
Project Report

Automatic Pet Detection
With Edge Computing

by

Group 2
Vincent Roßknecht
Jonas Hülsmann
Marco Tenderra

Minh Kien Nguyen
Alexander Atanassov

Supervisor
Prof. Dr. Christian Baun

Submission Date
July 14th, 2023

Table of Contents

Overview
Sensor Node

Set up Pi 4B
Set up Camera
Prepare Training Data
Train & Test Model
Develop & Deploy Application

Cluster
Set up Pi 3B & 3B+
Set up Static IP
Set up Kubernetes Cluster
Set up Storage Service
Set up DBS
Implement TNB
Develop REST API
Deploy Backend
Develop Frontend
Deploy Frontend

Test System
Test TNB
Test Main Functionality
Test High Availability DBS

Overview
Introduction: The project Automatic Pet Detection With Edge Computing is part of the Cloud Computing SS23
module of Prof. Dr. Christian Baun at the Frankfurt University of Applied Sciences.

Objective: This project aims to develop an edge computing solution for the automatic detection of cats and
dogs. General steps to achieve the project goal are listed in the Project Plan part of this Overview section.

Duration: 12.04.2023 - 05.07.2023

Source Code: Link

Presentation Slides: Link

Hardware:

Received from Prof. Obtained from own source

1x Raspberry Pi 4 Model B (Pi 4B)
1x Raspberry Pi 3 Model B+ (Pi 3B+)
3x Raspberry Pi 3 Model B V1.2 (Pi 3B)
5x Samsung 32GB MicroSDHC
1x Apple USB-C-to-USB-C Charger
1x Anker 6-Port PowerPort
2x TP-Link TL-SG105 5-Port Desktop Switch
6x LAN Cable
4x CoolReal USB-C-to-USB-C Cable
1x Raspberry Pi Camera Module 2 (Camera Module)

1x FRITZ!Box 3272 Router
1x USB-to-USB-C Cable
1x ISY ICR-120 8-in-1 Card Reader

System Architecture:

Cluster

Sensor Node

3 Worker Nodes
Backend

commands

dynamically
provisions

controlsMaster Node Frontend
Pods

Storage
Service

Persistent
Volumes

REST API
Pods

Database
Pods

ApplicationCamera

Local PC

Telegram
Notification Bot

https://www.christianbaun.de/CGC23/index.html
https://github.com/ccfrauasgr2/pet-detection/tree/main
https://docs.google.com/presentation/d/1wE96Q1euAeaRYBAPP1TrVFQCkrlQES2NmLTt2wVjyIs/edit?usp=sharing

Component Role

Camera capture and send visual data to the sensor node

Application
- analyze visual data for pet detection
- process and pack pet image & detection results into JSON format
- send JSON data to the cluster

Persistent Volumes (PV)
- serve as persistent storage resource in the cluster
- use local storage available on worker nodes

Storage Service
- dynamically provision PV
- manage the underlying storage infrastructure of PV

Frontend Pods
- provide user interface
- handle user interactions

REST API Pods process data & facilitate data communication between system components

Database (DBS) Pods
- handle read- and write-requests (queries) for detection results
- synchronize & replicate data across pods/worker nodes (Master-slave
replication in DBS)

Telegram Notification Bot
(TNB)

notify user about detection results via Telegram

Local PC serve as tool for setting up system

System Behavior: See Test System section.

Network Architecture:

Cluster

USB-Tethering

WLAN

WLAN

LAN

LAN

LAN

LAN

LAN

Master Node
Pi 3B+

Worker Node
Pi 3B

Worker Node
Pi 3B

Worker Node
Pi 3B

Hotspot Device Router

Sensor Node
Pi 4B

Switch

Local PC

Kubernetes Architecture:

Kubernetes Cluster

StatefulSet
mongo-sts

LoadBalancer Service
mongo-svc

Service
mongo-headless-svc

Secret
mongo-secret

ConfigMap
mongo-config LoadBalancer Service

frontend-svc
Deployment

frontend-deployment

ConfigMap
restapi-config

LoadBalancer Service
restapi-svc

Deployment
restapi-deployment

Secret
restapi-secret

MongoDB
Compass/GUI

User PC

Application TNB

Project Plan:

Cluster

Sensor Node

Set up
Pi 3B & 3B+

Set up
Static IP

Set up
Kubernetes Cluster

Set up
Storage Service

Develop
REST API

Deploy
Backend

Set up
DBS

Develop
Frontend

Deploy
Frontend

Implement
TNB

Set up
Pi 4B

Set up
Camera

Prepare
Training Data

Train & Test
Model

Develop & Deploy
Application

Test
System

Group 2 Info & Task Distribution:

Member
MatrNr.

Uni-Mail
Primary
Tasks

Secondary
Tasks

Vincent
Roßknecht
1471764

vincent.rossknecht@stud.fra-uas.de
- Prepare Training Data
- Train & Test Model
- Test System

Jonas
Hülsmann
1482889

jonas.huelsman@stud.fra-uas.de
- Develop REST API
- Deploy Backend

- Test System

Marco
Tenderra
1251463

tenderra@stud.fra-uas.de

- Set up Pi 4B
- Set up Camera
- Prepare Training Data
- Develop & Deploy
Application

- Develop REST
API
- Test System

Minh Kien
Nguyen
1434361

minh.nguyen4@stud.fra-uas.de

- Set up Pi 3B & 3B+
- Set up Static IP
- Set up Kubernetes Cluster
- Set up Storage Service
- Set up DBS
- Implement TNB

- Deploy Backend
- Deploy Frontend
- Test System

Alexander
Atanassov
1221846

alexander.atanassov@stud.fra-
uas.de

- Develop Frontend
- Deploy Frontend

- Develop REST
API
- Test System

Sensor Node

Set up Pi 4B
Insert an empty SD-Card into local PC.
Install then run Raspberry Pi Imager on local PC.
In the Raspberry Pi Imager:

For Operating System, select Raspberry Pi OS (64-bit).
For Storage, select the inserted SD-Card.
In Advanced options (Cog icon):

Set pi0 as hostname.
Set admin as username and set own password.
Enable Enable SSH and Use password authentication options. This allows for remote
access and control of Pi 4B via SSH from local PC.
Enable Configure wireless LAN option, type in the SSID and password of the router so
that Pi 4B will automatically connect to the router network.
To save the above advance options for further use, set Image customization options to to
always use.

