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1 Abstract

Cloud Computing is one of the most actual concepts now-days due to the flexibility it
offers to users, that do not need to buy hardware or software devices in order to fulfill
their demands. In this paper we will try to reflect our understanding of a fraction of
cloud, by representing our project on ”Pet Detection”, developed using Raspberry Pi to
set up our own cluster. The model developed will be able to detect in real time, if an

object is a dog or a cat and to what percentage of accuracy.

2 Introduction

Cloud computing has already become an important topic in today’s business industries
and not only in the computer sciences or IT related ones. One of the main reasons for
this would be that we can define cloud computing services with the ”use what you need”
and ”pay only what you use” philosophy. Costumers in different needs, would demand
and be provided with network access to a shared group of resources, that will execute
their tasks as well as maybe other clients task. None of the costumers would not have to
permanently buy the hardware or software components they would need for their tasks,
just pay the cloud provider for the time they will use the services. Different services
can be provided and accessed by cloud and some of them are: Infrastructure-as-a-Service
(IaaS) (offers storage, virtual maschines, network,etc), Platform-as-a-Service (PaaS) ( of-
fers a complete developement environment), Software-as-a-Service (SaaS) (offers licenced
application software). [I]

Narrowing it down from the clients and providers, to the process of learning and
practicing, Cloud Computing is nowdays subject to many IT related fields students and
not only. A better way of leaning would be by organising and conducting studies and
projects offering a hands on experience, which in many cases includes Raspberry Pi as
hardware. This is also our case and in the following sections we will give a representation
of our project on the Cloud Computing SoSe23. In section 3 we will start with our model
representation, continuing with Kubernetes Cluster on section 4, following with, API,

Frontend, Conclusions and Challenges and Improvements.

3 Object detection model

The cat and dog detection algorithm was done using machine learning model YOLO (You
Only Look Once). YOLOV1 paper was published in 2015 by Joseph Redmon, Santosh
Divvala, Ross Girshick, Ali Farhadihas [I0]. Since then, the model has been improved
many times up until version 8, which is the version used in this project. It employs a

single convolutional neural network and has gained great popularity because of its speed,



detection accurracy, good generalization, and the fact that it is open-source. The YOLO

prediction algorithm process can be summarized into 5 steps which are:

1. Divide the Image: YOLO starts by taking an image and dividing it into a grid.
For example, it might divide the image into a 13x13 grid. Each cell in this grid is
responsible for detecting objects that fall into it.

2. Predict Bounding Boxes: Each cell in the grid will then predict a certain num-
ber of bounding boxes. A bounding box is a rectangular box that can be drawn
around the object that the model detects. Each bounding box prediction includes
information about the box’s center (x, y coordinates), its width and height, and a
confidence score that indicates how certain the model is that the box contains an

object.

3. Class Prediction: In addition to predicting bounding boxes, each cell also predicts
a class probability. This is a probability distribution over all the possible classes
(e.g., cat, dog, car, etc.) that tells us how likely it is that the detected object belongs

to each class.

4. Filtering: After the bounding boxes and class probabilities are predicted, YOLO
filters out the boxes that have a low confidence score (i.e., the model isn’t very sure
that these boxes contain an object). It also uses a technique called non-maximum

suppression to remove redundant boxes that overlap too much with other boxes.

5. Output: The final output of YOLO is the remaining bounding boxes and their
associated class labels. Each bounding box’s coordinates are scaled up to match the
original image size, and the class with the highest probability becomes the label for
that box.

The Ultralytics pyton library offers a straightforward approach which allows a simple
implementation of different YOLO model versions [9]. It also provides some sample
datasets for the users to carry out basic implementations of the model with just a few
lines of codes available in the documentation. It can be installed by just running the

following line of code in the console.

Listing 1: Ultralytics install
pip install ultralytics

It must be mentioned that the Ultralytics library relies on PyTorch so it is recommended
to install base on your machine specifications before installing Ultralytics [7]. After in-
stalling Ultralytics it was also necessary to search for an image repository which contained

numerous examples of cats and dogs, along with the proper label for the images in order



to train the model. Roboflow “s Oxford-Pets V2 library, maintained by Brad Dawyer, con-
tains 3680 images of Cats and Dogs [8]. Once downloaded, the folder contains a data.yaml
file with all the training data, which can then be directly used to train the model. The

following lines of code show how the model can be trained:

Listing 2: Model Training
from ultralytics import YOLO

# Load a model

model = YOLO(’'yolov8n.yaml’) # build a new model from YAML

model = YOLO(’yolov8n.pt’) # load a pretrained model (recommended for trai
model = YOLO(’yolov8n.yaml’).load (’yolov8n.pt’) # build from YAML and trar

# Train the model
model . train (data="C:/ Users/alber /Documents/Alberto/Trabajo/Maestria /FUAS/S’

As seen in image fig[l] the training data is only about 70% of the whole data (2.6k images)
with 1/3 of the images being cats and the other 2/3 dogs.

