
C L O U D C O N S U L T I N G

THINKPORT

EVENT DRIVEN
ARCHITECTURE

THINKPORT

3

1. Scalability
2. Reusability
3. Time to Market
4. Flexibility

5. Automation

B e n e fi t sDISTRIBUTED SYSTEMS
T H I N K P O R T

Database Cluster

User
Service

Registration
Service

API Gateway

Account
 Service

Microservice Architecture

Payment
Service

External Service

C h a l l e n g e s
1. Tight Coupling
2. Data Consistency
3. Operation Overhead
4. Data Ownership
5. Blocking
6. Complex Team Communications
7. Complex system tests

THINKPORT

4

React i ve
Programming

THINKPORT

5

PUB/SUB systems
T H I N K P O R T

Database Cluster

User
Service

Registration
Service

API Gateway

Account
 Service

Microservice Architecture

Payment
Service

External Service

Database
Connect
Service

pub/sub system

1. Loose Coupling
2. No Bottleneck
3. Eventual Consistency
4. Data Ownership
5. Reactive Data Publishing
6. Non-Blocking
7. Processing on-demand
8. Short response times (reaction time)

A D VA N TAG E S

THINKPORT

6

EVENT
SOURCING

• Is a pattern for storing data as events in an
 append-only log

• By storing the events, it also keep the context of the
events

• An event represents a fact that took place

• Every change made is represented as an event, and
appended to the event log

• An entity’s current state can be created by replaying all
the events in order of occurrence

• The system information is sourced from the events

THINKPORT

7

EVENT SOURCING WITH A COMMIT LOG
T H I N K P O R T

Database Cluster

User
Service

Registration
Service

API Gateway

Account
 Service

Payment
Service

External Service

Database
Connect
Service

Distributed commit log

1. Audit
2. Time travel
3. Root cause analysis
4. Fault Tolerance
5. Event-driven architecture
6. Asynchronous first
7. Service Autonomy
8. Replay and Reshape
9. Observability
10. Occasionally connected
11. One way data flow
12. Legacy Migration

A D VA N TAG E S

Microservice Architecture

Data Gateway

Event
 history

THINKPORT

Stream
Processing

THINKPORTThe t ime value of data

How do we enable a real time plattform ?

THINKPORTLAMBDA ARCHITECTURE

Data Sources

Batch Layer

Serving Layer

Speed Layer

Query

Master Data

Data Stream

Key Factors

L a t e n c y
Fast Data Access if

required. Aggregated

View on masterdata.

S c a l a b i l i t y
Lambda Pattern allows for

clustered technologies that are

fault tolerant and horizontally

scalable.

C o n s i s t e n c y
Masterdata will eventually be

consistent since it is based on the

stream of events.

THINKPORTBatch-driven

Buyer

Merchan
t

Production

Buyer

Production
Queue

Batch

Credit Score
check

Car

Buyer

D i s a d v a n t a g e s ?
S a v i n g T i m e ?

A customer orders his car and is able to configure it during the
order process.

13

Batch

Daily
execution

hourly
execution

Weekly
processing

THINKPORTEvent-driven

Buyer

Merchan
t

ProductionProduction
Queue

Credit Score
check

Car

A customer orders his car and is able to configure it on demand as
long as it is not produced.

14

hourly
execution

Custome
r

ordered

Merchant
approved

Order
Service

Credit Score
Check passed

Order
Status
Service

Production
StartedModify

Order

Get or
Modify
Order

THINKPORT

Kafka
Basics

THINKPORT

16

If you have 5 source systems, and 4 target

systems, you need to maintain 20

interfaces!

Kafka is a distributed streaming platform. A

commit log provides a durable record of all

transactions so that they can be replayed to

consistently build the state of a system. The

data can be distributed reliably within the

system.

R E A S O N

WHY KAFKA?
T H I N K P O R T

Logs RedshiftOracleUser
TrackingApps

Elastic
SearchMongoDB

Logs RedshiftOracleUser
TrackingApps

Elastic
SearchMongoDB

THINKPORT

17

WHAT IS
KAFKA?

Kafka is the solution to optimally store, scale and process data streams.

Producer
publish

stream

Consumer Group

Consumer

Kafka Cluster

Kafka Broker

Topic

Partition

subscribe

Zookeeper

Batch

value

message

metadata

key

THINKPORT

18

WHAT IS A
MESSAGE?