Write to SD-Card.
Connect and Start up Pi 4B with SD-Card.
SSH into Pi 4B from local PC with the command ssh admin@pi0.local
Update system packages with sudo apt update then sudo apt upgrade -y
SSH only provides terminal access to Pi 4B. To remotely control the desktop interface of Pi 4B, we use
VNC (Virtual Network Computing). To enable VNC connection:

First, enable VNC Server on Pi 4B. SSH into Pi 4B from local PC, then enter sudo raspi-config.
Now with the arrows select Interfacing Options, navigate to VNC, choose Yes, and select Ok.
Install Real VNC Viewer on local PC.
Open local VNC Viewer, enter pi0.local:0 or [IP address of Pi 4B]. To find the IP address
of Pi 4B, SSH into Pi 4B from local PC, then enter hostname -I.
Enter login credentials that were set while configuring Raspberry Pi Imager.
The VNC session should start, and the Raspberry Pi desktop should be available.

Set up Camera
To connect Camera Module to Pi 4B, follow the steps listed in Connect the Camera Module. Make sure
the Camera Module faces the USB and Ethernet ports.
To test if the connection is working, enter libcamera-still -o test.jpg to capture a single image.
For more information about libcamera-still, refer to this documentation.

Prepare Training Data
First, we downloaded unannotated cat and dog images from Kaggle.

Next, we annotated these images with MegaDetector (Note: To annotate an image means to add
annotation files that contain the bounding boxes and types of the objects in the image). The results is a
JSON annotation file for all images. Since MegaDetector can only differentiate between Animals,

https://www.raspberrypi.com/software/
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/4
https://www.makeuseof.com/how-to-ssh-into-raspberry-pi-remote/#:~:text=SSH%20Into%20Raspberry%20Pi%20From%20Windows&text=In%20the%20PuTTY%20dialog%2C%20select,the%20connection%20details%20in%20PuTTY.
https://www.realvnc.com/en/connect/download/viewer/
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/2
https://www.raspberrypi.com/documentation/computers/camera_software.html#libcamera-and-libcamera-apps
https://www.kaggle.com/
https://github.com/microsoft/CameraTraps/blob/main/megadetector.md

Humans, and Vehicles, the downloaded cat and dog images are kept separated. Therefore we have
two JSON files with the MegaDetector annotation: one for cats and one for dogs. For some images
MegaDetector couldn't find an annotation, because the quality of the image wasn't good enough. In
total the dataset has around 35.000 images, which should be sufficient for training.

dataset/
├── cats
│ ├── megaDetector.json
│ ├── cat_0.png
│ ├── cat_1.png
│ ├── ...
├── dogs
│ ├── megaDetector.json
│ ├── dog_0.png
│ ├── dog_1.png
│ └── ...

Then, we converted the annotation format to the YOLOv8 format using the this script, after this the
images are ready for training. The annotations are extracted from the two JSON files and are written
into multiple TXT files. The YOLOv8 annotation format requires one TXT annotation file for every image.
Furthermore, the annotation for the bounding box itself changes from MegaDetector (<class>
x_top_left_bbox, y_top_left_bbox, width_bbox, height_bbox) to YOLOv8 (<class>
x_center_bbox, y_center_bbox, width_bbox, height_bbox). More information on the YOLOv8
annotation can be found here.

dataset/
├── cats
│ ├── images
│ │ ├── cat_0.png
│ │ ├── cat_1.png
│ │ └── ...
│ └── annotation
│ ├── cat_0.txt
│ ├── cat_1.txt
│ └── ...
├── dogs
│ ├── images
│ │ ├── dog_0.png
│ │ ├── dog_1.png
│ │ └── ...
│ └── annotation
│ ├── dog_0.txt
│ ├── dog_1.txt
│ └── ...

Finally, we splitted the dataset into training, validation and test images. The number of images and the
split we used are:

https://github.com/ccfrauasgr2/pet-detection/blob/main/sensor_node/model_training/convert_to_yolov8_annotation.py
https://medium.com/@connect.vin/yat-an-open-source-data-annotation-tool-for-yolo-8bb75bce1767

Pet Training Validation TestPet Training Validation Test

Cat 13.875 1.816 1.740

Dog 14.782 1.871 1.848

Sum 28.657 3.687 3.588

Percentage 79.75% 10.27% 9.98%

Train & Test Model
Train Model

We chose the YOLOv8 model, since it is the best choice for object detection. A comparison between YOLOv8
and other models can be found here. The training and validation for the YOLOv8 model is done in Google
Colab. First we need to setup the Google Colab notebook. To train a YOLOv8 model install ultralytics, this
project was done with version 8.0.105.

!pip install ultralytics
import ultralytics

In addition, it is necessary to establish a connection with Google Drive to conveniently access the training and
validation datasets.

from google.colab import drive
drive.mount('/content/drive')

When dealing with a large number of files in Google Colab, it is advisable to compress the datasets into ZIP
files before uploading. It is also recommended to make three distinct ZIP files for the training, validation, and
test datasets. After uploading them to Google Drive, the ZIP files can then be easily extracted using the
!unzip command within the Google Colab notebook.