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.0
width

Figure 1: Image labels

The statistical results of the model training are illustrated in Fig[2] The graphs shows
the distinction in the model performance between the training and validation processes.
Training is conducted in stages known as epochs, which in the case of this model,
was set to 100. In each epoch, the training subset is utilized to enhance the model’s
performance. Following each epoch, the model undergoes validation using a separate

validation set. This procedure ensures that the training halts when the error of the
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Figure 2: Model Performance Results

validation set starts to increase while the error of the training subset decreases, thereby
preventing overfitting.

The term "Box loss’ refers to the model’s ability to accurately locate the center of an
object and the precision of the predicted bounding box in covering the object. For both
the training and validation processes, the box loss decreases.

"Object loss” measures the model’s proficiency in predicting a region that contains an
object. Similarly as before, the object loss for the training decreases, as well as for the
validation.

The ’Class loss’ signifies the model’s capability to predict the correct class. In this
instance, the class loss starts low, followed by a sudden increase, which could be due to the
fact that there is a bigger amount of dogs compared to cats, resulting in short over-fitting
in the first epochs. After further runs the model prediction performance improves again.

Precision and recall are calculated using the formulas:

TP
P 1S10N = ————— 1
recision TP FP (1)
TP
|l = ——— 2
Reca TPLFN (2)

The Mean Average Precision (mAP) is computed for a confidence threshold of < 0.5 and
> 0.5 and < 0.95. Both precision and recall, as well as mAP0.5 and mAP0.5-0.95, show
an increasing trend during the training process. This indicates a low amount of false
negatives and false positives in the model which is good.

Fig[3 shows the classification output obtained by the model using the validation data
which were in total 736 images. In total there are only 21 miss-classifications out of the
3 possible classes which are: Cats, Dogs, and Background.

Once completed this whole process, the new model weights are stored and can after-

wards be used to classify new images.



aat background

EES

Figure 3: Confusion Matrix

4 Kubernetes Cluster

4.1 Installation procedure of Raspberry Pi OS

First needs to download Raspberry Pi Imager and install on a local machine [5]. After
installing, choose Raspberry Pi OS (32-bit) for the operating system then select mircroSD
card as the following Figure 1 & Figure 2.

After successful installation, assign a unique hostname for each Raspberry Pi, for
example, "kmaster” for the master node and "knodel” for the first worker node. Save
and Write in the SD Card.

After successful installation, assign a unique hostname for each Raspberry Pi, for
example, "master” for the master node and ”"worker1” for the first worker node.Similarly,
install OS on two more raspberry pi worker nodes "worker2” and ”worker3”.Save and
Write in the SD Card shown in Figure 3.

Insert all the SD cards back to the Raspberry Pi and power up and connect them to

your network via LAN switch
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Figure 4: Raspberry Pi Imager
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Figure 5: Raspberry Pi OS(32-bit)
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Figure 6: Image Customization Options for all nodes

4.2 Setting up k3s cluster

important step we followed is to enable the cgroup memory. SSH into all the Raspberry
Pi 3 and update the cmdline.txt file. We used “sudo nano /boot/cmdline.txt” command
in all the hosts and added “cgroup_memory=1 cgroup_enable=memory” on the end of the

first line and save the file. then reboot using “sudo reboot” and start again.

1.To install K3s [6] the following command must be executed on the master node:

curl -sfL https://get.k3s.io | K35_KUBECONFIG_MODE="644" sh -s -

2. Run : sudo systemctl status k3s to check status of the master nodes
3. After this step, the token from the master node can be read from the file with the

code sudo cat /var/lib/rancher/k3s/server/node-token shown on figure 4.

sudo cat /var/lib/rancher/k3s/server/node-token

K104c21023e017f0bof6ed02cccl74a73c5fd31e3e3ed64709311721dag81928403: : server: e9765693085470d34e45ae3f1ae9026b

Figure 7: Node-tocken from k3s server

4. With this token, k3s can be installed[3] on worker nodes by the following command:
5. Run : sudo systemctl status k3s-agent to check status of the worker nodes and

repeat these steps in all worker nodes



curl -sfL https://get.k3s.io| K3S_TOKEN="<TOKEN>" K3S_URL="https://<master _node_ip>:6443" sh -

6. Now all worker nodes are connected to master node with k3s cluster and to validate
k3s on master node run: sudo kubectl get node -o wide and result is shown in figure

5.