A Message in Kafka is a unit of data. Comparable to a row or a record in a database.

key

value

message

metadata

THINKPORTA MESSAGE

19

key

value

message

A key is an array of bytes that has on its own no meaning to Kafka but might be used
by clients to evaluate partitions or by Kafka streams applications to identify messages
by its keys.

The value is like the key an array of bytes with no meaning to Kafka. The value
contains the user data that needs to be transferred through Kafka.

timestamp

headers

The headers of a message contain user defined key value pairs. This comes in handy if
you want to track metadata inside the system. Those metadata might be e.g. the
source system the message originates from or the user that produced the message.

The date time the message was produced.

THINKPORT

20

WHAT IS A
PARTITION?

A Kafka Partition contains a log of messages.

Partition

THINKPORTPARTITIONS

21

Offset
0Partition 0 Offset

1
Offset

2
Offset

3
Offset

…
Offset

N

Message
Key: 0

Message
Key: 1

Message
Key: 3

Message
Key: 1

Message
Key: …

Message
Key: X

THINKPORT

22

WHAT IS A
TOPIC?

A Kafka topic contains a collection of message logs. It is comparable to a database table.

Topic

THINKPORT

23

KAFKA TOPICS

• Topics is a particular stream of data.

• Is similar to a table in a database

• A topic is identified by its name

• You can have as many topics as you want

• Topics are split into partitions

THINKPORTTOPICS

24

THINKPORT

25

WHAT IS A
KAFKA
PRODUCER?

A Kafka Producer publishes messages to Kafka.

Producer
publish

Topic

Partition

Batch

value

message

metadata

key

THINKPORTKAFKA PRODUCER – HIGH LEVEL

26

Server

JVM

Producer Java App

Producer API

Producer API Project in different Languages

THINKPORTKAFKA PRODUCER – LOWER LEVEL

27

The Serializer transforms messages from objects
inside the program to an array of bytes (e.g. the

key and value of a message).

The Partitioner determines the partition the
message needs to be sent to. Per default it is

the murmur hash of the message key modulo
the number of partitions. This results in the
same partition for the same keys and equally

distributed partitions with UUIDs.

THINKPORT

28

WHAT IS A
KAFKA
CONSUMER?

A Kafka Consumer subscribes to topics owns partitions and polls messages from Kafka.

ConsumerTopic

Partition

subscribe

THINKPORTKAFKA CONSUMER – HIGH LEVEL

29

Server

JVM

Consumer Java App

Consumer
API

Producer API Project in different Languages

THINKPORTKAFKA CONSUMER – COMMIT OFFSET

30

Topic-A 0 1 2 3 4 5 6 7 8 9 Consumer
subscribe

Partition 0
Take ownership Poll offset 0-6

Topic
_consumer_offsetsConsumer

I

II publish
Committed Offset

message

Topic Name

Consumer Group ID

Topic-A 0 1 2 3 4 5 6 7 8 9 Consumer Partition 0 Poll offset 7-9II
Committed

offset

THINKPORTKAFKA CONSUMER – COMMIT OFFSET

31

I
duplication
When offset was
committed too late.

II message loss
When offset was
committed to early.

THINKPORT

32

Consumer GroupWHAT IS A
KAFKA
CONSUMER
GROUP?

A Consumer Group separates data flows and provides scalability and resilience for consumers.

ConsumerTopic

Partition

subscribe

THINKPORTKAFKA CONSUMER GROUP
BASICS

33

Topic-A
Consumer Group 1

Consumer
0

Consumer
1

Partition 0

Partition 1

Partition 2

Partition 3

• Consumers take ownership of one or more partitions
• Only one consumer is thought to be owning a partition
• Consumers in a Consumer Group share consumer offsets

Leader

THINKPORT
KAFKA CONSUMER GROUP
IDLE CONSUMERS

34

Topic-A Consumer Group 1

Consumer 0Partition 0

Partition 1

Leader

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Partition 2

Partition 3

IDLE

• Partitions are exclusive to a consumer instance
• Additional consumers are idling when assigned to the group
• The Consumer Group Leader takes automatically care of balancing partitions

between consumers

THINKPORTKAFKA CONSUMER GROUP
SEPARATE USE CASES

35

Topic-A Consumer Group 1

Consumer 0Partition 0

Partition 1

Leader

Consumer 1

Consumer 2

Consumer 3

Consumer 4

Partition 2

Partition 3

IDLE

• Additional Groups consume the full set of data
• Additional Groups have their own consumer offset
• Separates technical or business use cases with this technique from each other