!unzip '/content/drive/pathToZipFile/train.zip'
!unzip '/content/drive/pathToZipFile/validate.zip'
!unzip '/content/drive/pathToZipFile/test.zip'

After this there should be 3 folders in the direct environment of the Google Colab Notebook. Now we can
start training, for better performance choose a GPU runtime in Google Colab (Runtime -> Change runtime
type). In this project we used a Nvidia V100 GPU as runtime type. We need to create a YAML file to provide
the paths to the datasets. In this project it looks like that:

train: yolov8/data/train
val: yolov8/data/train

https://www.stereolabs.com/blog/performance-of-yolo-v5-v7-and-v8/

number of classes
nc: 2

names: ['cat', 'dog']

To start training run the following command, all possible parameters are listed here.

!yolo task=detect mode=train model=yolov8s.pt data=path/to/dataset.yaml epochs=20
batch=-1 project=path/to/result_storage name=pets

We chose the yolov8s model as our base because it offers a balance between training speed and accuracy,
which suits our needs effectively. Using a Nvidia V100 GPU the traing of the model took ~5min/epoch for a
total of ~1h40min. The results from the training, including the model, can be found in the project directory,
which is specified in the command before.

A comprehensive overview of training with YOLOv8 can be found here. The summary of our training results
can be found here as images in training_results.png and training_confusion_matrix.png or as a
table here in the results.csv file. Here is an explanation for the different metrics from the results:

train/box_loss and val/box_loss: These metrics measure the discrepancy between predicted
bounding box coordinates and the ground truth bounding box coordinates during training and
validation, respectively.
train/cis_loss and val/cls_loss: These metrics address class imbalance by quantifying the
difference between predicted class probabilities and the true class labels during training and validation,
respectively.
train/dfl_loss and val/dfl_loss: These metrics handle the issue of long-tail distribution by
evaluating the discrepancy between predicted class distributions and the ground truth class
distributions during training and validation, respectively.
metrics/precision and metrics/recall(B): Precision measures the accuracy of positive
predictions, while recall (sensitivity) calculates the ratio of correctly predicted positive samples to the
total number of actual positive samples. Both metrics provide insights into model performance.
metrics/mAP50 and metrics/mAP50-95(B): Mean Average Precision (mAP) at an IoU threshold of
0.50 and mAP across a range of IoU thresholds (from 0.50 to 0.95 with a step size of 0.05) measure the
average precision of correctly localized and classified objects, providing comprehensive evaluations of
model performance at different IoU thresholds.

The letter "B" in metrics/recall(B) and metrics/mAP50-95(B) specifies, that this is an object detection
model, whereas "(M)" would specify a segmentation model.

Test Model

To estimate the model performance, there were some further tests done on it. For this we use the test dataset
with images the model was neither trained or validated with. This dataset contains 3.589 more images of both
cats (1.740) and dogs (1.848). The model was used to identify the pet on these images and return the pet and
the bounding box for every image. With the python script top1_mAP.py here the Top-1-Accuracy (Top-1-Acc)
and the mean average Precision (mAP) are calculated. For the mAP calculation we used the function

https://github.com/ultralytics/ultralytics/blob/main/ultralytics/yolo/cfg/default.yaml
https://towardsdatascience.com/trian-yolov8-instance-segmentation-on-your-data-6ffa04b2debd
https://github.com/ccfrauasgr2/pet-detection/blob/main/docs/img
https://github.com/ccfrauasgr2/pet-detection/blob/main/sensor_node/model_training
https://github.com/ccfrauasgr2/pet-detection/tree/main/sensor_node/model_training

average_precision_score from the python package sklearn. The results are Top-1-Acc = 87.68% and
mAP = 96.983%.

Develop & Deploy Application
Description

On the Sensor Node itself is the Application to take an image, process it, and send it to the backend. Six
classes have been created for that purpose:

Camera
Detection
Package
Compress
Network
SensorNode

The Application code is object-oriented and written in Python3.

Camera

The Camera class imports the package picamera2, which can run on 64-bit systems. The class has three
methods. The methods take_image and take_array capture the current visual data in front of the Camera
and return them as a PIL image or a numpy array, respectively. The last method is stop_camera, which stops
the recording of images and frees up resources.

Detection

The Detection class analyses images by using the package ultralytics, which provides methods for
loading and applying a YOLO model. During the initialization of a Detection object, the path to the trained
model is passed as a parameter to load that model into the object. The model needs only be loaded once,
thereby avoiding resource wastage. The class uses the method make_prediction for pet detection. More
specifically, in this method the trained model is called to analyse images and detect pet(s). The method
returns either successful detection results or a custom NoBoundingboxDetected exception indicating that no
pet(s) could be detected.

Package

The Package class packs the results of the Detection class into JSON format. At the same time, the original
input image is also processed: every detected object (pet) on the image will be framed inside a green
bounding box and assigned a unique (identifier) number. For that purpose, the opencv2 and numpy packages
are used. To execute these steps, only the method toJson needs to be called.

Compress

The Compress class is tasked with converting the pet image output by the Package class into a base64 string
and putting it into the JSON data. For that purpose, the class provides the methods compress_jpg and
compress_png, which convert a ByteArray image into a JPG or a PNG, respectively. These methods require us
to temporarily save the image to the hardrive and then load it again. We decided to quickly save the image to
dev/shm, which is a folder in RAM. All data on RAM are volatile and will be discarded after restart. The class
also provides a method named toBase64 for converting an image into a base64 string.

