD card to
your PC.

e In the Pi Imager application, we chose 32-bit Raspberry Pi OS (Debian Bullseye)
and configured the hostname, enabled SSH and also set password for authentication
in the advanced options as shown below image.

$ Raspbe Advanced options X

‘ Image customization options to always use >

Sethostname: k3smaster Jocal

Raspberry Pi

(® Use password authentication

Operating System Storage (O Allow public-key authentication only

RASPBERRY PI 0S (32-BIT) CHOOSE STORAGE

|
|

e Once values are configured and saved, select storage option as the SD card and click
on ‘write’ button that fill flash the SD card with chosen OS.

e We repeated this process for all 4 SD cards and named our hosts as k3smaster,
ksworkerl, ksworker2, ksworker3 respectively.

e Insert all the SD cards back to the Raspberry Pi and power up and connect them to
your network via LAN switch.

8|Page
Cloud Computing Project Report — WS22/23

e We did a ping check to confirm if everything is working as shown in the image
below.

C:\Users\ashle> ping k3smaster.local

32:99d6%9] with 32 bytes of data:

from fe8@:
from fe88::8

Ping statistics for fed
Packets: Sent = 4,

imum = 2ms, Maximum = 6ms, Average
PS C:\Users\ashle>

e Another important step we followed is to enable the cgroup memory. SSH into all
the Raspberry Pi 3 and update the cmdline.txt file.

e We used “sudo nano /boot/cmdline.txt” command in all the hosts and added
“cgroup_memory=1 cgroup_enable=memory” on the end of the first line and save
the file.

P5 C:\Usershashle» ssh pifgk3smaster.local
pigk3smaster.local's password:

sudo nano fboot/cmdline.txt

e Now reboot using “sudo reboot” and start again.

5.2. Setting up k3s cluster
e SSH into master node, k3smaster
e Use the command:
curl -sfL https://get.k3s.io | sh -s - --docker

curl -sflL https://get.k3s.io | sh -s - --docker
Finding release for channel stable
Using v1.25.6+k3s1 as release
Downloading hash https://github.com/k3s-io/k3s/releases/download/v1.25.6+k3s1/sha256sum-arm64.txt
Skipping binary downloaded, installed k3s matches hash
Skipping installation of SELinux RPM
Skipping /usr/local/bin/kubectl symlink to k3s, already exists
Skipping /usr/local/bin/crictl symlink to k3s, already exists
Skipping /usr/local/bin/ctr symlink to k3s, command exists in PATH at /usr/bin/ctr
Creating killall script /usr/local/bin/k3s-killall.sh
Creating uninstall script /usr/local/bin/k3s-uninstall.sh
env: Creating environment file /etc/systemd/system/k3s.service.env
systemd: Creating service file /etc/systemd/system/k3s.service
systemd: Enabling k3s unit
symlink /etc/systemd/system/multi-user.target.wants/k3s.service » /etc/systemd/system/k3s.service.
systemd: Starting k3s

e After successful run, this will start K3S service and it will automatically create few
configurations file as well.

e Now check if the master node is ready using the command:
sudo kubectl get nodes -0 wide

er sudo kubectl get nodes -o wide
STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE KERNEL-VERSION CONTAINER-RUNTIME

Ready control-plane,master 3m34s v1.25.6+k3s1 192.168.8.10 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl

9|Page
Cloud Computing Project Report — WS22/23

e To add agent or worker nodes, first we will generate token from master, this token
will then be used by all agent nodes while creating the K3S cluster.

e Run below command and save the generated in a text editor:
sudo cat /var/lib/rancher/k3s/server/node-token

sudo cat /var/lib/rancher/k3s/server/node-token

K10f3626dc1a9<:5938cd797c18ca3f686f5f49553d'Fc26d712dfa@a05599238574a :server:fb384b99d23f3e36dc8aald54015846d

e Also check the Master IP using the command
hostname -I | awk ‘{print $1}'

pigk3smaster: hostname -I | awk '{print $1}’

192.168.0.10

e Now SSH each worker nodes and following command:
curl -sfL https://get.k3s.io | K3S_URL=https://<Master_IP>:6443
K3S_TOKEN=<token_generated_from_master> sh -s - --docker

i@ksworke curl -sfL http://get.k3s.io | K3S_URL=https://192.168.0.10:6443 K3S_TOKEN=K10f3626dc1a9c59aBcd797c18ca3f686f5f49553dfc26d712dfaPa@5599230574a: : server: fb384b99d23f3e36dcBaald54015846d sh -s - --docker
[INFO] Fmdmg release for channel stable