Consumer Group 0

Consumer 0

Consumer 1

Leader

THINKPORTKAFKA CONSUMER GROUP
PARTITION REBALANCE

36

Topic-A Consumer Group 1

Consumer 0Partition 0

Partition 1

Leader

Consumer 1

Consumer 2

Consumer 3

Partition 2

IDLE

• Rebalancing is needed if the number of partition changes
• Rebalancing is needed if the number of non idle consumer in a consumer group changes
• The leader performs the rebalancing

Topic-A Consumer Group 1

Consumer 0Partition 0

Partition 1

Leader

Consumer 1

Consumer 2

Consumer 3

Partition 2
BREAKS

THINKPORT

37

WHAT IS A
KAFKA
BROKER?

A single Kafka server is called a broker. The broker receives messages from producers, assigns
offsets to them and stores them on disk. It also receives fetch requests from consumers and
responds with the messages.

Producer
publish

Consumer Group

Consumer

Kafka Broker

Topic

Partition

subscribe

THINKPORT

38

T H E A R C H I T E C T U R E

KAFKA BROKER
T H I N K P O R T

Disk

Server

JVM
Kafka Broker

Broker ID

Functionality

Commit Log

THINKPORT

39

Kafka Cluster

WHAT IS A
KAFKA
CLUSTER?

Kafka brokers are designed to work as a cluster. A cluster provides scalability and resilience.

Producer
publish

Consumer Group

Consumer

Kafka Broker

Topic

Partition

subscribe

Kafka Broker

THINKPORTKAFKA CLUSTER – MULTIPLE BROKERS

40

 Kafka Cluster

Kafka Broker A Kafka Broker B Kafka Broker C

controller

• A Kafka cluster consists of one or more brokers
• Cluster consensus is provided using the RAFT protocol (KRaft)
• One broker is elected as a controller and monitors broker failures and performs leader elections

THINKPORT

41

• Necessary, if a broker is down, another

broker can serve the data

• Topics should have a replication factor > 1

(usually between 2 and 3)

• Only one broker can be a leader for a given

partition

• The leader can receive and serve data for a

partition (--> the other brokers will

synchronize the data)

• Example:

• Topic-A with 2 partitions and

replication factor 2

A B O U T

KAFKA REPLICATION FACTOR
T H I N K P O R T

Broker 1 Broker 2 Broker 3

Topic-A
Partition 0

Leader

Topic-A
Partition 1

Leader

Topic-A
Partition 1

ISR

Topic-A
Partition 0

ISR

replication

replication

THINKPORT
KAFKA CLUSTER
REPLICATION HIGH WATERMARK

42

THINKPORT

43

• 6 Kafka Brokers

• Replication factor per Topic set to 3

• Topic A with 3 Partitions

• Topic B with 2 Partitions

• Leader

S E T U P

TOPIC REPLICATION - EXAMPLE
T H I N K P O R T

Kafka Cluster

Kafka Broker A Kafka Broker B Kafka Broker C

Kafka Broker D Kafka Broker E Kafka Broker F

contoller

T-A P-0 T-A P-1 T-A P-2

T-A P-0 T-A P-0
T-A P-1 T-A P-1
T-A P-2 T-A P-2

T-B P-0

T-B P-1T-B P-1

T-B P-1

T-B P-0
T-B P-0

THINKPORT

44

THIS IS KAFKA

Kafka is the solution to optimally store, scale and process data streams.

Producer
publish

stream

Consumer Group

Consumer

Kafka Cluster

Kafka Broker

Topic

Partition

subscribe

Batch

value

message

metadata

key

Kafka Broker

THINKPORT

KAFKA SCHEMA REGISTRY

THINKPORT

Data set (record)
Schema

Name of service-staff | Text | No
Odering number | Number | Yes
Location | Text | Yes
Ordered product | Text | Yes
Additionally Ingredients | Text List | No

Name of the value | Data typ | Mandatory field

Alice;
42;

Frankfurt;
Burger with vegan Patty;

;

Note:
Data without a description of the content
cannot be interpreted technically.

An abstract description of data enables a defined exchange of technical
information.

WHAT IS A SCHEMA?