Sample JSON data after Compressed:

{
 "picture": <Base64 encoded string of image>,
 "date": "2023-05-29",
 "time": "11:03:46",
 "detections": [
 {
 "type": "Dog", "accuracy": 0.9125242233276367, "bid": 1
 },
 ...
]
}

Network

The Network class is there to send JSON data (i.e., packages) to the cluster. It has a method sendPost which
uses the package request to send a POST request to the designated URL on the cluster. The class also has
one method called _send which first checks if there are any packages to send and how many. _send was
implemented with a queue, which can be used to queue up requests and send the packages more packed to
the cluster. This implementation could reduce some overhead and speed up the data transferring process.

Controller/SensorNode

The main file is called sensorNode.py. This file needs to be executed in order to use the Application. It has an
unlimited loop, which uses itertools.count(), which automatically counts the iterations. The Application
itself is a console application. It has argparse implemented to exchange important configuration at runtime
without the need of recoding. We use the following arguments:

--model, default is model/best.pt, Path to our Model
--url, default is http://192.168.178.201/mongo/input, URL of our backend on the cluster
--conf, default is 0.5, it sets the lowest percentage of confidence our model should accept
--queue, default is 1, it sets the queue length in the Network class
--debug, default is false, it saves the output image and output package
--single, default is false, if true the application has only one iteration and then shuts down

For help, run the command python sensorNode.py --help

For a quick execution, run python sensorNode.py

Cluster

Set up Pi 3B & 3B+
Follow the steps listed in Set up Pi 4B, but disable Configure wireless LAN option, and DO NOT
SSH into each Pi 3 yet!
For Operating System, select Raspberry Pi OS Lite (64-bit).
Set pi1 as hostname for Pi 3B+, and pi2, pi3, pi4 as hostname for each of three available Pi 3B.

Set up Static IP
For a Kubernetes cluster to work, the worker nodes must know the IP address of the master (controller) node
and vice versa, so that they can communicate with each other. If the nodes' IP addresses change during
communication, the Kubernetes cluster won't work. It is therefore critical that the master and worker nodes be
assigned static (fixed) IP addresses. For that purpose, we use an additional FRITZ!Box Router. Here are the
steps to set up static IP addresses:

Turn on all hardware shown in the Network Architecture part of the Overview section.

Share the hotspot device's internet connection with the router through USB-Tethering.

Connect local PC and all Pi with the router network.

On local PC, enter ipconfig on Command Prompt (in Windows) and look for the Default Gateway IP
address of the router network (192.168.178.1 in our case).

Still on local PC, enter the IP address just found in a browser to open the router (FRITZ!Box) user
interface (see below image; KIEN-LEGION5 and Google Pixel 5 were the local PC and hotspot device
used, respectively).

Assign static IP addresses to all available Pi, then restart all Pi.

Raspberry Pi Assigned IP Address Connection

pi1 192.168.178.61 LAN

https://www.giga.de/hardware/avm-fritz-box-fon-wlan-7390/tipps/fritzbox-feste-ip-vergeben-so-geht-s/

Raspberry Pi Assigned IP Address Connection

pi2 192.168.178.62 LAN

pi3 192.168.178.63 LAN

pi4 192.168.178.64 LAN

To check if the setup works, restart hotspot device, then share its internet connection again. All Pi
should still have the same static IP addresses assigned to them.

After setting up static IP, for convenience we will enable passwordless, SSH-key-based login from local PC to
each Pi 3:

First, generate SSH key on local PC with:

Do not fill anything when asked, just hit "Enter"
ssh-keygen -t rsa -b 2048
Public key location: "~/.ssh/id_rsa.pub" (on Windows; "~" denotes home
directory)

Then, copy the generated SSH key to each Pi 3 and finish setting them up. Do the following for each Pi
3:

SSH into Pi 3, make sure you are user <admin>
E.g., on local PC:
ssh admin@pi1.local

Once logged in, go to <admin>'s home directory and create directory ".ssh"
cd
mkdir -p ~/.ssh

Open new file "authorized_keys" in the ".ssh" directory
sudo nano ~/.ssh/authorized_keys
Paste the contents of the public key "id_rsa.pub" into this file.

Hit "Ctrl" + "X" -> "Y" -> "Enter" to save changes.

Update system packages
sudo apt update && sudo apt upgrade -y

Disable IPv6 & enable memory cgroup
sudo nano /boot/cmdline.txt
Append "ipv6.disable=1 cgroup_memory=1 cgroup_enable=memory" at the end of
the first line.
It is important that there is no line break added.
Hit "Ctrl" + "X" -> "Y" -> "Enter" to save changes.

Reboot Pi 3 so all changes thus far take place.
sudo reboot

Set up Kubernetes Cluster
There are three possible designs for the Kubernetes cluster:

Design Pros Cons Decision

1 Master &
3 Workers

- Simple setup
- Enables fault tolerance & high availability
in worker plane
- Enables scalability across worker nodes

No fault tolerance & high
availability in control plane

Adopt

2 Masters &
2 Workers

- Enables fault tolerance & high availability
in both control & worker planes
- Enables scalability across worker nodes

Complex setup Discard

3 Masters &
1 Worker

Enables fault tolerance & high availability in
control plane

- No fault tolerance & high
availability in worker plane
- Complex setup
- No scalability across worker
nodes

Discard

We prioritize setup complexity > high availability & fault tolerance > scalability, which is why we adopt the first
design. Our Kubenetes cluster now consists of pi1 as master node and pi2, pi3, pi4 as worker nodes.

We first tried to set up the four given Pi 3 as a K3s cluster. However, huge CPU and MEM usage (100~300%
and >65%, respectively) by k3s-server on fresh install made the master node barely respond to any
command. The workarounds suggested in K3s documentation could not alleviate the problem for us. Hence,
instead of K3s, we used K0s. Here are the steps to set up set up a K0s cluster:

On pi1 (the designated master node):

Run curl -sSLf https://get.k0s.sh | sudo sh to download the latest stable K0s.