INFO] Using v1.25.6+k3s1 as release

INFO] W i https://github.com/k3s-io/k3s/releases/download/v1.25.6+k3s1/sha256sum-arm64. txt

[INFO] Downloading binary https://github.com/k3s-io/k3s/releases/download/v1.25.6+k3s1/k3s-arm64

[INFO] Verifying binary download

INFO] Installing k3s to /usr/local/bin/k3s

INFO] Skipping installation of SELinux RPM

[INFO] Creating /usr/local/bin/kubectl symlink to k3s

[INFO] Creating /usr/local/bin/crictl symlink to k3s

INFO] Skipping /usr/local/bin/ctr symlink to k3s, command exists in PATH at /usr/bin/ctr

INFO] Creating killall script /usr/local/bin/k3s-killall.sh

[INFO] Creating uninstall script /usr/local/bin/k3s-agent-uninstall.sh

[INFO] env: Creating environment file /etc/systemd/system/k3s-agent.service.env

INFO] systemd: Creating service file /etc/systemd/system/k3s-agent.service

[INFO] systemd: Enabling k3s-agent unit

reated symlink /etc/systemd/system/multi-user.target.wants/k3s-agent.service » /etc/systemd/system/k3s-agent.service
[INFO] systemd: Starting k3s-agent

e Now repeat this for all 3 worker nodes.

e Once done our K3S cluster is ready and we can check again in master node by using
the command:
sudo kubectl get nodes -0 wide

sudo kubectl get nodes -o wide
STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
Ready control-plane,master 30m v1.25.6+k3s1 192.168.0.10 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl

Ready <none> 3m5s v1.25.6+k3s1 192.168.0.13 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl
Ready <none> 3m5s v1.25.6+k3s1 192.168.0.12 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl
Ready <none> 2m54s v1.25.6+k3s1 192.168.0.11 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl

5.3. Setting up kubectl on the local computer
This is an optional step which we followed and is not mandatory. By configuring the
kubectl on our local machine, we can access our cluster locally and need not SSH
every time.
e SSH into master and run the command:
sudo cat /etc/rancher/k3s/k3s.yaml
e Copy the content of this file and into local file kubeconfig. In this file update the
localhost IP to the Master node IP.
e Now the cluster should be accessible from our PC using the kubectl commands.
kubectl get nodes -0 wide

PS C:\Users> kubectl get nodes wide
STATUS ROLES VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
Ready control-plane,master v1.25.6+k3s1 192.168.0.10 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl

Ready <none> v1.25.6+k3s1 192.168.0.11 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl
Ready <none> v1.25.6+k3s1 192.168.0.12 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl
Ready <none> v1.25.6+k3s1 192.168.0.13 <none> Debian GNU/Linux 11 (bullseye) 5.15.61-v8+ docker://20.10.5+dfsgl

10| Page
Cloud Computing Project Report — WS22/23

6. REST API

The backend application is to save and retrieve data for images detected by the sensor node.
This means that the system is designed to receive data from the sensor node, store it in a
database or other persistent storage, and allow the retrieval of that data as needed.

The use of Java and Spring Boot framework in this system ensures that it is efficient, scalable
and secure, making it well suited to handle large amounts of data and to provide a stable and
reliable service.

Technologies Used

e Java: The application is designed on Java programming language with version 11. The
use of Java 11 provides access to a rich set of libraries and frameworks, allowing to
create and scalable applications with ease.

e Maven: The application is also a Maven project, which means it is built and managed
using the Apache Maven build automation tool. It provides a standardized way to
manage dependencies, build the application and manage the development process.

e Hibernate: The system uses Hibernate, an Object-Relational Mapping (ORM)
framework, to interact with the database. Hibernate provides a convenient way to map
Java objects to database tables and vice versa, allowing the application to perform
database operations without writing a raw SQL code.

e Spring Boot: The system is built using the Spring Boot Framework, version 2.7.5. It is
a widely used framework for building web applications that provides a number of
benefits, including ease of development and improved performance. With version 2.7.5,
the developers will have access to the latest features and bug fixes, ensuring that the
application is stable, efficient, and secure.

e Docker: A containerization technology used to deploy and run software applications in
isolated environments, providing benefits such as isolation, portability, scalability,
reproducibility, and automation.

e Postgres: A widely used and open-source relational database management system used
to store and manage data.

e REST API: A standard for building web APIs that allows the backend application to
interact with other systems over the internet.

e Slack: A communication channel to provide notification for the detected rat images.