46

THINKPORT

47

• Extensive and complex structured data sets

can be mapped

• These data sets can be converted into an

efficient binary format to optimize the

exchange between components of a system

A B O U T

COMMON SERALIZATION PROTOCOLS
T H I N K P O R T

Avro Protobuf JSON Parquet

Format Binary Binary Non-Binary
Human-
readable

Binary

Use case Transaction
systems with
high
performance

Transaction
systems with
high
performance

Transaction
systems

Bulk data
storage

Supported
in schema
registry

Yes Yes Yes No

THINKPORT

48

• RECORD describes a collection of attributes

• NAMESPACE in conjunction with NAME can

be used to map a domain model to ensure

uniqueness in schema administrations

• FIELDS are the attributes

• optional fields are defined by [null, string],

default: null

• Complex data types can be nested

A B O U T

SCHEMA – EXAMPLE AVRO
T H I N K P O R T

{ type : record,
 namespace : digital.thinkport.kafkaworkshop,
 name : order,
 fields : [

{ name : bedienung, type : [null,string], default:null},
 { name : order-number, type : int },

{ name : location , type : int },
{ name : product , type : int } ,
{ name : additional_ingredient,
 type :[null,

{type: array,
 items:{ name : ingredient, type : string}

 }],
 default : null

 }] }

SCHEMA

THINKPORTOPTIMIZED RESOURCES THROUGH AVRO

49

Schemaless JSON

{ ”service-staff":"Alice",
 ”order-number":"42" ,
"location":"Franfurt" ,
"product":"Burger with vegan Patty"}

Avro-File with Schema
{ type : record,
 namespace : digital.thinkport.kafkaworkshop,
 name : Order,
 fields : [

{ name : service-staff, type : [null,string], default:null},
 { "name" : ”order-number" , "type" : "int" },

{ "name" : "location" , "type" : "int" },
{ "name" : "product" , "type" : "int" } ,
{ "name" : ”additionally_ingredients",
"type":[null,
{"type": "array",
"items":{ "name":”ingredient", "type" : "string" }
 }],

 "default" : "null”
 }

Data set in binary format

Avro-File with Schema ID

Schema ID

Data set in binary format

Size:100 Bytes

Size:300 Bytes

Size: 30 Bytes

Schemaless JSON-Files contain the
information about the subject matter in
the data set itself.

Avro files are saved together with the schema. The data
set is optimized in binary format. Programs can use this
information to deserialize the data.

If the schema is stored externally, a
reference to which schema was used is
sufficient. The data itself can be stored
and or sent efficiently.

THINKPORT

50

SCHEMA
REGISTRY
Overview

1. Dealing with organizational challenges of data
management

2. Stable data pipelines
3. Safe scheme evolution
4. Memory and calculation efficiency
5. Data discovery
6. Cost-efficient ecosystem
7. Data policy enforcement

B e n e fi t s

THINKPORT

51

S C H EM A R EG I S T R Y
• Confluent provides a RESTful interface for

schema registries

• Avro, JSON Schema and Protobuff are
available

• Schema Registry lives outside of and
separately from your Kafka brokers

• No need to select a schema registry format

THINKPORT

Kafka
Streams

THINKPORT

53

KAFKA STREAMS THINKPORT

Kafka Ecosystem

Kafka Streams
• Is a Java library
• Optimized for processing unbounded datasets quickly and efficiently,
• A great solution for problems in low-latency, time-critical domains
• A great choice for building micro services on top of real-time event streams

THINKPORT

54

KAFKA STREAMS THINKPORT

Before Kafka Streams existed:
• lack of library support for processing data in Kafka topics

Two main options for building Kafka-based stream processing applications:
• Use the Consumer and Producer APIs directly
• Use another stream processing framework (e.g., Apache Spark Streaming, Apache

Flink)

These APIs are very basic and lack many of the primitives that would qualify them as a stream
processing API, including:

• Local and fault-tolerant state
• A rich set of operators for transforming streams of data
• More advanced representations of streams
• Sophisticated handling of time

The second option, which involves adopting a full-blown streaming platform like Apache Spark
or Apache Flink, introduces a lot of unneeded complexity.