Run the following commands to deploy as master (controller) node:

https://docs.k3s.io/
https://docs.k3s.io/advanced#old-iptables-versions
https://docs.k0sproject.io/v1.27.2+k0s.0/

Install, start, and check the k0scontroller service
sudo k0s install controller
sudo systemctl start k0scontroller.service
systemctl status k0scontroller.service

Create a token with which new worker nodes can join the K0s cluster by pi1. Save the join token
for subsequent steps.

sudo k0s token create --role worker

On each pi2, pi3, and pi4 (the designated worker nodes):

Run curl -sSLf https://get.k0s.sh | sudo sh to download the latest stable K0s.

Run the following commands to deploy as worker node:

To join the K0s cluster by pi1, create the join token file for the
worker
$TOKEN_CONTENT is the join token created by pi1:
sudo sh -c 'mkdir -p /var/lib/k0s/ && umask 077 && echo
"$TOKEN_CONTENT" > /var/lib/k0s/join-token'

Install, start, and check the k0sworker service
sudo k0s install worker --token-file /var/lib/k0s/join-token
sudo systemctl start k0sworker.service
systemctl status k0sworker.service
sudo k0s status

Run sudo k0s kc get nodes on pi1 to verify if the whole setup works. Note that pi1 is not shown,
because by default K0s only lists nodes with workloads, i.e., worker nodes.

For convenience we will install Helm and configure kubectl on local PC. Helm is the package manager for
Kubernetes, and kubectl is the Kubernetes command-line tool that allows us to run commands against
Kubernetes clusters.

This guide shows how to install Helm on local PC.

This guide shows how to install kubectl on local PC.

To configure kubectl on local PC, open the file /var/lib/k0s/pki/admin.conf on pi1 with sudo
cat /var/lib/k0s/pki/admin.conf and copy its content.

https://docs.k0sproject.io/v1.27.2+k0s.0/FAQ/?h=show+controller#why-doesnt-kubectl-get-nodes-list-the-k0s-controllers
https://helm.sh/docs/intro/install/#from-the-binary-releases
https://kubernetes.io/docs/tasks/tools/

Paste the copied content in the config file normally available at ~/.kube/config (~ denotes home
directory on local PC; if .kube/config is unavailable, create one). Here it is crucial to replace
localhost in clusters:cluster:server with the static IP address of the master node
(192.168.178.61). Everything else can stay the same.

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: ...
 server: https://192.168.178.61:6443
...

Now we can access the setup K0s cluster from local PC. For example:

As preparation for future tasks we will install and configure MetalLB, which exposes Kubernetes
LoadBalancer services from our K0s cluster to applications/services outside of it.

First, install MetalLB:

Add metallb repository to helm
helm repo add metallb https://metallb.github.io/metallb

Install metallb
helm upgrade --install metallb metallb/metallb --create-namespace --
namespace metallb-system --wait

Expected installation result:

Then, configure MetalLB by applying the metallb.yaml-script in the project source code. In the script
we specify the IP address pool that MetalLB can assign to Kubernetes services of type LoadBalancer
(from 192.168.178.200 to 192.168.178.220), allowing these service to be accessible from outside
the cluster.

On local PC, change directory to script location, then
kubectl apply -f metallb.yaml

https://metallb.universe.tf/
https://metallb.universe.tf/configuration/

Expected configuration result:

ipaddresspool.metallb.io/default-pool created
l2advertisement.metallb.io/default created

Set up Storage Service
Initially, we wanted to use a storage service that can replicate data on PV across worker nodes, as this
replication would provide high availability and fault tolerance for data on our K0s cluster. We tried using the
lightweight Longhorn for that purpose (A comparison between Longhorn and several other storage services
can be found here). However, after installation of Longhorn, our pods were repeatedly in CrashLoopBackOff
status. Since we could not determine the exact error cause, and did not want to go over the complex
prerequisites of Longhorn again for debugging, we abandoned Longhorn and tried the easier-to-set-up
OpenEBS instead.

OpenEBS uses the storage available on Kubernetes worker nodes to provide Stateful(Set) workloads with
Replicated Volumes, which is what we wanted initially. However, when we tried to use OpenEBS Jiva
Operator (the only storage engine compatible with our hardware) for the provision of Replicated Volumes,
our pods were also repeatedly in CrashLoopBackOff status. The same case happening with both Longhorn
and OpenEBS Jiva made us conclude that using a storage service on our K0s cluster to replicate PV data is
not recommendable. One possible reason is such data service would add overhead on the cluster capacity and
performance, eventually leading to out-of-memory or -resource, which is one of the common causes for
CrashLoopBackOff.

We therefore delegate the replication of PV data across worker nodes to the multiple DBS Pods running in our
K0s cluster, as these pods (each running on a worker node) would have to synchronize their PV data to ensure
data consistency anyway. We employ OpenEBS as a storage service that only serves to dynamically provision
local PV for the DBS Pods. For that purpose, OpenEBS provides OpenEBS Dynamic Local PV Provisioner and
OpenEBS Local PV Hostpath. So that these resources can be used later, install OpenEBS with Helm as follows:

Get repo info
helm repo add openebs https://openebs.github.io/charts
helm repo update

Install
helm install openebs openebs/openebs --namespace default

Expected installation result:

https://longhorn.io/docs/1.4.2/what-is-longhorn/
https://rpi4cluster.com/k3s/k3s-storage-setting/
https://openebs.io/docs#what-is-openebs
https://openebs.io/docs/#what-does-openebs-do
https://github.com/openebs/jiva-operator#jiva-operator
https://openebs.io/docs/user-guides/localpv-hostpath