APIs:
POST /image/upload

The goal of this REST API is to receive an image detected by the sensor node and save it in
the database for the future retrieval. It accepts the file in the RequestParam as a Multipart file
and persist it into postgres database. After saving the data, it is also responsible to call slack
api to provide the notification details for the rat detection.

11|Page
Cloud Computing Project Report — WS22/23

Upload Image Cloud

v ese Vi

Tests Settings Cookies

GraphQL

DESCRIPTION Bulk Edit

The purpose of this REST API is to provide the details of the saved images in the database to

POST v 192.168.178.34:8083/image/upload
Params Authorization Headers (8) Body e Pre-request Script
none @ form-data x-www-form-urlencoded raw binary
KEY VALUE
image carsmall.jpg X
GET/image/list
the client.
GET Jimage/list
Parameters

Mo parameters

Responses

Code Description

200

OK

Example Value | Schems

1

“createdDate”: “string”,
“confidencelevel=: o,
“status": true

GET/image/{id}

Try it out

Links

Mo links

This API provides the actual detected image to the client. It accepts id of the image in the
PathVariable for which the backend application executes the query to fetch the specified image

in the database and provides it to the client side.

Cloud Computing Project Report — WS22/23

12| Page

GET Jfimage/{id}

Parameters Cancel

Name Description

jd * required

2

Links

No links

=]

Example Value | Schems

[
1

Local Docker Deployment

The backend application relies on the PostgresSQL container; thus, we employed a docker
compose environment file to generate an image and execute the application within a docker
container.

Steps in building application image and running in container.
e From the code base root directory, creating an application jar with the command

mvn clean install -DskipTests

Terminal:

1T

ault-install) @

ar

13 |Page
Cloud Computing Project Report — WS22/23

e Run the docker compose file with the command
docker-compose up

Terminal:

5 D

e Postgres image and backend application will be created respectively and runs on the
specified ports.

cloudapi
RUNNING

postgres postgres
RUNNING PORT: 5432

cloud-app-container cloud-app:1.0
RUNNING PORT: 8083

14| Page
Cloud Computing Project Report — WS22/23

Finally, the private dockerhub repository was created to host the image of our own build
application. The tag of the application image was created and pushed into the repository.

R R R RRRRRRRRRRRRRRRRREREERRRRR
PS C:\Users\anish> docker tag cloud-app:1.0 anishpokhrel/cloud-tag
PS C:\Users\anish> docker images

REPOSITORY TAG IMAGE ID CREATED
anishpokhrel/cloud-tag latest b877f7bd299%e 3 minutes ago
cloud-app 1.0 b877f7bd299%e 3 minutes ago
postgres latest 2celdf03f420b 2 weeks ago

PS C:\Users\anish> docker push b877f7bd299e

Using default tag: latest

The push refers to repository [docker.io/library/b877f7bd299e]

An image does not exist locally with the tag: b877f7bd299e

PS C:\Users\anish> docker push anishpokhrel/cloud-tag

Using default tag: latest

The push refers to repository [docker.io/anishpokhrel/cloud-tag]
OU43ceele682c: Pushed

0f96f7b5a99a: Layer already exists

6313c6dd9056: Layer already exists

ee9872eaB8036: Layer already exists

b7b6064a28a9: Layer already exists

887Uc5d5dfla: Layer already exists

595a656dd8ef: Layer already exists

bd245ecu9ee5: Layer already exists

latest: digest: sha256:4d6b5e6ef0daf809f7blff6bcda®lcd71a0fa759dc6bf37c265ae00f3e5cefe7 size: 2007
PS C:\Users\anish> |

anishpokhrel / cloud-tag . .
0 # 30 Public
Contains: Image | Last pushed: 10 days ago ﬁ, @

7. Web Application

The frontend application will fetch data from REST API call and then display the
corresponding data into the website. Flask is a micro web framework for Python that provides
minimal functionality for building web applications; and Jinja is a fast, expressive, and
extensible templating engine for Python that is used in Flask to render HTML templates. These

tools,

when combined, provide a scalable and flexible web development solution with an

emphasis on simplicity and ease of use.

Technologies Used

Python: The application is designed using Python programming language to provide
a scalable and flexible web development solution with an emphasis on simplicity and
ease of use.

