
Next evolution of abstracting
away infrastructure?

Guest Lecture
Cloud Computing SS2023
Frankfurt University of Applied Sciences

21st June 2023

ChatGPT was not used to create this presentation

Cloud Native

About

• Diploma in computer science with focus on networking
technologies and operating systems

• Studied philosophy with focus on normative & meta ethics
• 20 years of experience in the IT industry
• Obsessed with innovation, automation & tooling
• Leading an international team of cloud-, devops-,

kubernetes-, software engineers

Fabian Dörk
Director Cloud Native Services
Claranet GmbH

At a glance

• Founded in 1996
• Owner- managed
• 600 Mio € annualised revenues
• More than 10.000 B2B customers
• Global reach with operations in 11 counties
• More than 3.500 employees

We are experts for modernizing and running
critical applications, data and infrastructures 24/7

About: Claranet group

About: Claranet DACH

AddOn: Experten für
SAP Services

Workplace & Collaboration
Trainings

KHETO: Experten für
SAP Business Intelligence
SAP Business Warehouse

SAP Analytics

200+
Mitarbeitende

2000
Claranet Gründung

in Frankfurt

5
Standorte
in DACH

2
Rechenzentren
in Deutschland

Claranet: Experten für
Cloud Services

Container/Kubernetes
Cyber Security

Network Services

Highly accredited with cloud vendors
Compliance

ISO
27001:2017
27017:2015
27018:2014

ISO
22301:2019

ISO
9001:2015

Zertifizierungen und Partnerschaften beziehen sich u.U.
nur auf einzelne Unternehmen der Claranet Gruppe

Partnerships

Managed Services
Microsoft 365
Security / Endpoint Management
Identity Management

Managed Services
Consulting Services

Business Intelligence
Security Services

SAP on Cloud

Security Assessments
Penetration Testing & Red Teaming
Security & Compliance Consulting
SOC Services: EDR, MDR
Penetration Testing as a Service

Microsoft
SAP
AWS
Linux
Cyber Security

Cloud Migration
Cloud Management

Managed Applications

Cloud Connect
MPLS
IPsec
SSL

Network Services
Managed Container Applications

Managed Kubernetes
DevOps Automation

Cloud Native Strategies

AWS, GCP, Azure
Private Cloud
Hybrid Cloud

Claranet ServicesClaranet Service Portfolio

Cloud Platforms

Cloud Services Cyber Security

Cloud Native

Training

Workplace & CollaborationSAP

24/7
Business SLA, Monitoring, Reporting,

Service Management

SAP

What expects you in this lecture?
• Cloud is everywhere and it is well researched, well discussed, and well defined. Beyond the sheer fact of

using someone elses computers new approaches emerging every day. One of them is the cloud native
movement. This lecture gives a little bit of historic background where we are coming from and why
something like cloud native exists in order to understand what the distinct traits compared to cloud based
workload are.

• Aim of this lecture are
- to make ourselves familiar with the underlying concepts
- to realise what different kinds of abstractions Kubernetes introduces
- to judge if the introduced complexities are for the good or for the bad

• Disclaimer: It is an opiniated view on Cloud Native, because we will focus on Kubernetes as the driver
for cloud native approaches only. Serverless is for another occasion to be discussed.

Poll

Who heard of Kubernetes outside of this lecture?

Who already gained real-world experience with Kubernetes?

Who thinks Kubernetes is a useful technology?

@theunsteady5

https://unsplash.com/photos/4V1dC_eoCwg

What is Cloud Native?

C
lo

ud
-N

at
iv

e

• Software generally considered as competitive advantage and therefore as
essential mean for value creation

• Software development enters center stage
• Agility fosters innovation and flexibility
• Microservices architecture decouples subsystems which then could be

developed, released, deployed independently
• Parallelization leads to increased pace
• Infrastructure abstraction enables developers to focus on value creation

Premises

C
lo

ud
-N

at
iv

e

Definition: Cloud Native

Cloud Native
is structuring teams, culture, and technology
to utilize automation and architectures
to manage complexity and unlock velocity.