THINKPORT

55

KAFKA STREAMS THINKPORT

After 2016
Kafka Streams API

DB DB App App

Kafka Cluster

Kafka StreamsStream processing

Kafka Connect

Producers & Consumers

Basic read/ writes

Enriched/ transformed data

Raw data

THINKPORT

56

KAFKA STREAMS THINKPORT

Kafka Streams features:

• A high-level DSL that looks and feels like Java’s streaming API
• A low-level Processor API
• Convenient abstractions for modeling data
• The ability to join streams and tables
• Operators and utilities for building stateless & stateful stream processing applications
• Support for time-based operations, (incl. windowing, periodic functions)
• Easy installation (just a library)
• Scalability, reliability, maintainability

THINKPORT

57

OPERATIONAL CHARACTERISTICS THINKPORT

Scalability
• By increasing the number of partitions on the source topics
• By leveraging consumer groups

Kafka Streams is also elastic, allowing you to seamlessly (albeit manually) scale the
number of application instances in or out.

Reliability
• Fault-tolerant features --> automatic failovers and partition rebalancing via consumer

groups

Maintainability
• Troubleshooting and fixing bugs is relatively straightforward (Java library)
• KStreams API is succinct & intuitive, code-level maintenance is less time-consuming

THINKPORT

58

KAFKA STREAMS – USE CASES THINKPORT

• Financial data processing (Flipkart), purchase monitoring, fraud detection
• Algorithmic trading
• Stock market/crypto exchange monitoring
• Real-time inventory tracking and replenishment (Walmart)
• Event booking, seat selection (Ticketmaster)
• Email delivery tracking and monitoring (Mailchimp)
• Video game telemetry processing (Activision, the publisher of Call of Duty)
• Search indexing (Yelp)
• Geospatial tracking/calculations (e.g., distance comparison, arrival projections)
• Smart Home/IoT sensor processing (sometimes called AIOT, or the Artificial Intelligence

of Things)
• Change data capture (Redhat)
• Sports broadcasting/real-time widgets (Gracenote)
• Real-time ad platforms (Pinterest)
• Predictive healthcare, vitals monitoring (Children’s Healthcare of Atlanta)
• Chat infrastructure (Slack), chat bots, virtual assistants
• Machine learning pipelines (Twitter) and platforms (Kafka Graphs)

THINKPORT

59

• Kafka Streams leverages a programming par
adigm called dataflow programming (DFP),
which is a data-centric method of
representing programs as a series of inputs,
outputs, and processing stages

• very natural and intuitive way

• stream processing logic in a Kafka Streams
application is structured as a directed acyclic
graph (DAG)

A B O U T

PROCESSOR TOPOLOGIES
T H I N K P O R T

Source
processor

Stream
processor

Stream
processor

Sink
processor

Sink
processor

Streams

StreamsStreams

Streams

THINKPORT

60

PROCESSOR TOPOLOGIES THINKPORT

3 basic kinds of processors in Kafka Streams

Source processors
Sources are where information flows into the Kafka Streams application. Data is read from a

Kafka topic and sent to one or more stream processors.

Stream processors
These processors are responsible for applying data processing/transformation logic on

the input stream. In the high-level DSL, these processors are defined using a set of
built-in operators that are exposed by the Kafka Streams library. Some example
operators are filter, map, flatMap, and join.

Sink processors
Sinks are where enriched, transformed, filtered, or otherwise processed records are

written back to Kafka, either to be handled by another stream processing application
or to be sent to a downstream data store via something like KafkaConnect. Like source
processors, sink processors are connected to a Kafka topic.

THINKPORT

61

• Divide topology into smaller sub-
topologies to parallelize the work

• Exception --> when topics are joined -->
a single topology will read from each
source topic involved in the join
without further dividing the step into
sub-topologies

A B O U T

SUB-TOPOLOGIES
T H I N K P O R T

slack-
mentions

isValid

FalseTrue

postError
Response

invalid-
mentions

valid-
mentions

handle
Command

1

2 3

THINKPORT

62

• A single record moves through the entire
topology before another record is processed

• Makes the dataflow much easier to reason
about,

• Slow stream processing operations can
block other records from being processed
in the same thread

• Note: When multiple sub-topologies are in
play, the single-event rule does not apply to
the entire topology, but to each sub-topology