Flask: Flask is a micro web framework for Python that provides minimal
functionality for building web applications,

Jinja: Jinja is a fast, expressive, and extensible templating engine for Python that is
used in Flask to render HTML templates

Docker: Docker for deploying the application on different environments.

15| Page

Cloud Computing Project Report — WS22/23

Local Setup

python -m venv .venv

e Change the path to below to activate the created virtual environment and hit enter:
A\.venv\Scripts\activate

e Create a requirements.txt file that will contains the list of libraries required for the
application:

e Type below command to install the required python libraries and hit enter:

pip install -r .\requirements.txt

e Run the view.py file using command
python view.py runserver

1
1
IngCol4) Tbszed UM CRIF () Phon 3n0fvewiveny @colve & O

¥ reveor
. @00 ¢ python File (Haskir-main)

8. Slack Notification Service

The notification service was implemented by integrating slack webhook in the backend
application. For every image availability, the backend application saves the data to database
and notifies the detection details by sending post request through slack webhook. In addition,
we configured notification channel through slack web.

16| Page
Cloud Computing Project Report — WS22/23

Integration settings

Post to channel

Messages that are sent to the incoming # rat-detection-notification .
webhook will be posted here.

or create a new channel

Webhook URL

Send your JSON payloads to this URL. https:/hooks slack.com/services/TO4E6Q6PCEK/B04L50URREF/ClecTuuvu2eK
Show setup instructions

Copy URL # Regenerate

9. Deployment

9.1. Deploying Machine Learning model on Sensor Node

Our machine learning model to detect rats is ready and now we can deploy it on our sensor
node.

First, we need to download YOLOV7 folder from the Google Drive and copy it to a pen drive.
We can clear certain files to reduce the size of the YOLOv7 folder such as, data\train &
data\val folders containing training and validation data. After this is done, we insert the pen
drive in the Raspberry Pi 4 USB port and copy the YOLOv7 folder onto the Desktop.

The YOLOV7 folder has a python script names detect.py which can be used to run detections.
Before this can be done, we first need to install libraries required by this script on the sensor
node, as we did in Google Colab environment.

Navigate to the folder where YOLOv7 folder was copied and run the command to install
libraries as shown below,

pi@raspberrypi

pi@raspberrypi

We are ready to run live detection now. Using the below command, we can start live rat
detection,

python detect.py --weights best.pt --conf 0.5 --source 0 --no-trace --exist-ok

The command again takes few arguments which define the mode in which the detection is ran
for ex.,

--weights: to point to the best.pt weight file,
--conf: to define the minimum confidence level for detections,
--source: to define the input source (0 is to access camera),

--no-trace: to disable tracing during detection, etc.,

17 |Page
Cloud Computing Project Report — WS22/23

The below screenshot shows verbose logs after detection is started. At the bottom we see the
detections getting logged in the format,

<source>: <rat count>

The detected rat images at the sensor node should be sent over to REST API running at the
K3S cluster. To do this, we wrote another python script that dispatches images as soon as it is
detected and saved on the disk in the folder /home/pi/Desktop/Rat_Detection/Detections. The
python script dispatch.py sends the detected rat images to the URL mentioned in the file
/home/pi/Desktop/yolov7/URL.txt. If the dispatch was successful, the image is backed up to
/home/pi/Desktop/Rat_Detection/Detections/Backup. If the dispatch was unsuccessful due to
connectivity issues or some other reason, the dispatch script waits until connectivity is up again.

To automate the detection and dispatch processes, we wrote a makefile which eases the
command calling process.

makefile

detect:

python detect.py --weights best.pt --conf 0.5 --source © --no-trace --exist-ok
dispatch:

python dispatch.py

Using this makefile, we can call the detection & dispatch scripts without passing any arguments
as shown below,

pi@raspberrypi

pifraspberrypi

18| Page
Cloud Computing Project Report — WS22/23

9.2. Setting up Postgres Database in the cluster
e The main advantage of having a PV is it creates a permanent storage and data will
remain in the storage even if the pods are deleted.
e And with the help of PVC, users can request and consume PV resources.
e We have deployed the Postgres using Kubernetes manifest files:

postgrespvcpv.yaml, postgresconfig.yaml, postgresdeployment.yaml

PS C:\Users\ashle\k3s\db-postgres> kubectl apply postgresconfig.yaml
configmap/postgres-config created

PS C:\Users\ashle\k3s\db-postgres> kubectl apply postgrespvcpv.yaml
persistentvolume/postgres-pv-volume created

persistentvolumeclaim/postgres-pv-claim created
C:\Users\ashle\k3s\db-postgres> kubectl apply postgresdeployment.yaml

deployment.apps/postgres created

PS C:\Users\ashle\k3s\db-postgres>

e Once deployment is done, the pod gets created and starts running, then we hosted
Postgres service using service file: postgresservice.yaml.