— Joe Beda (co-founder of Kubernetes)

C
lo

ud
-N

at
iv

e

Guiding principles

• Design for performance (responsiveness, concurrency, efficiency)

• Design for automation (of infrastructure and development tasks)

• Design for resiliency (fault-tolerance, self-healing)

• Design for elasticity (automatic scaling)

• Design for delivery (minimise cycle time, automate deployments)

• Design for observability (cluster-wide logs, traces, and metrics)

A bit of history

Downsides:

• Blame game: “It is your machines,
not my code!”

• Way too slow

Downsides:

• Demarcation line between Ops and
Dev remains blurry

• Still too slow

Downsides:

• Puts lots of burden onto developers

• Alignment across teams difficult
without trading pace and flexibility

• Does not scale!

Downsides:

• Considerable complexity

• Day 2 operations covered by
developers

• Who is responsible for compliance
and security?

• Focus on value creation jeopardized

Cloud Native Reference Model

Application first,
Infrastructure second!

Divide & Conquer: Decomposition of monoliths into microservices

Decoupling of software subsystems to minimise deadlocks and increase pace

Event-driven, asynchronous, scale-out technologies

Effectiveness over Efficiency!

Agile teams develop, test, release and deploy software independent
from each other

Agility promotes autonomy and decentralized decision-making

Gaining pace is the most important priority

Freeing developers from infrastructure and day 2 operations

Embrace GitOps!

Git is the single source of truth

Shipping software as containers

End to end automation from build, test, integration,
delivery, deployment

Autonomy also in regard to infrastructure: software
developers can easily deploy new services

Only way to introduce changes is through pipelines
and well-defined gates

Versioned infrastructure expressed as declarative
definitions of target state

Decouple workload
from infrastructure!

Abstraction layer provides
translation & realization

Kubernetes as a platform to
build platforms

Platform sets boundaries,
ensures alignment, enforces
policies, checks compliance,
and mitigates security risks

Tightly couple DevOps and DevOps!

Specialized, cross-functional team operates platform
and microservices stack

Co-management via shared responsibility model
based on DevOps lifecycle

DevOps/SREs on both ends cooperate

Platform itself is subject of the software development
lifecycle and requires permanent advancements and
modifications

Application first, infrastructure second!

Cloud
Native

DevOps
Agile methodology rooted in the idea of cross-functional

teams with shared responsibilities throughout lifecycle
continuously producing value to the customer

Microservices
Decomposition of monolithic applications into

smaller building blocks to open up parallel
development work streams

12 Factor App
Methodology for building SaaS apps that

are suitable for deployment on modern
cloud platforms

API First
A product centric approach to designing and

developing consistent and reusable APIs which
accelerates the development process, ensures

interoperability, and fosters innovation

Kubernetes
Platform to deploy any set of applications
shipped as containers transparently across a
fleet of compute nodes and run them reliably
and scalable

Continuous Delivery
Accelerate value delivery by leveraging
automation to reliably push code into
production continuously in a greater
frequency

Infrastructure as Code
Managing and provisioning of cloud resources through
declarative machine-readable definitions maintained in
version control systems

Cloud
Flexible usage of infrastructure through automation

to build highly scalable stacks

Containers
Ship applications as standardised packages and run
them as portable and lightweight operational unit with a
well-defined interface

Service Meshes
A tool for adding observability, security, and reliability features by

transparently inserting this functionality at the platform layer

Cloud Service Models

IaaS KaaS CaaS PaaS FaaS SaaS
Business Logic

Data

Application / Function

Deployment Pipelines

Application Runtime

Managed Services

Platform Services

Orchestration

VMs, Operation System

Virtualization
Servers, Storage, Network

Datacentre
VMs Nodes Container Application Events & Functions Transactions

C
on

tro
l

Managed by cloud provider

Hype Cycle for Cloud Platform Services, 2022

Hype Cycle for Agile and DevOps, 2022

Kubernetes architecture

Containers as universal shipping format

• Lightweight os-level virtualization

• Isolation of resources (cpu, memory,
storage, network)

• Initially based on Linux cgroup v2,
namespaces, and union filesystems

• Standardized interface and format
(OCI)

• Clear demarcation line between Dev
and Ops

• Tight coupling of application and
runtime (!)