A B O U T

DEPTH-FIRST STRAGTEGY PROCESSING
T H I N K P O R T

Source
processor

Stream
processor

Stream
processor

Sink
processor

Sink
processor

Streams

StreamsStreams

Streams

Stream record buffer

THINKPORT

63

High-Level DSL vs Low-Level Processor API THINKPORT

The two APIs:
• The high-level DSL
• The low-level Processor API

The high-level DSL
• Using a functional style of

programming, and would also like
to leverage some higher-level
abstractions for working with
yourdata (streams and tables)

The low-level Processor API

• Lower-level access to your data (e.g.,
access to record metadata),

• the ability to schedule periodic
functions,

• more granular access to your application
state,

• more fine-grained control over the timing
of certain operations

High-
level
DSL

Low-level
processor API

Ab
st

ra
ct

io
n

le
ve

l

THINKPORT

64

Task and threads THINKPORT

num.stream.threads = 2 num.stream.threads = 4

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

THINKPORT

65

KTable THINKPORT

• Opposite of basic operations
• Note: If a new record comes in with the same key

as an existing record, the existing record will be
overwritten!

U P DAT E S T R E A M S

THINKPORT

66

KSTREAMS vs KTABLES THINKPORT

There are two ways to model the data in your Kafka topics:
• as a stream (also called a record stream) or
• a table (also known as a change log stream).

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

Streams
• thought of as inserts in database
• Each distinct record remains in this vie

w of the log

Tables
• thought of as updates to a database
• logs only the current state (either the latest

record for a given key or some kind of
aggregation) for each key is retained

• usually built from compacted topics
(cleanup.policy of compact)

THINKPORT

67

KSTREAMS vs KTABLES THINKPORT

KStream
• A KStream is an abstraction of a partitioned record stream, in which data is represented

using insert semantics (i.e., each event is considered to be independent of other events)

KTable
• an abstraction of a partitioned table (i.e., change log stream), in which data is

represented using update semantics (the latest representation of a given key is
tracked by the application)

• Since KTables are partitioned, each KafkaStreams task contains only a subset of the full table

GlobalKTable
• similar to a KTable,
• except each GlobalKTable contains a complete (i.e.,unpartitioned) copy of the underlying

data

VS

68

State in Appl icat ions THINKPORT

Stateless applications

• each event handled by your Kafka Streams application is
processed independently
of other events, and only stream views are needed by
your application

• treats each event as a self-contained insert and
requires no memory of previously seen events

• operators, like filter, are considered stateless

Stateful applications

• need to remember information about previously seen
events in one or more steps of your processor topology,
usually for the purpose of aggregating, windowing, or
joining event streams. These applications are more
complex under the hood since they need to track
additional data, or state

• operators, like count, are stateful

THINKPORT

69

STATELESS PROCESSING THINKPORT

Definition:
• The simplest form of stream processing
• Requires no memory of previously seen events
• Each event is consumed, processed, and subsequently forgotten

Stateless operators:
• Filtering records
• Adding and removing fields
• Rekeying records
• Branching streams
• Merging streams
• Transforming records into one or more outputs
• Enriching records

THINKPORT

70

FILTERING DATA THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

• Two primary operators
• filter
• filterNot

• filter requires to pass in a Boolean
expression (Predicate)

• predicate returns true, the event will
 be
forwarded to downstream processor
s

• returns false, then the record will be
excluded from further processing

A B O U T

KStream<String, Long> stream = ...;
// A filter that selects (keeps) only positive numbers
KStream<String, Long> onlyPositives =

stream.filter(
 (key, value) -> value > 0
);

THINKPORT

71

Map THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

• transforming one input record into exactly
one new output record (whose key or value
may or may not be the same type as the
input record)

 Two operators:
• map
• mapValues

• a 1:1 mapping between input and output
records

• map  requires to specify a new record
value and record key

• mapValues  requires us to just set a new
value

A B O U T

Map

KStream<byte[], String> stream = ...;

//Convert value´s lowercase to key and the values length to the new value
KStream<String, Integer> transformed =

stream.map(
 (key, value) ->

 KeyValue.pair(value.toLowerCase(), value.length())
);

THINKPORT

72

Flat Map THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

• Takes one record and produces zero, one, or
more records. You can modify the record
keys and values, including their types.