K sudo kubectl get nodes -o wide
NAME STATUS ROLES VERSION INTERNAL-IP EXTERNAL-IP  OS-IMAGE
workerl Ready 3+k3s! 192.168.1.102 <n > Raspbian GNU/Linux 11 (bullseye) 6

worker2 ~ Ready  <none> 2d2i 192.168.1.160  <none> Raspbian GNU/Linux 11 (bullseye)
worker3 ~Ready  <none> 2 s1  192.168.1.101 Raspbian GNU/Linux 11 (bullseye)
192.168.1.106  <none> Raspbian GNU/Linux 11 (bullseye)

Figure 8: Nodes connected to k3s cluster

4.3 Downloading / Copying deployment files

Copy or clone project on the master node from github repository
git clone https://github.com/Binit888/cloudcomputingss2023.git

Now we have an access the data in Our Masternode is look like,

README . md

Figure 9: List Of Directory In Github

4.4 Creating Docker Image of the Kubernetes Cluster Applica-

tions
4.4.1 webapp

WebApp is the main custom user interface which shows all the cats and dogs detected by
pat detection model on rasperypi 4 . It reads all the objects stored in the database and
shows them in the Web browser.

Docker image of application can be pulled from the https: / /hub.docker.com/r/binitbam
bhroliya/webapp and can also be built locally by executing script buildlmage.sh in the

respective application directory

4.5 Deploying Pods and Services on Worker Nodes
4.5.1 WebApp Deployment

Go to directory : cd binitbambhroliya/cluster_deploylemt/React frontend
Execute: sh deploy.sh
After successful deployment, running ‘sudo kubectl get pods -o wide’ will give the output

of running pods.
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https://github.com/Binit888/cloudcomputingss2023.git
https://hub.docker.com/r/binitbambhroliya/webapp
https://hub.docker.com/r/binitbambhroliya/webapp

%dockerhub Q. Search Docker Hub Explore Repositories Organizations Help ~ ‘f;‘ﬁj}\ binitbambhroliya ~

Explore binitbambhroliya/webapp

binitbambhroliya/webapp *

By binitbambhroliya « Updated 2 days ago
¥ Pulls 0
webapp

Overview Tags

Docker Pull Command
docker pull binitbambhroliyalwebappr‘
No overview available

is repository doesn't have an overview

Figure 10: webapp docker image

5 API

5.1 NPM Deployment

Npm is a package manager and runtime environment that can be used to run javascript ap-
plications. In order to install npm, follow this tutorial: https://docs.npmjs.com/downloading-
and-installing-node-jsand-npm . In order to deploy the Web-App locally on an amd Win-

dows/Linux machine, using the npm package manager.

5.2 API

The back-end was responsible for routing the data from the sensor node to the database
and from the database to the front-end for it to be displayed there. In order to be able to
handle those tasks, the backend offers an API. There are essentially two endpoints that
can be used and that are reachable under the configured back-end address, plus ” /get”,
plus ” /post”. So if the Web-App is running on a local machine, ...

Follow the Steps to open ”BackendAPI” folder and to run a project on local maschine:
2. Open the "workspace.code-workspace” file.
3. Open new Terminal.
4. Write the code as shown below in steps:
i) npm install ii) npm run dev
5. Paste the following link in browser : http://localhost:8080/post

5.2.1 GET

For the GET API the address could look like this: ”http://localhost:8080/get /[image]”.
Providing image-name with its extension will download an image in your local device.
This is how GET API works.

11



5.2.2 POST

For the POST API the address could look like this: "http://localhost:8080/post”.

The first functionality realized in the API is the data flow from the sensor node over
the back-end to the database. If the sensor node detects a Dogs or Cats, it can send a
REST post-request to the API address, where the body contains data needed to save a
Dogs or Cats detection correctly. To be precise, the back-end expects to receive JSON
data that sends the base64 encoded JPG or PNG of the detection. Additionally, the

number of detected Dogs or Cats and their confidence levels must be sent.