So, what the heck is Kubernetes?
• „Kubernetes is a portable, extensible, open-source platform for

managing containerized workloads and services, that facilitates
both declarative configuration and automation.“ *

• Trivia
- Name originates from Greek, meaning helmsman

or pilot ([ˌkuːbərˈnetiːz])
- Abbreviated by k8s
- Open-sourced in 2014 by Google
- Hit the first production-grade version 1.0.1 in July

2015
- Current version 1.27.1
- Built upon 20 years of experience Google has

with running production workloads at planet-scale

• CNCF is a vibrant community

• Papers
- „Large-scale cluster management at Google with Borg“

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David
Oppenheimer, Eric Tune, John Wilke; Proceedings of the
European Conference on Computer Systems (EuroSys), ACM,
Bordeaux, France (2015)
https://research.google/pubs/pub43438/

- „Borg, Omega, and Kubernetes - Lessons learned
from three container-management systems over a
decade“
Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer,
John Wilkes; ACM Queue Volume 14, Issue 1, pp 70–93 (2016)
https://dl.acm.org/doi/10.1145/2898442.2898444

https://kubernetes.io/docs/concepts/overview/
https://research.google/pubs/pub43438/
https://dl.acm.org/doi/10.1145/2898442.2898444

https://kubernetes.io/

https://kubernetes.io/

Kubernetes high level Architecture

• Highly distributed system
- Control loop pattern
- Asynchronous / event-driven
- Connect to API and listen to events

• Core of Kubernetes: powerful API
- Every aspect is represented as API objects
- Stores the serialized state of objects by writing them

into etcd
- Exposes REST API
- Uses gRPC and protobuf for intra-cluster

communication
- Highly extensible

• Cloud provider specific integration due to
well defined interfaces
- CRI – Container Runtime Interface
- CNI – Container Network Interface
- CSI – Container Storage Interface

Kubernetes API: objects represent infrastructure

Kubernetes API: resources and objects

Kubernetes API: processing pipeline

https://medium.com/@danielepolencic/the-kubernetes-api-architecture-81da0ede0e34

https://medium.com/@danielepolencic/the-kubernetes-api-architecture-81da0ede0e34

Underlying Concepts

K8s and the state: immutable infrastructure
• No in-place modifications possible any more
• CRUD -> Update operations yields Delete and Create

operations
• Strict separation between stateless components and

persistency layer
• Requires a different operational model: cattle over pets

• Why?
- Fully versioned infrastructure
- End to end testing of infrastructure stacks
- Well-known server states
- No configuration drifts
- Fewer deployment failures
- Easy rollbacks
- Reduced complexity
- Reduced risk of unwanted side effects

https://software.danielwatrous.com/immutable-infrastructure-production-release/

https://software.danielwatrous.com/immutable-infrastructure-production-release/

K8s and the state: declarative code
• Declarative API

- Express desired state in YAML
- Controllers taking care for the fulfillment

• Decouples user from implementation
details

• Frees user from dealing with state
• Reduces complexity for the user

Imperative Declarative

Specify the how to get the
desired result by providing

detailed instructions

Specify the what result is
expected from the program

Direct the control flow of the
program

Define the expected result
without directing the

program's control flow

The developer makes the
major decisions about how

the program works

The compiler makes the
major decisions about how

the program works

Code needs to deal with
current state

Code only needs to state the
desired state; controller

implementation needs to deal
with state

complex code simple and clean code

It uses mutable variables,
i.e., the values of variables
can change during program

execution.