Set up DBS
Pre-API-Development Setup

Since we delegate the replication of PV data to the DBS Pods, we must use a DBS that enables data replication
across its instances. That DBS must also support arm64/v8 architecture on our Pi 3. Another important factor
to consider is which type of DBS (relational or NoSQL) to be used for storing images and detection results, as
these data will be queried later by users. Hence for each DBS type to consider, we pick a representative DBS
that satisfies the above necessary conditions, then compare their characteristics:

MySQL (Relational DBS) MongoDB (NoSQL Document DBS)

Complex replication setup Simple replication setup

Image data stored as BLOB, requiring less
storage space

Image data stored as base64-encoded string, requiring
more storage space

Detection data stored in tables, producing
possibly quicker query results

Detection data stored in JSON documents, producing
possibly slower query results

More work needed in REST API Pods to produce
write-queries

Less work needed in REST API Pods to produce write-
queries

Since we prioritize setup complexity > performance, MongoDB is our choice for DBS. Here are the steps to set up
MongoDB in our K0s cluster:

Apply the following scripts in the project source code. After applying ensure that all corresponding
pods are Running and all correspoding PV as well as Persistent Volume Claims (PVC) are Bound. For
more information, read the scripts.

On local PC, change to script directory, then apply scripts as follows
kubectl apply -f mongoSecret.yaml
kubectl apply -f mongoConfig.yaml
kubectl apply -f mongo.yaml

Check if all corresponding pods are Running
kubectl get pods

Check if all corresponding PV and PVC are Bound
kubectl get pv
kubectl get pvc

https://www.mysql.com/
https://www.mongodb.com/

Set up replication in MongoDB. The following commands are based on this tutorial:

On local PC, go into the first MongoDB server/pod "mongo-sts-0"
kubectl exec -it mongo-sts-0 -- mongo

Initiate a replica set named "rs0" with the available MongoDB servers/pods
"mongo-sts-0", "mongo-sts-1", & "mongo-sts-2"
"mongo-sts-0" will be set as the primary instance, while the other will be
set as secondary instances
rs.initiate(
 {
 _id: "rs0",
 version: 1,
 members: [
 { _id: 0, host : "mongo-sts-0.mongo-headless-
svc.default.svc.cluster.local:27017" },
 { _id: 1, host : "mongo-sts-1.mongo-headless-
svc.default.svc.cluster.local:27017" },
 { _id: 2, host : "mongo-sts-2.mongo-headless-
svc.default.svc.cluster.local:27017" }
]
 }
)

Exit from "mongo-sts-0"
exit

Go into "mongo-sts-0" again to check the initiated primary and secondary
instances
kubectl exec -it mongo-sts-0 -- mongo
rs.status()

Enable replication from primary to secondary instances
rs.secondaryOk()

For convenience we will set up MongoDB Compass/GUI, so that we can check which data are available on our
MongoDB database without having to go into a MongoDB server/pod. Since we use the LoadBalancer type
for the Kubernetes Service mongo-read-svc, MetalLB will automatically assign a fixed IP address
(192.168.178.200 in our case) to this service, enabling MongoDB Compass/GUI to access mongo-read-svc
and the MongoDB database from outside the cluster.

In MongoDB Compass/GUI, configure the connection string as follows to enable connection:

https://www.mongodb.com/docs/v4.4/replication/
https://youtu.be/eUa-IDPGL-Q

Mid-API-Development Setup

Initially, for the REST API Pods to write data to the Primary MongoDB instance (the only one in the replica set
receiving write operations/requests), they would first have to send a read request to mongo-read-svc to
query for the DNS name of that instance (e.g., mongo-sts-0). Only then can the REST API Pods send their
write requests to the Primary MongoDB instance's DNS address (e.g., mongo-sts-0.mongo-headless-
svc.default.svc.cluster.local:27017), which is exposed to them by the Kubernetes Service mongo-
headless-svc. However, during the development of REST API, we were unable to get the DNS name of the
Primary MongoDB instance while querying for it. Since the debugging process could not produce any
significant results and we did not have enough time to consider other DBS options, we had to discard the
MongoDB Replica Set setup on the cluster (i.e., the Pre-API-Development Setup) and went with only one
MongoDB instance instead (i.e., the Mid-API-Development Setup), which enabled the system to function
properly. As a consequence of changing the initial DBS setup, Test High Availability DBS will have to be
skipped. However, from our perspective, the system's functionality takes precedence over the high availability
of the DBS.

Here are the changes in the setup:

There is now only one MongoDB instance (mongo-sts-0) on the cluster as opposed to three in the Pre-
API-Development Setup.
mongo-read-svc (assigned external IP: 192.168.178.200), which was created initially to receive only
read requests, was replaced with mongo-svc (assigned external IP: 192.168.178.204), which currently
receives both read and write requests, since there exists only one MongoDB instance to read from and

write to. This change is optional, as mongo-read-svc can also be configured to handle both read and
write requests, but in that case the name of mongo-read-svc would not reflect exactly the types of
request it receives.

Implement TNB
Follow this tutorial to create a Telegram Bot. Our TNB is called G2PetBot.
Create a Telegram group chat. Our group chat is called Cloud Computing SS23.
Add G2PetBot to Cloud Computing SS23.
Find the token of G2PetBot and the group ID of Cloud Computing SS23.
Encode the token and group ID as base64 strings.
Add the encoded strings as values of telegram-bot-token and telegram-group-chat-id keys in the
restapiSecret.yaml-script.
Write code that sends detection results to TNB (see telegram_bot/main.py in the project source
code). When G2Petbot receives detection results, it notifies all users in Cloud Computing SS23 about
them.

