
Automatic Pet Detection
With Edge Computing

Group 2 - Cloud Computing (SS2023)

19.07.2023

by

Project Presentation

1. Overview

2. Sensor Node

3. Frontend

4. API

5. Storage Service & DBS

6. Demo

7. Q&A

Contents

2

System Architecture

3

Cluster Design

4

Network Architecture

5

Gather Data
● Using Kaggle
● Filtering for Dogs and Cats
● Collected 55817 Images
● Unannotated

MegaDetector
● Automated Annotating
● Can only separate Animal, Human, Vehicles
● Annotated 10 Images per Second
● Trained with 28657 Images

Sensor Node

6

YOLOv8
● State of the Art
● Small Model

Sensor Node

7

Annotation Format
● MegaDetector (json): <class> x_top_left, y_top_left, width, height
● YOLOv8 (txt): <class> x_center, y_center, width, height

YOLOv8 Training
● In Google Colab
● Using GPU runtime
● Training in 20 epochs

Sensor Node

8

Raspberry Pi 4 Model B
● 64-bit OS

Code
● Object-oriented
● Argparse
● Camera, Detection, Network,

Package, Compress, SensorNode
● Good Error handling
● dev/shm

Sensor Node

9

 Message
● Image converted to JPG and optimized
● Image to Base64
● Message compressed
● Implemented a Queue

Sensor Node

10

{
 “picture”: <Encoded string of image>,
 “date”: “2023-05-28”,
 “time”: “10:15:46”,
 “detections”: [

{“type”: “Cat”, “accuracy”: 0.912, “bid”: 1},
{“type”: “Dog”, “accuracy”: 0.728, “bid”: 2}

]
}

Sample data from Sensor Node

Overview
● Retrieve data from the backend and present them to the user
● Data can be retrieved based on certain filter criteria.

Used Framework
● Angular with TypeScript
● Pros:

○ Component-based Architecture
○ Two-way Data Binding
○ Dependency Injection

Frontend

11

Components
● Capture (i.e., Post, displaying data

retrieved from the backend)
● Navigation bar
● Main page (Posts)
● About Us page

Frontend

12

Main Page (Posts)

13

About Us

14

Communication With Backend
● Through HTTP requests
● Rest API for retrieving data by a given filter
● At most ten images are retrieved per request
● Filter criteria:

○ Date: Retrieved data must be before the given date
○ Type: Retrieved data must have at least one pet of the given type
○ Accuracy: Minimum accuracy of all pets in the retrieved data

Deployment
● Dockerize the application for linux/arm64 architecture
● Create a YAML file to specify deployment configuration
● Apply YAML file to deploy frontend on the Kubernetes cluster

Frontend

15

Overview
● Used Framework: Django

○ Fast setup, easy to use, built-in functions for db-calls and url routing
● Main Task: Providing communication endpoints for the sensor node and

frontend for reading/writing to db
● Implementation of:

○ Models, Serializers, Views, URLs
● Set up SQLite 3 DB for Models/Serializers until

MySQL DB is ready for deployment

Problems
● MongoDB instead of MySQL makes M/S unnecessary
● Deployment on Kubernetes Cluster not possible

API - Django

16

Overview
● Used Framework: Flask

○ Lightweight framework with built-in dev-server and fast debugger
● Main Task: Take the place of Django-Backend and reduce bloat
● Implementation of:

○ Views, URLs, MongoDB-Connection via PyMongo
● Successful deployment on Kubernetes

Problems
● Round-robin DNS of MongoDB’s Stateful Set not supported by PyMongo

○ Drop of MongoDB instances on Kubernetes from 3 to 1

Solution
● Switch to another language or database (not feasible in time)

API - Flask

17

Starting Point
● A storage service that can replicate data on Persistent Volumes (PV)

across worker nodes
● provides high availability and fault tolerance for data on cluster

Options
● Longhorn
● OpenEBS with Replicated Volumes

Storage Service

18

Pros
lightweight

Cons
● CrashLoopBackOff
● Complex

Prerequisites

Longhorn

19

Pros
easier to set up than Longhorn

Cons
CrashLoopBackOff

Conclusion
Not recommendable to use a storage service
for replicating PV data across worker nodes

Reason
Overhead on cluster, eventually leading to
out-of-memory or -resource

OpenEBS with Replicated Volumes

20

Current Design
● Delegate the replication of PV data to

DBS pods:
○ Each DBS pod runs on a worker

node.
○ When the DBS pods synchronize

their data, PV data are also
replicated across worker nodes.

● Use OpenEBS with Local Volumes:
OpenEBS only serves to dynamically
provision Local PV for DBS pods.

Storage Service

21

Starting Point
● A DBS that enables data replication across its instances
● must also support arm64/v8 architecture
● How to store images and detection results for querying later?

Options
● Relational DBS
● NoSQL Document DBS

DBS

22

{
 “picture”: <Encoded string of image>,
 “date”: “2023-05-28”,
 “time”: “10:15:46”,
 “detections”: [

{“type”: “Cat”, “accuracy”: 0.912, “bid”: 1},
{“type”: “Dog”, “accuracy”: 0.728, “bid”: 2}

]
}

Sample data from Sensor Node

Relational vs. NoSQL Document

23

Initial MongoDB Setup

Pi 3B Pi 3B

24

mongo-sts-0

Pi 3B

mongo-sts-1 mongo-sts-2

 Inside Outside Cluster

MongoDB Replica Set
mongo-sts-0: Primary
mongo-sts-1: Secondary
mongo-sts-2: Secondary

MongoDB
Compass/GUI

Current MongoDB Setup

Pi 3B Pi 3B

25

Pi 3B

mongo-sts-0

 Inside Outside Cluster

MongoDB
Compass/GUI

Demo

26

Scan the QR code above to take part in our Demo!
We will be back shortly after setting up our system.

Thank you for your patience!

Q&A

27

Contact Us!
● Sensor Node:

📧 vincent.rossknecht@stud.fra-uas.de

📧 tenderra@stud.fra-uas.de

● Cluster:

📧 minh.nguyen4@stud.fra-uas.de

📧 jonas.huelsman@stud.fra-uas.de

📧 alexander.atanassov@stud.fra-uas.de
Check Out Our
Project Report!

Thank You For Your Attention!

Appendix: Kubernetes Architecture

28

Appendix: Project Plan

29