It uses immutable variables,
i.e., the values of variables

cannot change

K8s and the state: controller

K8s and the state: common controllers
• Scheduler

- watches for newly created Pods with no assigned node, and selects a node for them to run on
- Factors taken into account for scheduling decisions include: individual and collective resource requirements,

hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, and deadlines

• Controllers
- Node controller: Responsible for noticing and responding when nodes go down
- Job controller: Watches for Job objects that represent one-off tasks, then creates Pods to run those tasks to completion.
- EndpointSlice controller: Populates EndpointSlice objects (to provide a link between Services and Pods)
- ServiceAccount controller: Create default ServiceAccounts for new namespaces.

• Cloud Controllers
- Node controller: For checking the cloud provider to determine if a node has been deleted in the cloud after it stops responding
- Route controller: For setting up routes in the underlying cloud infrastructure
- Service controller: For creating, updating and deleting cloud provider load balancers
- Ingress controller: For creating HTTP routing rules
- DNS Controller: For creating A records in managed DNS zones to route traffic onto a certain domain

K8s as framework: operator pattern
• Automate repetitive operational tasks
• Extend API and introduce Custom Resources
• Implement custom controllers
• Listening for appropriate events
• Implement operational procedures as code

• Lifecycle management through CRDs versioning
• Examples

- Let’s Encrypt
- Prometheus Operator
- Argo CD
- Postgres Operator
- Istio

K8s as framework: Cluster API

Utilize the operator pattern
to manage k8s cluster with
the help of k8s

Cluster as a set of
machines and underlying
infrastructure represented
as API objects

https://itnext.io/multi-cloud-and-multi-cluster-declarative-kubernetes-cluster-creation-and-management-with-cluster-6df8efdc2a89

https://itnext.io/multi-cloud-and-multi-cluster-declarative-kubernetes-cluster-creation-and-management-with-cluster-6df8efdc2a89

• Kubernetes extensibility is the
reason why there is no such
things as forks

• Projects
- VMware Pacific: use k8s to control

vSphere
- Cross plane: use k8s

for provisioning cloud
services

K8s as framework: extensibility

https://kubernetes.io/docs/concepts/extend-kubernetes/

Client plugins

API
• Aggregation
• Custom Resource

Definitions
• Authentication
• Authorisation
• Admission Control

Infrastructure
• Storage
• Compute
• Services
• Load Balancer

Scheduler

Controllers

Device pluginsNetwork
plugins

https://kubernetes.io/docs/concepts/extend-kubernetes/

K8s as framework: distributed systems
• What is a distributed system?

- “The components of a distributed system interact with one another in order to achieve a common goal. Three significant
challenges of distributed systems are: [1.] maintaining concurrency of components, [2.] overcoming the lack of a global
clock, and managing the [3.] independent failure of components.”
• Tanenbaum, Andrew S.; Steen, Maarten van (2002). Distributed systems: principles and paradigms. Upper Saddle River, NJ: Pearson Prentice

Hall. ISBN 0-13-088893-1. Archived from the original on 2020-08-12. Retrieved 2020-08-28.

• A consensus protocol is needed for coordinating a multi-agent system to ensure reliability in case of
failures. Consensus protocols allow a set of agents to agree on a shared state.

• Kubernetes uses etcd for storing API objects and for scaling the control plane
• Etcd implements Raft
• Raft is a consensus protocol which implemements a distributed state machine
• Raft provides

- leader election
- log replication
- cluster membership changes

• Kubernetes API provides
- Leases – represents the distributed lock which coordinates activities between members
- Endpoints - to represent set of candidates for becoming the leader
- ResourceVersions - Every API object has a unique ResourceVersion, and you can use these versions to perform

compare-and-swap on Kubernetes objects
- Annotations - Every API object can be annotated with arbitrary key/value pairs to be used by clients

https://github.com/etcd-io/etcd

https://github.com/etcd-io/etcd

Is it worth all the fuss?

"Most people are capable of building systems that are twice
as complex as the systems they are capable of maintaining.”