PS C:\Users\ashle\k3s\db-postgres> kubectl apply postgresservice.yaml
service/postgres created

e Asaresult we were able to see all the services and deployments running the command:
kubectl get all

PS C:\Users\ashle\k3s\db-postgres> kubectl get all
NAME READY STATUS RESTARTS AGE
pod/postgres-654ddd49b4-tmpdn 1/1 Running © 32m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/kubernetes ClusterIP 10.43.0.1 <none> 443 /TCP 98m
service/postgres LoadBalancer 10.43.161.198 192.168.0.10,192.168.0.11,192.168.0.12,192.168.0.13 5432:31595/TCP 2m21s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/postgres 1/1 1 1 32m

NAME DESIRED CURRENT READY AGE
replicaset.apps/postgres-654ddd49b4 1 1 1 32m

9.3. Deployment of Backend Application

e After successful deployment of database service, we proceed to deploy backend
application.

e The previously hosted docker images in private dockerhub repository were pulled in
each worker nodes.

D sworkerl: sudo docker pull anishpokhrel/cloud-tag:latest
latest: Pulllng from anishpokhrel/cloud-tag
114ba63dd73a: Already exists
bc@b8aBacead: Already exists
adeabdlee679: Already exists
: Already exists
433ac3e3efad: Already exists

e4bbe8c34c85: Already exists
af7eSc7f7eec: Already exists
5980d37bc869: Pull complete
: sha256:4d6b5ebef@daf889F7blff6bc4adlcd71aBfa759dcbbf37c265ae@Bf3e5cefe?
: Downloaded newer image for anishpokhrel/cloud-tag:latest
docker.io/anishpokhrel/cloud-tag:latest

e When the images are ready, we deploy and start the backend application using
respective .yaml files.

19| Page
Cloud Computing Project Report — WS22/23

INAME
service/kubernetes
service/cloud-app
service/postgres

TYPE
ClusterIP
LoadBalancer
LoadBalancer

INAME
deployment.apps/postgres
.apps/cloud-app

READY
1/1
1/1

.apps/postgres-654ddd49b4
.apps/cloud-app-57d856849

9.4. Deployment of Web Appli

READY
1/1
1/1

STATUS
Running
Running

(°]
(<]

CLUSTER-IP
10.43.0.1
10.43.12.165
10.43.161.198

UP-TO-DATE
13
1

1
1

DESIRED
1
x

1
1

cation

RESTARTS

AVAILABLE

CURRENT

We can see the successful deployment and service as shown

PS C:\Users> kubectl get all
INAME

pod/postgres-654ddd49b4-tmp4dn
pod/cloud-app-57d856849-2q1g8

AGE
3h44m
31m

EXTERNAL-IP

<none>
192.168.6.10,192.168.0.11,192.168.0.12,192.168.0.13
192.168.0.11,192.168.0.12,192.168.0.13

AGE
3h44m
31m

READY
1
1

AGE
3h44m
31m

PORT(S)
443 /TCP
8083 :30656/TCP
5432:31595/TCP

Similarly, we deploy web applications by pulling the docker images into worker nodes

and executing deployment and service files in master node for web application as well.

PS C:\Users\ashle> kubectl get all
NAME
pod/flask-app-587d4c74d7-sqkb9
pod/postgres-654ddd49b4 -tmpdn
pod/cloud-app-57d856849-xm9js

1/1
1/1
1/1

TYPE
ClusterIP
LoadBalancer
LoadBalancer
LoadBalancer

ce/f

! <-app
ce/cloud-

app
READY
eployment.apps/flask-app 1/
eployment.apps/postgr 1
eployment.apps/cloud-app 1

7

Al
1
1
1

/
7
!

37d4c74d7
postg 54ddd49b4
fcloud-app-57d856849

10. Results

READY

STATUS
Running
Running
Running 14
CLUSTER-IP
18.43.0.1
10.43.161.198
10.43.40.195
18.43.169.236

UP-TO-DATE
1
1
1

1
1
1
DESIRED

1
1
1

EXTERNAL-IP

192.168.0.18,192.