6 Frontend

The frontend task in our project included creating a webpage displaying a representation
of our work. For this task Visual Studio combined with React have been used. On this
page you will find the pictures that we used to train, validate and test our model, also
some general information about the team.

The following pictures will show how the frontend currently looks like, seeing the
name of the project ”"Pet Detection System”, and 5 more fields on Train, Valid, Test,

Playground, Team.

Pet Detection System Train Valid Test Play ground Team

Figure 11: Frontend

On of the features on this webpage is that allows you too choose from the pictures in
the Test Dataset and see how the model classifies that specific picture.

Just by clicking in any of them, allows you to automatically copy it. As a next step,
would be to continue on the ”Play Ground” field. There you would have the opportunity
to paste the picture details that was copied. By clicking ”submit”, the picture will be
loaded and some extra information will be shown. This information includes: ”time”
(representing on how much time the model makes the prediction), image dimensions on

"width” and "height”, ”confidence” representing the percentage of certainty the model

12



Pet Detection System Train Valid Test Play ground Team

Test

Total number of images: 369

Figure 12: Test Dataset

is giving for the prediction made, ”class” giving the classification result as a cat or dog.
An example of this is illustrated in the following figure, where we have the probability of

approximately 0.87, that a cat is being detected in the picture.

Pet Detection System Train Valid Test Play ground Team

Play Ground

Figure 13: Play Ground

6.1 How are we getting the pictures?

From Roboflow where the dataset of images used to train and test the prediction model
was stored, we needed a way to fetch them and display them in our webpage. The option
that we choosed to achieve this was to create a AWS S3 instance, store the images there

and then display them as we already showed in previous pictures.

6.2 AWS S3 instance

AWS offers many different services and opportunities of storage or computation. In our

case the Simple Storage Service - S3 functionality was a better fit, since any kind of object

13



Amazon S3 » Buckets ) imagesformodel

Amazon S3 X

imagesformodel i

Buckets

Access Points

Object Lambda Access Points Objects Properties Permissions Metrics Management Access Points
Multi-Region Access Points
Batch Operations

Objects (3)

IAM Access Analyzer for S3

others to access your objects, yourll need to explicitly grant them permissions. Learn more

Block Public Access settings for

this account
‘ Actions ¥ H Create folder ‘-

‘¥ Storage Lens

Dashbogids ’ Q. Find objects by prefix ’ 1
AWS Organizations settings
O Name A ‘ Type v ‘ Last modified ¥ Size v ‘ Storage
class
Feature spotlight e O [ test/ Folder - - -
O D train/ Folder - = _
O O valid/ Folder - a -

» AWS Marketplace for 53

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory Z to get a list of all objects in your bucket. For

@

Figure 14: S3 Bucket

Bucket policy

The bucket policy, written in JSON, provides access to the objects stored in the bucket. Bucket policies don't apply to objects owned by other
accounts. Learn more

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "PublicReadGetObject",
"Effect": "Allow",
"Principal": "*",
imagesformodel/*"
}
1
}

Figure 15: S3 Policies

Hosted on
Heroku

React App

Backend

Node.js Express Rest API
interface for fetching and
providing dataset images
from Amazon S3 (aws sdk
for node is used to avail

—>| Display data set

/ Realtime prediction

Roboflow Public API

Figure 16: Diagram
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can be stored and organised there, including images which was our need. Scalability, good
performance, accessibility and security is offered by this service. [3]

To upload our images in the S3 instance we firstly needed to create a Bucket. Bucket
is like a container for storing different objects, and an S3 can support up to 100 Buckets.
Having your objects organized in smaller quantities makes management easier, and also
the access of the data or the deletion of those after finishing your tasks.

Figure 14 will give a sight of our Bucket, called ”imagesformodel”, where folders of
"train”, "valid”, "test” are stored as objects. This bucket is publicly accessible. [4]

Also a representation of the policies for this bucket can be found as displayed below,

on Figure 15, while figure 16 represents a general understanding of how we got the images.

7 Conclusion

To conclude this work representation we can say that it was a very challenging process,
where we learned a lot, tried new things and got a valuable hands on experience.

Our model is working predicting whether different objects are cats or dogs, the Ku-
bernetes Cluster is working and we already have a webpage showing the dataset of images
that we used to train validate and test our model.

Our next challenges and improvements would be to connect our Raspberry Pi to the
AWS 83 istance, in order to show the live images being captured also in our webpage;

train our model to detect new pets, organize for future development.
Github link: Our GitHub Link
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