@casio_juarez

https://twitter.com/casio_juarez

C
lo

ud

En
vi

ro
nm

en
t

K
ub

er
ne

te
s

Pl
at

fo
rm

A
pp

lic
at

io
n

La
ye

r

etcd API

controller scheduler

Controller
Nodes

kubelet kube-proxy

dns container
runtime

Worker
NodesK

8S
C

LU
S

TE
R

CRI CNI CSI

Cloud Provider Integration

Auth / IAM

C
LU

S
TE

R

S
E

R
V

IC
E

S

Policies Registry Logging Metrics Backup

A
P

P
S

Black Box Self ManagedWhite Box Grey Box

D
A

TA
S

E
R

V
IC

E
S

KV MQRDBMS NoSQL Cache

C
lo

ud
 N

at
iv

e
St

ac
k

Ingress DNS Cert ManagerA
P

P
S

E
R

V
IC

E
S

Monitoring APM Security
Scanning

Identity (IAM) CredentialsRegistryStorageNetworksComputeVirtual
Machines Managed Services

C
LO

U
D

P
LA

TF
O

R
M

IN
FR

A
R

E
S

O
U

R
C

E
S

Security Services

D
E

V
O

P
S

S
E

R
V

IC
E

S
Managed Git Managed CD Code Security Service

Mesh
TracingAPI

GatewayC
LO

U
D

N
A

TI
V

E
S

E
R

V
IC

E
S

Service
Catalog

Why is Kubernetes that complex?
• We deliberately introduce complexity as a strategy to deal with complexity, but

complexity does not simply disappear, it merely moves between layers and parties
• Inherent nature of distributed systems
• Former application services went into the platform layer
• Extensibility is a two-edged sword
• Flexibility leaves a lot of knobs to turn
• Plethora of involved components
• Lifecycle management
- Each cluster component is subject of lifecycle mgmt
- Tight coupling of applications with runtime and dependencies puts developers in the drivers seat

Conclusions: complexity for the better or worse?
• Difficult to judge! By which standards by the way?
• TLDR; As always, it depends

• Occam's razor (principle of parsimony) transposed into this context: The simplest solution to
achieve a given goal is the best one
- Goal of having a generic platform -> Abstractions
- Goal of having a scaling platform -> Distributed System
- Goal of having a rich platform -> Breadth of involved technologies

• There are no perfect abstractions
- By definition abstractions are inductions from concrete many to theoretical few (see latin word abstrahere)
- See ISO OSI model: Send reliable TCP packets of unreliable IP datagrams
- “All non-trivial abstractions, to some degree, are leaky. Abstractions fail. Sometimes a little, sometimes a

lot.“ Joel Spolsky, The Law of Leaky Abstractions (2002)

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Conclusions: complexity for the good
• Harnessing immutable infrastructure paradigm reduces complexity
• Abstraction from infrastructure

- A developer never needs to login to a particular node any more
- But in order to assess performance, infrastructure categories are still relevant

• Allows to establish an explicit shared responsibility model between infrastructure-,
platform-, and software engineering

• Degree of automation allows new ways of thinking

Conclusions: strategic relevance
• Strategic relevance

- Kubernetes is more than only a container
orchestration engine!

- Universal control plane for consuming data center
services (compute, network, storage, IAM, resource
control, scaling)

- A platform to build platforms
- The operating system of the cloud
- Complexity shift from apps into the platform

• Key features:
- Decouples workload from infrastructure
- Enables differentiation and specialisation by

introducing well-defined and robust interfaces
- Portable across cloud vendors

• Recommended scenarios
- Boosts application modernisation

initiatives
- Map microservices onto a fleet of

compute nodes
- Build custom PaaS platform
- Operational framework for building

SaaS products
- Run AI stacks – batch training jobs
- Unified security layer
- Edge computing

• Bachelor- / Master theses
• Cloud Native Engineer
• Cloud Native Consultant
• DevOps Engineer
• Kubernetes Engineer
• Site Reliability Engineer

Claranet, a place for talented people, partner-
like customers, collaborative culture, personal
growth, innovative technologies, vibrant
international community

Wanna join the Cloud Native movement?

Check out https://www.claranet.de/jobs

https://www.claranet.de/jobs