 Two operators:
• flatMap
• flatMapValues

• a 1:1 mapping between input and output
records

• map  requires to specify a new record
value and record key

• mapValues  requires us to just set a new
value

A B O U T

Flat
Map

KStream<Long, String> stream = ...;
KStream<String, Integer> transformed = stream.flatMap(
 // Here, we generate two output records for each input record.
 // We also change the key and value types.
 (key, value) -> {
 List<KeyValue<String, Integer>> result = new LinkedList<>();
 result.add(KeyValue.pair(value.toLowerCase(), value.length());
 result.add(KeyValue.pair(value.toUpperCase(), 42);
 return result;
 }
);

THINKPORT

73

BRANCHING STREAMS THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

Required when events need to be routed to
different stream processing steps or output
topics based on some attribute of the event itself

Note: Using the default branch as a errorcheck for
e.g. unexpected values is a common setup.

A B O U T

KStream<String, Long> stream = ...;
Map<String, KStream<String, Long>> branches =
 stream.split(Named.as("Branch-"))
 .branch((key, value) -> key.startsWith("A"), /* first predicate */
 Branched.as("A"))
 .branch((key, value) -> key.startsWith("B"), /* second predicate */
 Branched.as("B"))
 .defaultBranch(Branched.as("C")) /* default branch */
);

// KStream branches.get("Branch-A") contains all records whose keys start with "A"
// KStream branches.get("Branch-B") contains all records whose keys start with "B"
// KStream branches.get("Branch-C") contains all other records

Branch

THINKPORT

74

MERGING STREAMS THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

A B O U T

KStream<byte[], String> stream1 = ...;

KStream<byte[], String> stream2 = ...;

KStream<byte[], String> merged = stream1.merge(stream2);

Merge

• two separate streams merging to one
• have the same stream/sink processor

There is no ordering guarantee between
records from different streams in the merged
stream. Relative order is preserved within
each input stream though (ie, records within
the same input stream are processed in order)

THINKPORT

75

FOR EACH THINKPORT

Quelle: Mitch Seymour --> MasteringKafka Streams and ksqlDB (book)

You would use foreach to cause side effects based
on the input data

Any side effects of an action (such as writing to
external systems) are not trackable by Kafka, which
means they will typically not benefit from Kafka’s
processing guarantees.

A B O U T

KStream<String, Long> stream = ...;

// Print the contents of the KStream to the local console.
stream.foreach(

(key, value) -> System.out.println(key + " => " + value)
);

Terminate FOR EACH

THINKPORT

76

STATEFUL PROCESSING THINKPORT

Definition:
• Ability to capture and remember information about the events we consume

• The captured information, or state, allows to perform more advanced stream processing
operations,

Stateful operators:
• Joining
• Aggregating
• Windowing

THINKPORT

77

STATEFUL PROCESSING THINKPORT

Benefits:
• helps to understand the relationships between events
• Recognize patterns and behaviors in our event streams
• Perform aggregations
• Enrich data in more sophisticated ways using joins
• gives an additional abstraction for representing data
• build a point-in-time representation of continuous and unbounded record streams
• allows to understand our data using more sophisticated mental models

THINKPORT

JOINS

THINKPORT

79

JOINS THINKPORT

• Special kind of conditional merge that
cares about the relationship between
events, and where the records are not
copied verbatim into the output stream
but rather combined

• these relationships must be captured,
stored, and referenced at merge time to
facilitate joining, which makes joining a
stateful operation

A B O U T

THINKPORT

80

JOIN TYPES THINKPORT

Kafka Streams supports many different types
of joins,

A B O U T

Type Windowed Operators Co-partitioning
required

KStream-Kstream Yes • join
• leftJoin
• outerJoin

Yes

KTable-Ktable No • leftJoin
• outerJoin

Yes

KStream-Ktable No • join
• leftJoin

Yes

KStream-GlobalKTable No • join
• leftJoin

No

THINKPORT

81

WINDOWS & TIMES THINKPORT

Windows allow us to group events into explicit time buckets
can be used for creating more advanced joins and aggregations

THINKPORT

82

WINDOWS & TIMES – WINDOWING THINKPORT

Tumbling

Hopping

Sliding

Session

5mins 1 2 3 Fixed sizes,
Might overlap

5mins 5mins 5mins 5mins Fixed sizes,
No overlap

Event activated
10 mins

Event activated
10 mins

Fixed sizes,
Depends on

activity

Sliding window in 10
minutes with a size of 5

minutes

Sliding window in 10
minutes with a size of 5

minutes

Sliding window in 10
minutes with a size of 5

minutes

Implements sliding window
algorithm, returns maximum count of

events in window