Develop REST API
Overview

The main tasks of the backend are to process data and to facilitate data communication between system
components. More specifically, it provides an interface between the Sensor Node and the Frontend to send
and retrieve data. The data sent and retrieved include the a base64-encoded picture, date and time of the
picture, as well as detection results such as pet type and accuracy.

The programming language used for the implementation of the backend is Python in the version 3.10. We
have chosen Python over alternatives like C++ or Java, because it is the only language every group member is
equally familiar with. This means that everyone can help with his knowledge should problems during the
development phase arise.

For the communication interface we have chosen REST as our framework over other alternatives like MQTT
because of its ease of use and scalability as well as previously good experience with it.

Setup

Download and install Python 3.10 and an IDE of choice, e.g. PyCharm.
Download and install necessary dependencies/libraries for the project to your Python HOME directory
or virtual environment.

The dependencies are listed in the requirements.txt file in the backend and flask folders of
the project source code.
Run pip install -r requirements.txt to install the dependencies

Django-REST-API

The first version of our backend has been implemented with the use of the Django-Framework. This
framework provides us with a lot of built-in functionalities for the implementation of our REST-interface and
the connection to our database.

The Django project folder consists of the following files:

https://sendpulse.com/knowledge-base/chatbot/telegram/create-telegram-chatbot
https://www.alphr.com/telegram-create-group-chat/
https://www.youtube.com/watch?v=gk_tPOY1TDM&ab_channel=Chatimize
https://help.zoho.com/portal/en/kb/desk/support-channels/instant-messaging/telegram/articles/telegram-integration-with-zoho-desk#How_to_find_a_token_for_an_existing_Telegram_Bot
https://botostore.com/c/myidbot/
https://www.base64encode.org/

pics/
Dockerfile
db.sqlite3
docker-compose.yml
manage.py
requirements.txt

manage.py is the entry-point to our backend and must be executed with the command python manage.py
runserver from the command line to boot the web application.

Sqlite3 (db.sqlite3) is a database provided by the Django-framework. Until our final database solution
was implemented, Sqlite3 served as a storage for the data utilized by the frontend for testing purposes.

requirements.txt, Dockerfile, and docker-compose.yml are all necessary config-files for the creation of
a docker-image of the backend. The requirements.txt describes the required dependencies, the
Dockerfile contains commands on how the image is supposed to be created, and docker-compose.yaml
provides additional configuration.

The pics/ folder contains our internal program logic:

settings.py contains our overall project configuration including application definitions, database
access etc.
models.py defines the database objects
migrations/ folder contains all created instances of the models
serializiers.py defines serializers based on the database object definitions of models.py. They are
used to check if the correctness of the data sent by the camera module to backend.
telebot.py implements a basic telegram-bot that posts a notification if a new picture has been sent to
the backend by the camera
urls.py defines the URLs used by the camera and the frontend to access the backend
views.py implements the functionality of the urls.

Retrieve JSON data from the payload of the request
Check validity of the data via the serializers
save/retrieve data to/from the database
return a response to the client (including the retrieved data)

Once we decided to use MongoDB as our DBS, the Sqlite3 DBS was not needed anymore and a lot of
functionalities became obsolete, because MongoDB is an object-storage DBS, whereas the serializers are
designed for relational databases. Additionally, there were problems with the deployment of the Django-
backend on the Kubernetes cluster. That is why we decided to drop Django and used the Flask-Framework
instead.

Flask-REST-API

The new Flask-backend is more lightweight and comprehensible than the bloated Django-backend. The
Flask project folder includes the following files:

Dockerfile & requirements.txt for the docker image
app.py as the entry point to the application and the definition of the REST-API-functionality
mongo.py for creating a connection to the MongoDB on the Kubernetes cluster
telebot.py for the telegram notification on camera input

This version of the backend has been successfully deployed on the Kubernetes cluster and provides a REST-
interface for other applications inside and outside of the cluster.

Deploy Backend
The Flask-backend has been deployed by following these steps:

1. Create a docker image of the application with this command:

docker build --platform linux/arm64 -t skywalker360/flask_pd:<tag>

The <tag> is to be filled with the newest tag available + 0.1

2. Push the docker image to the Docker Hub repository

3. Apply the following scripts in the project source code:

On local PC, change to script directory, then
kubectl apply -f restapiSecret.yaml
kubectl apply -f restapiConfig.yaml
kubectl apply -f restapi.yaml

Develop Frontend
Overview

The frontend is a web-application whose main task is to retrieve data from the backend and present them to
the user. Data retrieved by the frontend are the captured images and their detection results. The frontend is
also capable of retrieving data based on certain filter criteria. Angular was used as framework for the
frontend.

Why Angular?

Angular is a TypeScript framework for interactive web-applications, meaning it provides a structure for
developing user interfaces. There are two versions of Angular: Angular and AngularJS. The latter is older
and for JavaScript, while the former is newer and for TypeScript. In this project Angular for TypeScript
is used. Here are some advantages of Angular (for more information refer to this article):

Component-Based Architecture: The application is splitted into smaller components which work
together and can exchange information with each other. The components build a hierarchical structure.
They are reusable and make the program more readable.

Two-way Data binding: This helps the user to exchange data between the model (Typescript file) and
the view (HTML file). This ensures that the model and view are alwayes sync.

Dependency Injection: Dependencies are services or objects which are required for a class to work.
Instead to create this objects inside the class, the class can request them. This reduces the coupling
between components and services which is better for testability and maintainability.

https://www.knowledgehut.com/blog/web-development/advantages-and-disadvantages-of-angular

Powerful Router: Angular has a powerful navigation service which can load various components into
the view depending on the URL in the browser.