AVATLABLE

CURRENT

After successful hosting, we can find the below logs as shown

RESTARTS
2 (9d ago)
3 (9d ago)

(4d2h ago)

443/

5432

PORT(S

)
P
1595/TCP

5000:38905/TCP

8o

AGE
9d

1ed
1ed

READY
1
1
1

8276/TCP

After deploying all the services successfully, the cluster is ready for use. To check the final
results, we run the live detection on the sensor node, the camera present will capture the live
stream and whenever a rat is detected and is above the confidence level, the frame is captured

and locally stored.

Cloud Computing Project Report — WS22/23

20

|Page

The stored images are dispatched to the REST API as and when there are detections.

The images received by the REST API are stored in Postgres database and a Slack notification
is generated.
6 Notification Bot App 7:21 pM
“0 ALERT!!! 2 rats Detected with Confidence Level : 0.65 at 2023-01-29 19:21:08.933354. Check the website for more details. =
ALERT!!! 1 rat Detected with Confidence Level : 0.66 at 2023-01-29 19:21:14.018732. Check the website for more details. =
ALERT!!! 1 rat Detected with Confidence Level : 0.52 at 2023-01-29 19:21:25.715930. Check the website for more details. =
ALERT!!! 1 rat Detected with Confidence Level : 0.71 at 2023-01-29 19:21:38.093022. Check the website for more details. =

The web application can be accessed to see all the history of rat detection images along with
their timestamp and confidence level.
¢ G O A Notsecure | 192.168.0.10:5000/rat page 2 % » 0@ !

Rat Detection

Show[10_v | entries searcn: [
T = [e | =) E=T—

105 Image2023-01-29 01:32.00.130912 jog image/jpg 086 2023-01-29T01:32:00.190912 “

106 Image2023-01-23 01.32.11.958397 jog image/jpg 083 2023-01-29T01:32:11.858397 “

107 Image2023-01-29 01:33.02.377233 jog image/ipg 052 2023-01-29T01:33:02.377233 “

108 o1 X image/jpg 091 2023-01-29T01:33 “

109 Image2023-01-29 01:34:16.716504 jog image/ipg o 2023-01-29T01:34:16.716504 “

10 Image2023-01-29 19:21.06.933354 og Image/pg 065 2023-01-29T19.21.06.533354 “

1 \Mage2023-01-23 13 2114016732 jpg \magelpg 066 20230129719 21 14018752 “

1z \Mage2023-01-28 19 2125 715930 jpg imageipg 082 2023012871921 25 715550 n

13 \Mage2023-0128 1921 38.033022 jpg f—— o 20230129718 21 36.085022 “

14 Image2023-01-29 15 21 50 260188 jpg image/ipg 3 2023-01-26T18 21 50.260188 “

1

Snowng 110 10 of 46 entnes

Detected Image

21 |Page
Cloud Computing Project Report — WS22/23

References

1. https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-
76224788576¢
https://www.containigq.com/post/deploy-postgres-on-kubernetes
https://github.com/WongKinYiu/yolov7
https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-
model-with-yolov7/
https://www.raspberrypi.com/documentation/computers/camera_software.html
https://www.raspberrypi.com/documentation/computers/configuration.html
https://www.raspberrypi.com/documentation/computers/os.html
https://docs.docker.com/docker-hub/

. https://www.baeldung.com/rest-with-spring-course

. https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-
flask-in-python-3

12. https://flask.palletsprojects.com/en/2.2.x/quickstart/

13. https://www.kite.com/blog/python/flask-tutorial/

14. https://kubernetes.io/

akrwn

=

= O

22| Page
Cloud Computing Project Report — WS22/23

https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://medium.com/thinkport/how-to-build-a-raspberry-pi-kubernetes-cluster-with-k3s-76224788576c
https://www.containiq.com/post/deploy-postgres-on-kubernetes
https://github.com/WongKinYiu/yolov7
https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://www.analyticsvidhya.com/blog/2022/08/how-to-train-a-custom-object-detection-model-with-yolov7/
https://www.raspberrypi.com/documentation/computers/camera_software.html
https://www.raspberrypi.com/documentation/computers/configuration.html
https://www.raspberrypi.com/documentation/computers/os.html
https://docs.docker.com/docker-hub/
https://www.baeldung.com/rest-with-spring-course