Requirements

The web-application must be able to:

Request captured images and detection results (date, time, pet id, type, accuracy) from the backend
(Maximum 10 images per request) based on certain filter criteria
Check for new captured images and detection results
Navigate between the menu pages (In our case Posts and About Us)
Display captured images and detection results

Setup

Install NodeJs and Angular CLI (Windows)

Download and install NodeJS (JavaScript runtime environment).

Install Angular by running the following command in CMD:

npm install -g @angular/cli

Set up the project
Create a new project, e.g.:

ng new web-app

Generate a component, e.g.:

ng g component navbar

Generate new service:

ng g service capture-loader

Run app:

ng serve

By default the app is hosted on localhost:4020.

Components

Navigation bar enables users to navigate through the Posts and About Us pages of our app.

About Us page displays general information about the project.

Capture/Post displays a single captured image and its detection results. The date and time of detection
are listed first; below them are the captured image and a table which shows the id, type, and accuracy
of every pet detection on the image. The component is used by the main page.

Main page (Posts) represents a scrollable list of Captures. By default, when the page is selected, 10
Captures (posts) are displayed. On a button click, 10 more are loaded. There is also a filter with which
the user can specify the wanted pet type, earliest detection date time, and minimum accuracy.

Service

A service is injected into the main page to retrieve data from the backend. For that purpose, the service makes
the HTTP request Load Images (LI). LI request is used to load 10 captured images (and their respective
detection results) from the backend. A filter is provided which specifies what criteria these images should
match. The filter options are date (images must be before the given date), type (images must contain at least
one pet of the given type), and accuracy (all pets on the images should have accuracy greater than or equal to
the specified accuracy). LI request is also used to load the next 10 images from the backend. In this case, the
ID of the last loaded image is also passed to the request so the backend can load the next images with the
given filter.

Deploy Frontend
Follow these steps to deploy frontend on the Kubernetes cluster:

First, generate a Docker file so a docker image of the app can be created.
Build project with production configuration:

ng build --configuration=production

Generate Docker image for linux/arm64 (To deploy the web-app on the Kubernetes cluster, a docker
image for linux/arm64 architecture must be created):

docker buildx build --platform linux/arm64 -t alllexander1/pets-app-arm64:v1
--push

Apply the script frontend.yaml, which contains deployment configuration:

On local PC, change to script directory, then
kubectl apply -f frontend.yaml

Test System
To verify that our system satisfies the project requirements and functions correctly (from the end user's
perspective), we created the following test cases:

Test TNB
Test Main Functionality
Test High Availability DBS

We designed each test case with the IPO (Input-Process-Output) model in mind. The IPO model provides a
structured approach for identifying and defining the inputs, processes, and expected outputs of a particular
functionality or process that needs to be tested.

Test TNB
Input: The user holds a dog / a cat / a dog or cat image in front of the Camera.

Process:

The Camera continuously captures the visual data before it into images, then sends them to the
Application in the Sensor Node.
In the Application:

The Detection (Model) carries out pet detection constantly on the continuous stream of input
images.
Upon successful detection, the resulting image and the corresponding detection results are
forwarded to the Package, where the image is further processed and the detection results are
packed into JSON format.
The packaged data are sent to the Compress, which encodes the processed image as base64
string and puts it into the JSON results before sending them to the Network.
The Network forwards the compressed data to the Kubernetes Service restapi-svc on the
cluster.
For more information about this process by the Application, see Develop & Deploy Application.

Next, restapi-svc directs these data towards one of the REST API Pods running on one of the worker
nodes. The REST API Pod receiving the data creates a notification from them and sends it to the TNB.
Lastly, the TNB notifies the user about the pet image and detection results on Telegram.

Expected Output: The user receives a Telegram notification about the new pet image and detection results.

Current State: PASSED

Actual Output:

Test Main Functionality
Input: The user interacts with the frontend UI to request certain data from the system.

Process:

The Frontend Pod that provides the user with the frontend UI makes a HTTP request from the user's
request (see Service part of the Develop Frontend section for more information). The HTTP request is
then sent to the Kubernetes Service restapi-svc.
Next, restapi-svc forwards that HTTP request to one of the REST API Pods, which then translates the
HTTP request into a MongoDB query and sends the query to the Kubernetes Service mongo-svc.
mongo-svc forwards the received query to the only MongoDB instance on the cluster, which handles the
query by retrieving the requested data from its associated Persistent Volume.
Finally, the requested data are passed back along the chain of communication to the Frontend Pod that
received the user's request, which then displays the requested data on the frontend UI.

Expected Output: The data requested by the user are displayed on the frontend UI.

Current State: NOT RUN (will be updated)

Test High Availability DBS
Input: Failure of one of the worker nodes in the cluster, e.g. by unplugging it.

Process:

Each of the three worker nodes in our cluster hosts a StatefulSet instance of MongoDB. All three instances
belong to the same MongoDB Replica Set. One of them is the Primary instance capable of performing both
read and write operations (i.e., processing read and write requests); the other two are Secondary instances
which can only carry out read operations. Thus, by default write requests are only sent to the Primary instance
for processing.

When a worker node that hosts a Secondary instance fails:

That instance no longer receives any read requests.
Read requests are directed towards the Primary and the other Secondary instance.
Write requests are still only sent to the Primary instance.

When the worker node that hosts the Primary instance fails:

That instance no longer receives any read or write requests.
One of the two Secondary instances will be elected as the new Primary instance.
Read requests are sent to the new Primary and the only remaining Secondary instance.
Write requests are exclusively directed towards the new Primary instance.

Expected Output: There is no changes in the system functionality from the user's perspective.

Current State: SKIPPED (see Mid-API-Development Setup part of the Set up DBS section for more
information)

